首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curie temperatures, hysteresis, alternating field properties and anhysteretic and ordinary susceptibilities have been used to characterize the titanomagnetites in a large collection of continental granites, diorites, syenites, anorthosites, gabbros, diabases and basalts. Low-Curie-point titanomagnetites or titanomaghemites were found only in basalts. In all shallow and deep-seated intrusive rocks, the predominant magnetic phase was nearly-titanium-free titanomagnetite with a Curie point of 520–580°C. Most felsic plutonic rocks owed their magnetic properties to coarse, discrete titanomagnetites with truly multidomain properties. Many mafic plutonic rocks (anorthosites, gabbros, norites) displayed bimodal magnetic properties, strong-field properties being due to the discrete titanomagnetites and weak-field properties being due to fine magnetite inclusions in deuterically altered silicates. The Lowrie-Fuller test and the anhysteretic induction curve were the most diagnostic tests of this bimodal behaviour. Grain-size variation within a single diabase dike or sill had a strong expression in all magnetic properties, except HR/Hc and the Lowrie-Fuller test. On the other hand, the Lowrie-Fuller test was a sensitive indicator of changes in “effective” grain size in basalts due to the subdivision of grains by ilmenite lamellae.  相似文献   

2.
A Precambrian metadolerite dyke has two distinct types of remanence carriers; those with medium/high coercivities (unblocking fields of 20–120 mT) and those with low coercivities (unblocking fields of <15 mT). Optical examination reveals numerous submicron probably opaque inclusions in the plagioclase feldspar and also large opaque grains consisting of coarse oxidation-exsolution intergrowths of magnetite and ilmenite. All opaque phases have been examined using transmission electron microscopy together with microanalysis and electron diffraction. The submicron inclusions in the plagioclase are titanomagnetites(0 < x ≤ 0.14) with a size range between about 0.01 and 0.5 μm and axial ratios between 1 (equidimensional) and about 0.3. Many of these inclusions fall in the single-domain field but some are probably pseudo-single-domain. The large opaque grains contain almost pure magnetite and ilmenite and show no fine-scale exsolution; the magnetite regions of the intergrowths are of multidomain size and reveal multidomain structure under Lorentz electron microscopy. There are also some primary ilmenites containing very fine exsolved haematite, and there are very fine plates of ilmenite and very elongate needles of magnetite within the augite. Experiments on artificial samples containing very carefully prepared separates of plagioclase and large opaque grains show that the pure plagioclase acquires a remanence with unblocking fields of 20–140 mT and blocking temperatures of 390–590°C and the large opaque grains acquire a remanence with unblocking fields of less than 15 mT but a wide range of blocking temperatures up to about 570°C. It is concluded that the medium/high coercivity component of remanence in the rock is carried largely or possibly entirely by the submicron magnetites within the plagioclase and that the low coercivity component is carried largely or entirely by the multidomain magnetites in the large opaques. The contribution of the magnetite needles in the augite is uncertain as the rock does not contain any detectable component of remanence with the extremely high coercivities expected from their very elongate shape.  相似文献   

3.
The oxide mineralogy and magnetic properties were examined in a suite of fifteen olivine-normative diabase dike samples from western South Carolina in an attempt to elucidate their magnetic petrology. Titanomagnetite (1–2 vol.%) is the dominant Fe-Ti oxide mineral. Ilmenite and secondary magnetite are generally present in very minor amounts. Chromite constitutes up to 0.5 vol.%; its abundance and composition correlate with bulk rock Cr. Various types of fine-scale microstructure are evident in titanomagnetite crystals. The most important are patterned anisotropism and the development of trellis-type ilmenite lamellae. Microprobe analyses indicate: (1) titanomagnetite compositions, x, are mostly between 0.4 and 0.55, and (2) low analytical totals are characteristic of most titanomagnetites. Curie temperatures of the diabases are 500–540°C, which are several hundred degrees higher than predicted from the observed titanomagnetite x's (150–300°C). We attribute these higher Curie temperatures to oxidation of the titanomagnetites, which has produced “titanomaghemites” having visible microstructure and yielding low analyses (because they are cation deficient). Natural remanence magnetization and REM (ratio of natural remanence to saturation remanence) vary between 4 and 100 × 10−4 A m2 kg−1 and 0.0019 and 0.032, respectively. These properties inversely correlate with Cr content and demonstrably contrast Cr-rich and Cr-poor samples. Initial susceptibility, saturation magnetization and coercivity values show a two- to three-fold range. Variations in initial susceptibility and coercivities appear to be largely related to the type and extent of oxidation-induced microstructure in the titanomagnetites.  相似文献   

4.
The variation of the low-field susceptibility of basalts down to liquid-nitrogen temperature always falls into one of three types that depend on the composition and grain size of the titanomagnetite grains present. Group 1 basalts contain predominantly unoxidised, multidomain homogeneous titanomagnetites having x 0.3. Group 2 basalts contain predominantly titanomagnetite grains with many exsolved ilmenite lamallae that subdivide the grains so that they act similarly to single domains. Group 3 basalts contain predominantly multidomain magnetite or magnetite-rich titanomagnetite having x 0.15. After repeated heating to 615°C, the group 1 basalts gradually oxidise above 300°C to produce the characteristics of group 2 basalts, owing to the exsolution of ilmenite. On the other hand, both group 2 and 3 basalts are stable to oxidation until at least 500°C. They are therefore the most useful material for palaeointensity studies.  相似文献   

5.
The existence of domain structure has been questioned for titanomagnetites of typical oceanic basalt composition owing to the unusual temperature dependence of their susceptibility, resembling that of spin glasses. In order to make a direct test of domain structure, a series of stoichiometric titanomagnetites between magnetite (TM0) and 75% ulvöspinel content (TM75) as well as a titanomagnetite of typical oceanic basalt composition have been synthesised using the double-sintering technique at 1300°C, in controlled atmospheres. The purity, stoichiometry and homogeneity of these materials were tested by optical, X-ray and microprobe studies as well as by magnetic measurements.Domain structures were observed using the Bitter-pattern technique after ionic polishing to produce stress-free surface of the bulk material. The optimum time required for ionic polishing was found to increase with the ulvöspinel content and to be correlated with the magnetostrictive constant θ. Magnetite showed a domain configuration which is also typical for nickel (mostly lamella-shaped domains, pine-tree-shaped closure domains, high domain wall mobility in small external fields, straight domain walls). The tendency to form lamella-shaped domains is present up to TM75 (which has a Curie temperature of only 40°C), but with an increasing tendency to form curved domain walls and to have fewer and also differently shaped closure domains. This is demonstrated in a series of photographs. The results constitute unequivocal evidence for the existence of a domain structure in the classical sense in a broad range of stoichiometric pure and doped (Al, Mg, Mn, V) titanomagnetites.  相似文献   

6.
Thermomagnetic curves have been obtained for samples from 25 granites and gneisses in Georgia, South Carolina, and North Carolina. This data set can be divided into two distinct curve types: Type I includes rocks which exhibit no distinct Curie points and a linear decrease in magnetization with increasing temperature; Type II curves exhibit a distinct Curie point over a range of temperatures expected for magnetite (500–580°C). Synthetic samples constructed from magnetite and hematite powder exhibit Type I behavior when the hematite to magnetite ratio is high (e.g. 15 : 1). Examination of polished sections shows relatively coarse-grained magnetite only in Type II rocks. We interpret our data to indicate that Type I thermomagnetic curves are dominated by relatively large hematite/magnetite ratios while Type II granites are characterized by relatively coarse-grained magnetite. Type I granite samples have low magnetic susceptibility values (less than 4 × 10?4 cgs) while most Type II granite samples have higher values. The Type I granites are invariably18O-enriched whereas Type II granites typically exhibit low18O/16O ratios. These relationships are consistent with previously reported correlations of susceptibility (generally indicative of magnetite content) and oxygen isotopic trends in the southern Appalachian Piedmont.  相似文献   

7.
This study provides new thermomagnetic and petrographic data on specific basaltic rock association from the broader vicinity of the Lou?ná-Oberwiesenthal volcanic centre, western Bohemia/Saxony. Two types of volcanic rocks were recognized there: (i) high-Ti types (3.5–5.2 wt% TiO2) represented by (mela)nephelinite s.s., and sporadically present (ii) medium-Ti types (2.5–3.5 wt% TiO2) of olivine nephelinite, nepheline basanite and phonotephrite compositions. In order to examine the rock-magnetic behaviour, they were studied for their variations in the Curie temperature (TC) and field-dependent susceptibility, spinel group minerals, chemistry and petrology. Magnetic susceptibility of ulvöspinel-rich titanomagnetite, as a dominant magnetic carrier, depends on the amplitude of measured magnetic field, whereas pure magnetite is field-independent. Field dependence parameter kHD of the studied basaltic rocks ranges from 0.8 to 18.7%, TiO2 contents in titanomagnetite range from 12.7 to 20.1 wt.%. TiO2 content in titanomagnetite does not correlate with whole-rock TiO2 content (2.8 to 5.6 wt.%). The content of substituted titanium in the sublattice of magnetite is also sensitively reflected in the Curie temperature, ranging from 200 to 580°C. The spinel group minerals are designated as titanomagnetite with the dominance of ulvöspinel, magnetite and magnesioferrite components, or titanomagnetite with the magnetite, ulvöspinel and magnesioferrite components. Only two samples are characterized by a significant presence of Cr-spinel and magnesiochromite components forming cores of titanomagnetites. The titanomagnetite-bearing rocks in the studied area, likewise the low- to medium-Ti basaltic rocks from the ?eské st?edoho?í Mts., provide similar thermomagnetic curves.  相似文献   

8.
Synthetic titanomagnetites prepared at 1300°C at different oxidation potentials, although giving only spinel-type X-ray reflections, were found to contain a small amount of included material with a Curie point above that for the bulk material. Specimens, comprising either dispersed sized grains, or polycrystalline spherical aggregates of grains, develop thermoremanent moments which are dependent upon the presence of the inclusions. The magnetization of the inclusions is revealed by thermal demagnetization experiments, and the experimental results are compared with the effects expected to arise from magnetic shielding by the matrix titanomagnetite.  相似文献   

9.
The bulk magnetic properties, including Curie temperature, susceptibility and hysteresis at various temperatures, and the Mössbauer spectra of coarse synthetic members of the titanomagnetite series are compared as a function of titanium content, using some previously reported and some new results. It has been noted previously that the titanium-rich members fail to show the expected “true multidomain” behaviour observed in pure magnetite. One possible explanation is that the behaviour observed may be due to a tendency to inhibit domain wall formation in some titanomagnetites. In this paper we discuss some other possible mechanisms to account for the magnetic properties of such titanomagnetites observable even when domain-wall-related structures do form in them. These mechanisms suggest that magnetocrystalline anisotropy and its temperature dependence in titanomagnetites may be related to local magnetic inhomogeneities, and do not depend only on crystal structure as in the case of classical ferromagnetic materials.  相似文献   

10.
Synthetic single crystals of titanomagnetite of nominal composition Fe2.4Ti0.6O4 have been oxidized at 1275°C in controlled gas atmospheres, producing multiphase intergrowths to simulate the natural process of deuteric oxidation. The evolution of the intergrowths was monitored using the conventional techniques of petrology: optical and electron microscopy and X-ray and electron microprobe analyses. In addition, the measured magnetic properties — particularly the temperature-dependence of hysteresis properties — provided further information about the composition and concentrations of magnetic phases, and their domain state, as oxidation proceeded. The evolution of a trellis pattern of ilmenite lamellae, characteristic of the “exsolution” stages of deuteric oxidation, was observed in the oxidized crystals. The interlamellar spinel region consisted of two iron-enriched titanomagnetites, one thought to occur along the lamellar boundaries. The magnetic hardness of both phases was found to be greater than the original homogeneous multidomain titanomagnetite crystals, although neither phase achieved monodomain characteristics, and the stability of thermoremanence (TRM) remained quite low (median destructive fields (MDF) of the order of a few thousend A m?1). The lamellae made little contribution to the total remanence. A sharp rise in magnetic hardness, observed during the post-exsolution stages of oxidation, was due to the presence of fine-grain monodomain magnetite, thought to be distributed within the haemoilmenite matrix, but probably not having been formed by lamellar subdivision. The crystals could now carry an intense and stable TRM with MDFs of many tens of thousands of A m?1.  相似文献   

11.
Summary The magnetic properties of some dykes from Mysore State, India, have been studied in detail. The rocks were found to have aQ n ratio varying from 1.5 to 11.6, a remanent coercive force varying from 100 to 250 Oersteds, Curie temperature varying from 250 to 480°C and were found to have lamellae of ilmenite oriented in (111) plane of magnetite. The stable natural remanent magnetization of the rock seems to be of TRM origin with titanomagnetite and low grade titanomaghemite being the main carrier of remanent magnetization.N.G.R.I. Contribution No. 70-215.  相似文献   

12.
Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ~1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ~375°C–590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic.  相似文献   

13.
Stoichiometric titanomagnetites Fe3?xTixO4 with compositions between x = 0 (magnetite) and x = 0.72 (a titanomagnetite having a Curie temperature of 60°C) have been synthesised using the double-sintering technique in controlled atmospheres. The quality of these materials was tested by various mineralogical and magnetic measurements. Isolated small multidomain (MD) and pseudo-single-domain (PSD) particles within pores of the bulk material were investigated with respect to their domain structures, and threshold sizes for the transition from the PSD to the SD stage determined for titanomagnetites of various compositions by extrapolation from the domain state of small MD grains. The threshold size was found to be 0.7 and 0.5 μm, respectively, for TM72 (x = 0.72) and TM62 (x = 0.62). The threshold size decreases slightly for smaller x values; however, the experimental data obtained to date are not sufficiently reliable to yield precise results.Preliminary experiments concerning hysteresis loops and TRM generation are also reported.  相似文献   

14.
Abundant lamellae of plagioclase are present in the (100) planes of hypersthene megacrysts in andesine anorthosite along Tikkoatokhakh Bay, northwest of Nain, Labrador. Spongy intergrowths of plagioclase in hypersthene also occur. Plagioclase lamellae have mean compositions ranging from An43 to An92, with extreme compositions from An39 to An97; the calcic compositions are the more abundant. Such lamellae are always accompanied in the hypersthene by grains or lamellar segments of magnetite, and rarely by lamellae of olivine, augite, magnetite, or ilmenite. Some calcic plagioclase lamellae contain antiperthitic spindles of orthoclase. The host rocks of the hypersthene megacrysts are layered leuconorites and anorthosites with mean plagioclase compositions ranging from An41 to An55. The plagioclase lamellae in hypersthene are characteristically much more calcic than the host-rock plagioclase. There is little doubt that the lamellae exsolved from a pyroxene host, dominantly by a coupled redox reaction which generated magnetite, thereby releasing silica to combine with the Ca-Tschermak and jadeite components of the precursor pyroxene. Rapid growth of megacrysts may account for their aluminous nature.  相似文献   

15.
Magnetic susceptibility (MS) of natural specimens of hematite and goethite is studied under continuous heating with various additives: with carbon (sugar), nitrogen (carbamide), and elemental sulfur. It is found that heating of hematite with carbon above 450°C results in the formation of single-domain magnetite, while the magnetic susceptibility rises by a factor of 165. The increase in magnetic susceptibility on heating of hematite with nitrogen above 540°C reflects the generation of a single-domain maghemite with the Curie point of about 650°C, which is stable to heating. After the first heating, the magnetic susceptibility increases by 415 times. The subsequent cycle of thermal treatment results in the transition of maghemite to hematite, a decrease of MS, and an increase of coercivity. Heating with sulfur produces a stable single-domain magnetite at a temperature above the Curie point, which is manifested in the cooling curves. Here, the MS increases by a factor of 400. The heating curves for goethite exhibit a sharp drop in susceptibility to a temperature of 350–360°C, which reflects the transition of hematite to goethite. Heating of hematite with carbon produces stable maghemite at above 530°C, and with sulphur and nitrogen, it produces magnetite. When heated with pyrite, hematite reduces to magnetite under the action of sulfur released from pyrite.  相似文献   

16.
The results of magnetic and X-ray studies of the magnetic extracts separated from highly magnetically susceptible horizons of the Late Pleistocene sediments from the North Caspian Basin are presented. Greigite is shown to be the major carrier of magnetic properties in these horizons. Its coercive parameters are characteristic of the predominantly single-domain state of magnetic grains. It is found that the Curie point of greigite is at least 460°C, while the specific magnetization of pure greigite is half the saturation magnetization of magnetite.  相似文献   

17.
The eruption of Kilauea Volcano August 21–23, 1963, left 600,000 cubic meters of basaltic lava in a lava lake as much as 15 meters deep in Alae pit crater. Field studies of the lake began August 27 and include repeated core drilling, measurements of temperature in the crust and melt, and precise level surveys of the lake surface. The last interstitial melt in the lake solidified late in September 1964; by mid August 1965 the maximum temperature was 690°C at a depth of 11.5 meters. Pumice air-quenched from about 1140°C contains only 5 percent crystals — clinopyroxene, cuhedral olivine (Fo 80), and a trace of plagioclase, (An 70). Drill cores taken from the zone of crystallization in the lake show that olivine continued crystallizing to about 1070°C; below that it reacts with the melt, becoming corroded and mantled by pyroxene and plagioclase. Below 1070°C, pyroxene and plagioclase crystallized at a constant ratio. Ilmenite first appeared at about 1070°C and was joined by magnetite at about 1050°C; both increased rapidly in abundance to 1000°C. Apatite first appeared as minute needles in interstitial glass at 1000°C. Both the abundance and index of refraction of glass quenched from melt decreased nearly linearly with falling temperature. At 1070°C the quenched lava contains about 65 percent dark-brown glass with an index of 1.61; at 980°C it contains about 8 percent colorless glass with an index of 1.49. Below 980°C, the percentage of glass remained constant. Progressive crystallization forced exsolution of gases from the melt fraction; these formed vesicles and angular pores, causing expansion of the crystallizing lava and lifting the surface of the central part of the lake an average of 19.5 cm. The solidified basalt underwent pneumatolitic alteration, including deposition of cristobalite at 800°C, reddish alteration of olivine at 700°C, tarnishing of ilmenite at 550°C, deposition of anhydrite at 250°C, and deposition of native sulfur at 100°C. Ferric-ferrous ratios suggest that oxidation with maximum intensity between 550°C and 610°C moved downward in the crust as it cooled; this was followed by reduction at a temperature of about 100°C. The crystallized basalt is a homogeneous fine-grained rock containing on the average 48.3 percent by volume intergranular pyroxene (augite > pigeonite), 34.2 percent plagioclase laths (An60 70), 7.9 percent interstitial glass, 6.9 percent opaques (ilmenite > magnetite), 2.7 percent olivine (Fo70 80), and a trace of apatite. Chemical analyses of 18 samples, ranging from initially quenched pumice to lava cored more than a year after the eruption from the center and from near the base of the lake, show little variation from silica-saturated tholeiitic basalt containing 50.4 percent SiO2, 2.4 percent Na2O, and 0.54 percent K2O. Apparently there was no significant crystal settling and no appreciable vapor-phase transport of these components during the year of crystallization. However, seven samples of interstitial liquid that had been filter-pressed into gash fractures and drill holes from partly crystalline mush near the base of the crust show large differences from the bulk composition of the solidified crust—lower MgO, CaO, and Al2O3; and higher total iron, TiO2, Na2O, K2O, P2O5, and F, and, in most samples, SiO2. The minor elements Ba, Ga, Li, Y, and Yb and possibly Cu tend to be enriched in the filter-pressed liquids, and Cr and possibly Ni tend to be depleted.  相似文献   

18.
Summary Phase, structural and magnetic changes, occurring under oxidation and at increased temperatures, are studied on four samples of magnetic fractions. The samples of magnetic fractions, containing titanomagnetites at different oxidation levels, were oxidized at a temperature of 400°C for 1, 60 and 300 mins. With the aid of X-rays and Mössbauer's spectrometry it has been proved that under oxidation non-stoichiometric titanomagnetites and titanomagnetites plus ilmenite and pseudobrookite are formed.  相似文献   

19.
Iron ore and host rocks have been sampled (90 oriented samples from 19 sites) from the Las Truchas mine, western Mexico. A broad range of magnetic parameters have been studied to characterize the samples: saturation magnetization, Curie temperature, density, susceptibility, remanence intensity, Koenigsberger ratio, and hysteresis parameters. Magnetic properties are controlled by variations in titanomagnetite content, deuteric oxidation, and hydrothermal alteration. Las Truchas deposit formed by contact metasomatism in a Mesozoic volcano-sedimentary sequence intruded by a batholith, and titanomagnetites underwent intermediate degrees of deuteric oxidation. Post-mineralization hydrothermal alteration, evidenced by pyrite, epidote, sericite, and kaolin, seems to be the major event that affected the minerals and magnetic properties. Magnetite grain sizes in iron ores range from 5 to >200 μm, which suggest dominance of multidomain (MD) states. Curie temperatures are 580±5°C, characteristic of magnetite. Hysteresis parameters indicate that most samples have MD magnetite, some samples pseudo-single domain (PSD), and just a few single domain (SD) particles. AF demagnetization and IRM acquisition indicate that NRM and laboratory remanences are carried by MD magnetite in iron ores and PSD–SD magnetite in host rocks. The Koenigsberger ratio falls in a narrow range between 0.1 and 10, indicating the significance of MD and PSD magnetites.  相似文献   

20.
Biotite granite from the Sierra Nevada batholith was reacted, with known water contents in sealed platinum capsules, in a piston-cylinder apparatus between 10 and 35 kb. With the liquid just over-saturated with respect to water, temperatures for solidus and liquidus (quartz/coesite-out curve), respectively, are: 2 kb, 680°C, 715°C; 10 kb, 620°C, 725°C; 25 kb, 655°C, 800°C; 35 kb, 700°C, 850°C. The temperature interval is 35°C at 2 kb, 105°C at 10 kb, and 150°C at 35 kb, indicating that granite departs from a eutectic composition at depths greater than about 40–50 km. We conclude that crystal-liquid equilibria are not likely to yield primary rhyolite or granite magmas by partial fusion of oceanic crust in subduction zones. The solubility of water in granite liquids, in wt%, is 22.5 ± 2.5 at 25 kb and 810°C and 27 ± 2.5 at 35 kb and 850°C. These results indicate that a miscibility gap persists between water-saturated silicate magmas and aqueous vapor phase at least to pressures corresponding to 100 km depth in the mantle. The formation of kyanite near the liquidus of water over-saturated granite indicates that the aqueous vapor phase is enriched in alkalis and possibly silica, relative to the condensed phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号