首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
During a recent oceanographical-geophysical survey carried out in the southeastern part of the Gulf of Patras in Western Greece for the construction of an outfall, an active pockmark field was found. The pockmark field was formed in soft layered Holocene silts. The pockmarks are associated with acoustic anomalies attributed to gas-charged sediments. The pockmarks vary in size and shape from 25 to 250 m in diameter and from 0.5 to 15 m in depth and are among the largest and deepest observed in the world.

On July 14th, 1993, during the survey, a major earthquake of magnitude 5.4 on the Richter scale occurred in the area. During the 24 hour period prior to the earthquake the bottom water temperature anomalously increased on three occasions, whilst for a few days after the earthquake it was noted that the majority of the pockmarks were venting gas bublles.

It is considered that the three abrupt sea-water temperature increases were probably the result of upward migrating high-temperature gas bubbles in the water column. It is further suggested that the earthquake was the triggering mechanism and that the gas expulsion was caused by the reduction in the pore volume in the sediments resulting from changes in the stress regime prior to the earthquake. Therefore, it can be suggested that in seismic areas adjacent to pockmark fields, earthquake prediction may be achieved by monitoring the water temperature and/or the rate of gas venting in the pockmark field.

Our analysis indicates that the pockmark field in the Patras Gulf has formed slowly during the Holocene by continuous gas venting, which is periodically being interrupted by short-duration events of enhanced gas seepage triggered by earthquakes.  相似文献   


2.
Several incidents involving damage to submarine pipelines indicate that there will be potential hazards for many submarine structures if the geotechnical properties of the soil in pockmarks remain unclear. Based on a geophysical survey, geological drilling, in-situ measurement, and shallow gas eruption experiment, two large pockmarks near the Zhongjieshan Archipelago in the East China Sea were analyzed comprehensively. The geophysical and in-situ data indicated that the soil below the two pockmarks contains free or dissolved shallow gas, which continues to migrate upward from the deep zones, but there is no high-pressure gas reservoir in the pockmark soil. In-situ piezocone data, geotechnical results, and shallow gas eruption experiments have demonstrated that the pockmark soil has strengthened mechanical properties and zoning characteristics. After analyzing the pockmark soil in the area where the study was conducted, it was concluded that the pockmark soil in this area is not suitable for the accumulation of high-pressure, shallow gas. It also was concluded that the pockmark soil had stronger mechanical properties than virgin sediment due to the compaction of the soil caused by the eruption of the shallow gas. The zoning characteristics of pockmark soil are due to the regional differences in the ability of shallow gas to carry soil particles, which is a new finding that is worthy of attention in off-shore engineering.  相似文献   

3.
An analysis of 3D seismic data from the Zhongjiannan Basin in the western margin of the South China Sea (SCS) reveals seismic evidence of gas hydrates and associated gases, including pockmarks, a bottom simulating reflector (BSR), enhanced reflection (ER), reverse polarity reflection (RPR), and a dim amplitude zone (DAZ). The BSR mainly surrounds Zhongjian Island, covering an area of 350 km2 in this 3D survey area. The BSR area and pockmark area do not match each other; where there is a pockmark developed, there is no BSR. The gas hydrate layer builds upward from the base of the stability zone with a thickness of less than 100 m. A mature pockmark usually consists of an outside trough, a middle ridge, and one or more central pits, with a diameter of several kilometers and a depth of several hundreds of meters. The process of pockmark creation entails methane consumption. Dense faults in the study area efficiently transport fluid from large depths to the shallow layer, supporting the formation of gas hydrate and ultimately the pockmark.  相似文献   

4.
Pockmarks are observed worldwide along the continental margins and are inferred to be indicators of fluid expulsion. In the present study, we have analysed multibeam bathymetry and 2D/3D seismic data from the south-western Barents Sea, in relation to gas hydrate stability field and sediment type, to examine pockmark genesis. Seismic attributes of the sediments at and beneath the seafloor have been analysed to study the factors related to pockmark formation. The seabed depths in the study area are just outside the methane hydrate stability field, but the presence of higher order hydrocarbon gases such as ethane and/or propane in the expelled fluids may cause localised gas hydrate formation. The selective occurrence of pockmarks in regions of specific seabed sediment types indicates that their formation is more closely related to the type of seabed sediment than the source path of fluid venting such as faults. The presence of high acoustic backscatter amplitudes at the centre of the pockmarks indicates harder/coarser sediments, likely linked to removal of soft material. The pockmarks show high seismic reflection amplitudes along their fringes indicating deposition of carbonates precipitated from upwelling fluids. High seismic amplitude gas anomalies underlying the region away from the pockmarks indicate active fluid flow from hydrocarbon source rocks beneath, which is blocked by overlying less permeable formations. In areas of consolidated sediments, the upward flow is limited to open fault locations, while soft sediment areas allow diffused flow of fluids and hence formation of pockmarks over a wider region, through removal of fine-grained material.  相似文献   

5.
Over 25,300 seabed pockmarks were mapped from the Rosetta Channel region of the Western Nile Deep Sea Fan (NDSF) using concurrent High Resolution 2D, Chirp profiler and multibeam bathymetry data which spans the Holocene–Pleistocene period. Within the region, a pockmark field containing >13,800 pockmarks was analysed using spatial statistics to determine the distribution of pockmarks within the field. Pockmarks within the field are small (∼16 m diameter), shallow (∼0.5 m deep) circular depressions which formed within the last ∼ 6500 years. The fluid source for the field is identified as an accumulation/generation of gas beneath a hemipelagic seal c. 20–40 ms beneath the seabed. The position of the pockmarks is shown to be unrelated to the depth to the fluid source and an irregular high amplitude acoustic anomaly which is tentatively interpreted as a possible carbonate precipitate of biogenic microbial activity. Statistical spatial analysis of the field confirms the distribution of pockmarks is not random. An exclusion zone surrounding each individual pockmark is identified. The exclusion zone is a unique minimum radius around each pockmark which is not penetrated by any other pockmark. The exclusion zone works in unison with Self-Organised Criticality (SOC) in determining the spatial distribution of pockmarks within the field. The exclusion zone is interpreted as a pockmark “drainage cell”. A conceptual model for a pockmark drainage cell is proposed whereby pockmark formation dissipates a radius/area of fluid and overpressure, thereby preventing the formation of another pockmark within that cell. Consequently, pockmarks are observed to separate or produce anti-clustering tendencies within the field.  相似文献   

6.
《Marine Geology》2006,225(1-4):45-62
A systematic mapping program incorporating more than 5000 km of side scan sonar and seismic reflection tracklines in the western Gulf of Maine has identified more than 70 biogenic natural gas deposits, occupying 311 km2 in nearshore muddy embayments. Many of these embayments also contain pockmark fields, with some exhibiting geologically active characteristics including the observance of plumes of escaping fluids and sediment. Pockmarks, hemispherically shaped depressions of various size and depths, formed through fluid escape of gas and/or pore water, are sometimes found within or outside gas fields, although many gas fields lack pockmarks altogether. Although the origin of the natural gas remains unclear, if coastal environments at times of lower sea level were similar to the present, numerous lake, wetland, valley fill and estuarine sources of organic-rich material may have formed on the inner shelf. If these deposits survived transgression and remain buried, they are potential gas sources.Intensive mapping of the Belfast Bay pockmark field in 1998 produced the first nearly continuous side scan sonar mosaic of a Gulf of Maine pockmark field with a corresponding 3-dimensional geological model generated from seismic data. Statistical analysis of pockmark geometry, gas deposit loci, and subsurface evidence for gas-enhanced reflectors suggest that gas migration from deeper lateral sources along permeable subsurface strata may be the mechanism for pockmark formation in areas lacking gas-curtain seismic reflections. The coarse-grained transgressive ravinement unconformity between Pleistocene glacial-marine mud and Holocene mud may act as a conduit for distributing methane to the field's margins.  相似文献   

7.
The Nyegga region, located at water depths of about 600–800 m on the NW European continental margin, contains more than 200 pockmarks. Recently collected TOPAS seismic profiles and EM1002 bathymetric records now provide high-resolution information on their seabed and shallow sub-seabed geological setting. The identified pockmarks are up to 15 m deep, between 30 m and 600 m across and reach a maximum area of ca. 315,000 m2. The pockmarks are sediment-empty features. They do not have any preferred direction of orientation and show large variations in their shape. The pockmarks are restricted to a <16.2 cal. ka old sediment unit. This unit comprises sandy mud and is characterised by sedimentation rates of ca. 1 mm/year. The pockmarks are localised over a thick late Plio-Pleistocene prograding sediment package and a polygonal faulted Miocene-Oligocene ooze-rich unit. The late Plio-Plistocene deposits host bottom simulating reflectors, indicative of gas hydrate-bearing sediments. Inspection of the newly collected high-resolution dataset, combined with previously analysed sediment cores and 2D multichannel seismic profiles, reveals that the Nyegga pockmark field does not show any strong relationship between seabed features, sub-seabed structures and the sedimentary setting. This suggests a more complex evolution history of the Nyegga pockmark field then previously thought.  相似文献   

8.
The 15-km-long Matane pockmark train belongs to a series of NNE-striking alignments of pockmarks mapped on the seafloor of the St. Lawrence Estuary. It includes 109 pockmarks that show a complete transition from well-defined, relatively deep (up to 8.6 m), crater-like depressions to subtle, partly buried morphological features, suggesting that pockmarks have formed at different periods along the whole alignment and that the location of fluid release has changed through time. On seismic profiles, pockmarks are characterized by vertical seismic chimneys that root in the (fractured?) hinge zone of an open anticline within the autochthonous Palaeozoic rocks of the St. Lawrence Platform. In absence of a geochemical characterization of expelled gas, the relationship between the Matane pockmark train and the anticline in a domain characterized by mature source rocks is the strongest evidence for the genetic link between pockmarks and the release of gas from an active hydrocarbon system or a reservoir located in the Palaeozoic succession.
Figure
Alignment of the Matane pockmark train along a buried bedrock anticline of the Lower St. Lawrence Estuary  相似文献   

9.
Based on high-resolution Chirp seismic, multibeam bathymetry and side scan sonar data collected in the ?zmir Gulf, Aegean Sea in 2008 and 2010, gas-related structures have been identified, which can be classified into three categories: (1) shallow gas accumulations and gas chimneys, (2) mud diapirs, and (3) active and inactive pockmarks. On the Chirp profiles, shallow gas accumulations were observed along the northern coastline of the outer ?zmir Gulf at 3-20 m below the seabed. They appear as acoustic turbidity zones and are interpreted as biogenic gas accumulations produced in organic-rich highstand fan sediments from the Gediz River. The diapiric structures are interpreted as shale or mud diapirs formed under lateral compression due to regional counter-clockwise rotation of Anatolian microplate. Furthermore, the sedimentary structure at the flanks suggests a continuous upward movement of the diapirs. Several pockmarks exist close to fault traces to the east of Hekim Island; most of them were associated with acoustic plumes indicating active degassing during the survey period in 2008. Another Chirp survey was carried out just over these plumes in 2010 to demonstrate if the gas seeps were still active. The surveys indicate that the gas seep is an ongoing process in the gulf. Based on the Chirp data, we proposed that the pockmark formation in the area can be explained by protracted seep model, whereby sediment erosion and re-distribution along pockmark walls result from ongoing (or long lasting) seepage of fluids over long periods of time. The existence of inactive pockmarks in the vicinity, however, implies that gas seepage may eventually cease or that it is periodic. Most of the active pockmarks are located over the fault planes, likely indicating that the gas seepage is controlled by active faulting.  相似文献   

10.
About a decade ago, a large field of pockmarks (individual features up to 30 m in diameter and <2 m deep) was discovered in water depths of 15–40 m in the Bay of Concarneau in southern Brittany along the French Atlantic coast, covering an overall area of 36 km2 and characterised by unusually high pockmark densities in places reaching 2,500 per square kilometre. As revealed by geophysical swath and subbottom profile data ground-truthed by sediment cores collected during two campaigns in 2005 and 2009, the confines of the pockmark field show a spectacular spatial association with those of a vast expanse of tube mats formed by a benthic community of the suspension-feeding amphipod Haploops nirae. The present study complements those findings with subbottom chirp profiles, seabed sonar imagery and ultrasonic backscatter data from the water column acquired in April 2011. Results show that pockmark distribution is influenced by the thickness of Holocene deposits covering an Oligocene palaeo-valley system. Two groups of pockmarks were identified: (1) a group of large (>10 m diameter), more widely scattered pockmarks deeply rooted (up to 8 ms two-way travel time, TWTT) in the Holocene palaeo-valley infills, and (2) a group of smaller, more densely spaced pockmarks shallowly rooted (up to 2 ms TWTT) in interfluve deposits. Pockmark pore water analyses revealed high methane concentrations peaking at ca. 400 μl/l at 22 and 30 cm core depth in silty sediments immediately above Haploops-bearing layers. Water column data indicate acoustic plumes above pockmarks, implying ongoing pockmark activity. Pockmark gas and/or fluid expulsion resulting in increased turbidity (resuspension of, amongst others, freshly settled phytoplankton) could at least partly account for the strong spatial association with the phytoplankton-feeding H. nirae in the Bay of Concarneau, exacerbating impacts of anthropogenically induced eutrophication and growing offshore trawling activities. Tidally driven hydraulic pumping in gas-charged pockmarks represents a good candidate as large-scale short-term triggering mechanism of pockmark activation, in addition to episodic regional seismic activity.  相似文献   

11.
海底麻坑在圈定潜在的天然气水合物发育区和指示海底地质灾害方面都具有重要意义。基于南海中建海域的高密度三维地震资料,采用自动追踪技术对研究区海底地貌特征进行了刻画,发现了众多形态各异、大小不一的麻坑,可分为圆形麻坑、椭圆形麻坑、拉长形麻坑、新月形麻坑和复合型麻坑等5类。中建海域的海底麻坑主要发育在海底地形坡折的位置,成群、成带分布,在地形平坦的位置麻坑不发育。影响中建海域麻坑形成的因素主要有火山活动、断裂活动、水合物分解、海底底流等。引起中建海域海底形成麻坑的流体主要有4种,分别是火山热液、天然气水合物分解的气体、沿断裂向上运移的深部油气及火山热液与天然气水合物分解气体的混合。  相似文献   

12.
利用三维地震资料评估深水井位工程地质灾害   总被引:2,自引:0,他引:2  
随着深水油气勘探开发的快速发展,因地质灾害而发生的石油钻井事故也不断增加。据统计深水钻井大约30%的花费用于解决安全事故,其中大部分用于因地质灾害而引起的安全事故。在钻探之前通过对设计井位进行井场及钻井工程地质灾害评估,找出潜在的危害钻井安全的地质因素,可以在很大程度上避免这类事故的发生。采用以油气勘探为目的的三维地震数据,经二维高分辨率处理,对尼日尔三角洲井场区及钻井过程中可能引起的工程地质灾害因素进行评估,这些因素包括海底滑坡、浅部断层、浅层气、天然气水合物、浅层高压水流、古河谷、泥穿刺与泥火山、异常高压等。研究结果表明,采用三维地震数据经二维高分辨率处理,可得到较为丰富的地质信息,可以满足深水井位对工程地质灾害评估的要求。  相似文献   

13.
14.
Pockmarks in the inner Oslofjord,Norway   总被引:5,自引:3,他引:2  
Multibeam bathymetric surveys of the Inner Oslofjord, Norway have revealed a high density of pockmarks in the 179-km2 inner fjord area, which contains over 500 pockmarks of varying size, typically 20–50 m in diameter and 2–10 m deep. These pockmarks have been investigated with a variety of techniques, including acoustic subbottom profiling, sedimentological and geochemical analyses of cores, remotely operated vehicle observation, and morphometry. Both the distribution and shapes of the pockmarks suggest that they are related to structures in the bedrock underlying relatively thin (<50 m) unconsolidated glacial and postglacial sediments. The data provide no direct indication of a particular mode of pockmark formation, but release of large amounts of biogenic, shallow methane seems unlikely. Several lines of evidence point to a continuous process of pockmark formation followed by inactivity, with some pockmarks recently active whereas others have been inactive for a considerable time. Some pockmarks are characterised by coarse sediment in their centres. The density, variety and easy access make this pockmark field an ideal model area for pockmark research. John S. Gray is deceased.  相似文献   

15.
海底麻坑是由地层中流体向海底快速喷发或缓慢渗漏所形成的一种凹陷地貌,对其形态及成因机理进行深入研究具有重要意义.本研究基于高分辨率多波束地形、侧扫声纳、浅地层剖面及多道地震探测数据,对舟山群岛东部青浜岛海域发育的麻坑及其微地貌进行研究,分析表明:研究区发育有3个大型麻坑,并受到NE—SW向底流的改造而出现不同程度沿此方...  相似文献   

16.
Pockmarks off Big Sur, California   总被引:1,自引:0,他引:1  
A pockmark field was discovered during EM-300 multi-beam bathymetric surveys on the lower continental slope off the Big Sur coast of California. The field contains ∼1500 pockmarks which are between 130 and 260 m in diameter, and typically are 8-12 m deep located within a 560 km2 area. To investigate the origin of these features, piston cores were collected from both the interior and the flanks of the pockmarks, and remotely operated vehicle observation (ROV) video and sampling transects were conducted which passed through 19 of the pockmarks. The water column within and above the pockmarks was sampled for methane concentration. Piston cores and ROV collected push cores show that the pockmark field is composed of monotonous fine silts and clays and the cores within the pockmarks are indistinguishable from those outside the pockmarks. No evidence for either sediment winnowing or diagenetic alteration suggestive of fluid venting was obtained. 14C measurements of the organic carbon in the sediments indicate continuous sedimentation throughout the time resolution of the radiocarbon technique (∼45?000 yr BP), with a sedimentation rate of ∼10 cm per 1000 yr both within and between the pockmarks. Concentrations of methane, dissolved inorganic carbon, sulfate, chloride, and ammonium in pore water extracted from within the cores are generally similar in composition to seawater and show little change with depth, suggesting low biogeochemical activity. These pore water chemical gradients indicate that neither significant accumulations of gas are likely to exist in the shallow subsurface (∼100 m) nor is active fluid advection occurring within the sampled sediments. Taken together the data indicate that these pockmarks are more than 45?000 yr old, are presently inactive, and contain no indications of earlier fluid or gas venting events.  相似文献   

17.
南海礼乐盆地海底麻坑地貌及成因分析   总被引:1,自引:0,他引:1  
本文基于高分辨率多波束测深和浅地层剖面数据,首次对南海礼乐盆地南部坳陷海底麻坑进行了系统的识别研究。共识别出各类麻坑81个,其中麻坑直径最大约2.4 km,坑深最大约157 m。麻坑种类多样:按平面形态主要分为圆形、椭圆形、拉长形和新月形麻坑;按组合方式分为孤立麻坑、链状麻坑和复合麻坑;按直径分为正常麻坑和大型麻坑。区域内发育多条大型海底峡谷,峡谷侵蚀引起两侧地层稳定性降低,气体储层遭受破坏,泄露的气体沿断层或气烟囱等喷发出海底形成麻坑。而因麻坑生成时剥蚀的沉积物质与周围水体混合并逐渐发展成浊流,在一定程度上促进海底峡谷向下延伸。研究区内单个麻坑的平面形态最初为圆形或椭圆形,之后由于重力流和峡谷侵蚀的影响,逐渐发展成拉长形或新月形,麻坑之间也会发生组合形成复合麻坑。链状麻坑与冲沟的形成联系密切,沿垂直于等深线方向展布的链状麻坑在重力流的冲刷下,发育成底部平坦的麻坑冲沟。对比分析全球其他海域麻坑,发现海底麻坑尺寸与水深关系密切,在深水区域更容易发育大型麻坑。  相似文献   

18.
In the Russian sector of the Gdansk Basin (Baltic Sea), high organic matter influx fuels microbial processes resulting in the formation of reduced sediments with elevated methane concentrations. Investigated areas of geoacoustic anomalies (~245 km2) were found to contain three distinct geomorphologic structures (pockmarks), with a total area of ~1 km2. Methane anomalies recorded in the water above one of these pockmarks were traced as high as 10 m above the bottom. In pockmark sediments, sulfate reduction and anaerobic oxidation of methane (AOM) occurred at high rates of 33 and 50 µmol dm?3 day?1, respectively. Integrated over 0–180 cm sediment depths, AOM exceeded methanogenesis almost tenfold. High AOM rates resulted from methane influx from deeper sediment layers. The δ13C signature of methane carbon (?78.1 to ?71.1‰) indicates the biogenic origin of pockmark methane. In pockmark sediments, up to 70% of reduced sulfur compounds was possibly produced via AOM.  相似文献   

19.
The northern Gulf of Mexico is dominated by salt tectonics, resulting fracturing and numerous seafloor seeps and vents. Woolsey Mound, site of the Gulf of Mexico Hydrates Research Consortium's seafloor observatory, has been investigated extensively via surveys, direct sampling and seafloor instrument systems. This study presents an innovative approach to seismic data interpretation, integrating three different resolution datasets and maximizing seismic coverage of the complex natural hydrocarbon plumbing system at Woolsey Mound.3D industry seismic data reveal the presence of a salt body at in the shallow subsurface that has generated an extended network of faults, some extending from the salt body to the seafloor (master faults). Higher resolution seismic data show acoustic wipe-out zones along the master faults with expulsion features – seafloor pockmarks and craters – located immediately above them and associated, in the subsurface, with high-amplitude, negative anomalies at constant depth of 0.2 s TWTT b.s.f., interpreted as free gas. Since pockmarks and craters provide pathways for hydrocarbons to escape from depth into the water column, related sub-surface seismic anomalies may indicate free gas at the base of the gas hydrates stability zone (GHSZ). Fluid flow and gas hydrates formation are segmented laterally along faults. Gas hydrates formation and dissociation vary temporally in the vicinity of active faults, and can temporarily seal them as conduits for thermogenic fluids. Periodic migrations of gases and other fluids may perturb the GHSZ in terms of temperature and pressure, producing the observed lack of classical BSRs.  相似文献   

20.
This study addresses the morphology of pockmarks along the western continental margin of India using multibeam bathymetry and backscatter data. Here, for the first time we have utilized the application of ArcGIS (Geographical Information System) for understanding the morphology of pockmarks from the western continental margin of India. The pockmarks observed in water depths of 145–330 m are circular, elliptical or elongated in plan-view, with an average length and width of 157 (±72) m and 83 (±19) m respectively. The average pockmark relief and perimeter are 1.9 (±0.9) m and 412 (±181) m, respectively. The pockmarks have average areas and volumes of 10 759 m2 and 15 315 m3 respectively. Spatial separation that coincides with 210 m isobath divides the pockmarks into two groups with differing distributions and morphologies. These pockmarks originated from seepages of biogenic or thermogenic gas or from pore fluids from deeper sources, migrated vertically along the faults. Besides a possible structural control, the pockmark morphologies are also affected by bottom currents and/or by submarine slumping. The average acoustic backscatter strength from pockmark centre is higher (−35 dB) than the average backscatter of the total area (−40 dB), which suggests their possible linkage to the precipitation of diagenitic minerals from biodegradation of seepage material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号