共查询到20条相似文献,搜索用时 93 毫秒
1.
Step-heating experiments on 17 calcites from 11 different samples and 6 dolomites from 5 samples suggest a closure temperature of He in carbonates ∼70 ± 10 °C for a cooling rate of 10 °C/m.y. The bulk closure temperature in some samples may tend slightly higher due to the presence of diffusion domains larger (and therefore more retentive) than the sites in which the majority of He resides. The diffusivity of He in calcite is independent of the genesis of the mineral (igneous, sedimentary, metamorphic) or the source of the He (radiogenic, common, or laboratory induced) and in all samples analyzed the effective diffusion dimension for He is smaller than the size of the crystals investigated. Although calcite is a low-U mineral, this shortcoming can be overcome by analyzing large samples (>2 mm diameter) provided samples have a minimum of ∼0.3 ppm U; samples with smaller concentrations of alpha-producers are unlikely to produce enough radiogenic 4He sufficient to overwhelm He present in the crystals at the time they passed through their closure temperature. 相似文献
2.
The Gejiu tin field in southern China consists of six major deposits and many minor ones containing more than 120 million tons (pre-mining resource) at 1% Sn and significant amounts of Cu, Ag, Zn, and Pb. It is one of the largest tin fields of primary deposits in the world. Mineralization is the result of the intrusion of granitic plutons into Permian and Triassic sedimentary rocks, which are dominantly limestone, dolomitic limestone, and dolomite. Five (mostly peraluminous) granitic intrusives (64-115 Ma) are present in the area. The largest orebodies are spatially and temporally related to the Laoka (principally), Beipaotai, and Marsong granites. Tin mineralization is mainly within greisens developed at the outermost zone of a skarn zonal sequence and are mineralogically dominated by fluorite, quartz, and micas. The deposits are the result of volatile-rich ore solutions that evolved late in the plutonic crystallization history. The solutions produced metamorphic skarns as well as ore skarns, both of which later became “greisenized” skarns. Gejiu is the largest example of what has been, up to now, a style of mineralization reported only in minor amounts. 相似文献
3.
以前的微生物岩识别和分类只根据裸眼可见的中观结构,而对显微镜下的微观结构未予使用。微生物的显微结构有什么基本特征,是否可以用于微生物岩的识别和分类是本文关注的焦点。作者从微生物岩形成机制和实际材料的观察来探讨这个问题。在诱导钙化实验中观察到,蓝藻鞘丝藻Lyngbya的胶鞘表面有碳酸盐矿物形成: 先是在胶鞘表面形成点状碳酸盐颗粒,后来碳酸盐几乎包裹整个丝体,形成一个矿物壳。微生物岩形成的模式推演表明,微生物岩一般都有微生物留下的孔(模孔)和包围模孔的矿物壳2种基本单元。对3个地点的现代微生物碳酸盐岩和1个地点的古代(寒武纪)微生物岩的观察,发现在显微尺度上都具有模孔,此外还可能有矿物壳或胶结物。模孔的形状、大小、排列方式是微生物碳酸盐岩显微结构研究的核心内容,在今后的研究中可以用于微生物岩的识别和分类,以及作为分析形成机制和形成环境的基础。 相似文献
4.
An analysis of microborings within sediment and hardground samples collected from the Northwest Providence Channel and the western margin of the Little Bahama Bank was conducted to characterize the endolithic assemblage present, to examine the role of microboring organisms in the alteration of deep-sea carbonates, and to evaluate the palaeoecologic potential of the aphotic microboring assemblage found. Samples examined in this study were collected at depths ranging from 210 to 1450 m. The microboring assemblage was found to contain: (a) filamentous fungal borings of five distinct types, (b) a 1.0 × 2.5 μm vermicular form of fungal or bacterial origin, (c) an 8-12 μm tubular, branching form of probably fungal origin, (d) a subapically branched form considered to be fungal, (e) a spinate form of uncertain affinity and (f) sponge borings. Three of these forms are known only from the deep-marine environment; the remainder are also known from shallow-marine sediments found well within the photic zone. Both carbonate sediments and lithified hardgrounds are highly altered through the activity of endolithic organisms. Infestation of individual skeletal fragments by microborers may be so extensive as to produce heavily bored envelopes resembling those previously reported to occur only under shallow-marine conditions. Although the geological ranges of these microborings remain to be established, the presence of such an aphotic assemblage, coupled with the absence of photosynthetic algal borings, could provide a valuable tool in palaeoecological studies. Other potential applications include the determination of turbidite sediment sources and the establishment of relative water depths for the formation of hardground surfaces. 相似文献
6.
Four hundred thin-sections of Permian (Chuping and Summalayang Limestones) and Triassic (Kodiang Limestone) carbonates of Malaysia were studied, mainly to interpret probable climatic zones during their formation. Chuping Limestone is rich in skeletal grains and intraclasts formed in shallow, high-energy environments. Original mineralogy of skeletal grains and early diagenetic cements were chiefly calcites with some aragonite. The faunal assemblage is similar to that of subpolar carbonates. The brachiopods are characterized by heavy δ13C and light δ18O and these values lie in the same field as an Early Permian fauna from eastern Australia. The δ18O values of fauna show unrealistic temperatures because the fauna has equilibrated with melt waters. However, calculated original δ18O values of the fauna from δ13C indicate temperatures ranging from 2 to 13°C with δw of +1.2. These features reflect cool-temperate (to ?subpolar) conditions. Summalayang Limestone is rich in fusulinids and was deposited in bar to shelf environments. Fusulinids are often filled with fine, equigranular sparry calcite. Early diagenetic origin of these cements is indicated by erosion of cements during transportation and also by the cross-cutting relationship of veins with cements. These cements were originally Mg calcites. The foramol faunal assemblage, and predominantly Mg calcite mineralogy of both fauna and cements, reflect temperate climate. Kodiang Limestone was deposited in peritidal environments. This limestone formation has all the characteristic features of modern, warm, tropical carbonates such as chlorozoan assemblage, diverse non-skeletal grains, abundant early diagenetic dolomites and predominance of aragonitic fauna, non-skeletal grains and cements. The formation of temperate carbonates during the Permian suggests that Malaysia was probably part of Gondwanaland. 相似文献
7.
In the Earth's upper crust, where aqueous fluids can circulate freely, most mineral transformations are controlled by the coupling between the dissolution of a mineral that releases chemical species into the fluid and precipitation of new minerals that contain some of the released species in their crystal structure, the coupled process being driven by a reduction of the total free-energy of the system. Such coupled dissolution-precipitation processes occur at the fluid-mineral interface where the chemical gradients are highest and heterogeneous nucleation can be promoted, therefore controlling the growth kinetics of the new minerals. Time-lapse nanoscale imaging using Atomic Force Microscopy (AFM) can monitor the whole coupled process under in situ conditions and allow identifying the time scales involved and the controlling parameters. We have performed a series of experiments on carbonate minerals (calcite, siderite, dolomite and magnesite) where dissolution of the carbonate and precipitation of a new mineral was imaged and followed through time. In the presence of various species in the reacting fluid (e. g. antimony, selenium, arsenic, phosphate), the calcium released during calcite dissolution binds with these species to form new minerals that sequester these hazardous species in the form of a stable solid phase. For siderite, the coupling involves the release of Fe 2+ ions that subsequently become oxidized and then precipitate in the form of Fe III oxyhydroxides. For dolomite and magnesite, dissolution in the presence of pure water (undersaturated with any possible phase) results in the immediate precipitation of hydrated Mg-carbonate phases. In all these systems, dissolution and precipitation are coupled and occur directly in a boundary layer at the carbonate surface. Scaling arguments demonstrate that the thickness of this boundary layer is controlled by the rate of carbonate dissolution, the equilibrium concentration of the precipitates and the kinetics of diffusion of species in a boundary layer. From these parameters a characteristic time scale and a characteristic length scale of the boundary layer can be derived. This boundary layer grows with time and never reaches a steady state thickness as long as dissolution of the carbonate is faster than precipitation of the new mineral. At ambient temperature, the surface reactions of these dissolving carbonates occur on time-scales of the order of seconds to minutes, indicating the rapid surface rearrangement of carbonates in the presence of aqueous fluids. As a consequence, many carbonate-fluid reactions in low temperature environments are controlled by local thermodynamic equilibria rather than by the global equilibrium in the whole system. 相似文献
8.
13C depleted materials of three types are encountered in the south-eastern Mediterranean Coastal Plain of Israel and Northern Sinai. Sub-surface coarse carbonates associated with elemental sulfur have gd 13C values of −50‰. Organic matter (humic substances and lipid soluble) in the Be'eri sulfur quarries have δ 13C values of −80 to −90‰. Dissolved bicarbonate in groundwaters show δ 13C values of −13 to −17‰.It is suggested that all these values can be explained by biogenic methane leaking from sub-surface reservoir which is oxidized under different depositional and environmental conditions. 相似文献
9.
Gustavsson, J. E. & Högberg, S. A. C.: Uranium/thorium dating of Quaternary carbonates. Boreas, Vol. 1, pp. 247–274. Oslo, 1st December, 1972. The U/Th methods and particularly the theory of the 230Th-deficiency method are reviewed. The closed system question is discussed against the background of the growth and structure of the molluscan shells measured. The choice of the half-life value for 230Th, 75,200 years, is accounted for in a review of the five half-life determinations known to the authors. The measurement procedure starts with the mechanical and ultrasonic cleaning of the sample. Small portions are taken for X-ray analysis. The sample is then divided into two parts. One is treated chemically to separate the uraninium and the thorium, in order to determine the ratio between the activities of the uranium isotopes and to determine the content of 226Ra. The other part of the sample is used to make the total measurement on the uranium and thorium isotopes simultaneously from the same part of the sample without any chemical pretreatment. 相似文献
10.
A linear correlation exists between the standard Gibbs free energies of formation of calcite-type carbonates (MCO 3) and the corresponding conventional standard Gibbs free energies of formation of the aqueous divalent cations (M 2+) at 25 °C and 1 bar ΔGMCO30 = m( ΔGf,M2+0) ? 141,200 cal · mole?1 where m is equal to 0.9715. This relationship enables prediction of the standard free energies of formation of numerous hypothetical carbonates with the calcite structure. Associated uncertainties typically range from about ± 250 to 600 cal · mole ?1. An important consequence of the above correlation is that the thermodynamic equilibrium constant for the distribution of two trace elements M and N between carbonate mineral and aqueous solution at 25 °C and 1 bar is proportional to the free energy difference between the corresponding two aqueous ions: In Combination of predicted standard free energies, entropies and volumes of carbonate minerals at 25°C and 1 bar with standard free energies of aqueous ions and the equation of state in Helgeson et al. (1981) enables prediction of the thermodynamic equilibrium constant for trace element distribution between carbonates and aqueous solutions at elevated temperatures and pressures. Interpretation of the thermodynamic equilibrium constant in terms of concentration ratios in the aqueous phase is considerably simplified if pairs of divalent trace elements are considered that have very similar ionic radii ( e.g., , ). In combination with data for the stabilities of complex ions in aqueous solutions, the above calculations enable useful limits to be placed on the concentrations of trace elements in hydrothermal solutions. 相似文献
11.
High-temperature and high-pressure experiments conducted in a diamond-anvil cell revealed phase transformations in the aragonite-type carbonates of strontianite (SrCO 3), cerussite (PbCO 3), and witherite (BaCO 3) at pressures below 4 GPa and ~1000?°C. The powder X-ray diffraction patterns of these high-pressure phases can be reasonably indexed with the same type of orthorhombic cell having a space group of P2 122 (17). By assuming 16 MCO 3 (M=Sr, Ba or Pb) molecules in a unit cell, the transition from the aragonite form to a new phase was concomitant with a volume contraction of 4.23, 2.38, and 2.34% for SrCO 3, PbCO 3, and BaCO 3, respectively. If the same phase transition were to occur in CaCO 3, it has been estimated that the transition would accompany a 7% volume contraction. 相似文献
12.
Isolated, high relief carbonate platforms developed in the intracratonic basin of east-central Mexico during Albian-Cenomanian time. Relief on the platforms was of the order of 1000 m and slopes were as steep as 20–43°. Basin-margin debris aprons adjacent to the platforms comprise the Tamabra Formation. In the Sierra Madre Oriental, at the eastern margin of the Valles-San Luis Potosi Platform, an exceptionally thick (1380m) progradational basin to platform sequence of the Tamabra Formation can be divided into six lithological units. Basinal carbonate deposition that preceded deposition of the Tamabra Formation was emphatically punctuated by an allochthonous reef block 1 km long by 0·5 km wide with a stratigraphic thickness of 95 m. It is encased in Tamabra Formation unit A, approximately 360 m of peloidal-skeletal wackestone and lithoclastic-skeletal packstone that includes some graded beds. Unit B is 73 m of massive dolomite with sparse skeletal fragments and intraclasts. Unit C, 114m thick, consists of structureless skeletal wackestone passing upward into graded skeletal packstone. Interlaminated lime mudstone and fine grained bioclastic packstone with prominent horizontal burrows are interspersed near the top. Unit D is 126 m of breccia with finely interbedded skeletal grainstone and burrowed or laminated mudstone. The breccias contain a spectrum of platform-derived lithoclasts and basinal intraclasts, up to 10 m in size. The breccias are typically grain supported (rudstone) with a matrix of lightly to completely dolomitized mudstone or skeletal debris. Beds are up to several metres thick. Unit E is 206 m of massive, sucrosic dolomite that replaced breccias. Unit F is approximately 500 m of thick bedded to massive skeletal packstone with abundant rudists and a few mudstone intraclasts. Metre scale laminated lime mudstone beds are interspersed. The section is capped by El Abra Formation platform margin limestone, consisting of massive beds of caprinid packstone and grainstone with many whole valves. Depositional processes within this sequence shift from basinal pelagic or peri-platform sedimentation to distal, platform-derived, muddy turbidity currents with a large slump block (Unit A); through more proximal (coarser and cleaner) turbidity currents (Unit B?, C); to debris flows incorporating platform margin and slope debris (Units D, E). Finally, a talus of coarse, reef-derived bioclasts (Unit F) accumulated as the platform margin prograded over the slope sequence. Interspersed basinal deposits evolved gradually from largely pelagic to include influxes of dilute turbidity currents. Units containing turbidites with platform-derived bioclasts reflect flooding of the adjacent platform. Breccia blocks and lithoclasts were probably generated by erosion and collapse of the platform during lowstands. Laminated, black, pelagic carbonates, locally cherty, are interbedded with both breccias and turbidites. At least those interbedded with turbidites may have been deposited within an expanded mid-water oxygen minimum zone during relative highstands of sea level. They are in part coeval with mid-Cretaceous black shales of the Atlantic Ocean. 相似文献
13.
The carbon isotope signal in deep-sea sediments reflects a mix of (1) global changes in the rates of exchange of the ocean's carbon reservoir with biosphere, soil, and sediments, (2) global and regional changes in surface water productivity, (3) internal shifts in water-mass structure and circulation (basin-basin fractionation, oxygen minimum development), and (4) organism-specific fractionation effects due to changes in micro-habitat and/or ontogenic fractionation (»vital effects«). Additional complications arise from differential preservation. It is impossible to entirely isolate these various factors. As a rule of thumb, long period signals that are parallel for planktonic and benthic data reflect external (global) fractionation patterns, whilst short-period signals are more likely tied to internal patterns (water-mass fractionation). The various approaches to interpretation are illustrated with three case studies: the Glacial-Holocene transition, the Messinian Carbon Shift, and the Miocene Monterey Excursion.
Zusammenfassung Das Kohlenstoff-Isotopensignal in den Tiefseesedimenten spiegelt ein Zusammenspiel wider, das (1) von den globalen Austauschraten des ozeanischen Kohlenstoffreservoirs mit der Biosphäre, den Böden und den Sedimenten gesteuert wird, (2) in dem ein globaler und regionaler Wechsel in der Produktivität des Oberflächenwassers und (3) interne Veränderungen in der Wassermassen-Struktur und -Zirkulation (Becken-zu-Becken-Fraktionierung, Sauerstoffminimumentwicklung) zum Ausdruck kommen, und (4) in dem eine spezifische Fraktionierung hervorgerufen durch die Milieuänderung im Lebensraum der Organismen und/oder ontogenetische Fraktionierung (»Vitaleffekte«) erscheint. Zusätzliche Komplikationen entstehen aus unterschiedlichen Erhaltungsmöglichkeiten. Es ist unmöglich, alle diese verschiedenen Faktoren vollständig zu isolieren. Als Faustregel kann man annehmen, daß langpenodische Signale, die parallel mit Plankton- und Benthosentwicklungen verlaufen, externe globale Fraktionierungstrends widerspiegeln, während kurzzeitige Signale eher an interne Muster gebunden sind (Fraktionierung innerhalb der Wassermassen). Die verschiedenen Möglichkeiten der Interpretation werden an speziellen Fällen diskutiert: am Übergang Pleistozän zu Holozän, an der Veränderung des Kohlenstoffverhältnisses im Messinium und an dem Monerey-Maximum im Miozän.
Résumé Le signal isotopique du carbone enregistré dans les sédiments océaniques résulte d'un ensemble de mécanismes qui reflètent: 1) les variations globales dans l'intensité des échanges entre le réservoir du carbone de l'océan et la biosphère, les sols et les sédiments, 2) les variations globales et régionales de productivité des eaux de surface, 3) les changements dans la structure et la circulation des masses d'eaux (fractionnement de bassin à bassin, développement d'un niveau à minimum d'oxygène), et 4) les effets de fractionnement propres aux organismes, dûs à des changements de micro-habitat et/ou à un fractionnement au cours de l'ontogénie (»effet vital«). La préservation différentielle ajoute certaines difficultés d'interprétation. Il n'est pas possible d'isoler entièrement chacun de ces différents facteurs. D'une manière générale les signaux à longue période dont les variations sont parallèles pour les données planctoniques et benthiques correspondent à un fractionnement dû à des facteurs externes (globaux), alors que les signaux à courte période sont plus vraisemblablement liés à des facteurs internes (fractionnement des masses d'eaux). Trois cas étudiés permettent d'illustrer ces différents types d'interprétation: la transition Glaciaire/Holocène, le »décrochement Messinien« et l'»enrichissement de Monterey« au Miocène.
, : 1) , ; 2) , 3) ( , ) 4) , / — . . ; , , , , , , . : , ; . 相似文献
14.
Doklady Earth Sciences - Carbonates showing the signs of crystallization from a melt were found in dolerites and basalts of lava covers and dikes of Alexandra Land, Heiss, and Newcomb islands.... 相似文献
15.
The atomic resolution microscopy (ARM) at the National Center for Electron Microscopy, Lawrence Berkeley Laboratory, Berkeley, California has been used to image structural features in rhombohedral carbonates. The resolution of the microscope is better than 1.6 Å, but beam damage presently limits the resolution of some of our images to slightly better than 2.6 Å. More details can be extracted through image processing. We were able to interpret contrast in through focus series of “ideal” dolomite by comparing processed images with multibeam contrast calculations. Fair agreement was obtained for focus and thickness variations both of which display great changes. Even for ideal dolomite, the matching is not straight-forward, due to minor orientation variations, the presence of and amorphous overlayer, and surface roughness induced by ion beam thinning, etc. We also find good agreement for calcian δ-dolomite with a cation distribution model which assumes a periodic substitution of alternating Mg layers by Ca. Some atomic resolution examples are shown for coherent calcite-dolomite intergrowths and δ-dolomite domains in dolomite. 相似文献
16.
This formulation of the free energy of mixing in a binary system takes as parameters a Bragg-Williams type cooperative disordering energy and the difference in free energy between different structures for the end-members. Subsolidus phase relations in carbonate systems such as CaCO 3—MgCO 3 and CdCO 3—MgCO 3 are calculated. Similar equations also reproduce the topologies of subsolidus phase relations in pyroxenes, including orthopyroxene-clinopyroxene phase boundaries in the enstatitediopside and ferrosilite-hedenbergite systems, the pigeonite-augite solvus, and the stability field of iron-free pigeonite. 相似文献
17.
Aragonite and calcite single crystals can be readily transformed into polycrystalline hydroxyapatite pseudomorphs by hydrothermal treatment in a (NH 4) 2HPO 4 solution. Scanning electron microscopy of the reaction products showed that the transformation of aragonite to apatite is characterised by the formation of a sharp interface between the two phases and by the development of intracrystalline porosity in the hydroxyapatite phase. In addition, electron backscattered diffraction (EBSD) imaging showed that the c-axis of apatite is predominantly oriented perpendicular to the reaction front with no crystallographic relationship to the aragonite lattice. However, the Ca isotopic composition of the parent aragonite, measured by thermal ionization mass spectrometry was inherited by the apatite product.Hydrothermal experiments conducted with use of phosphate solutions prepared with water enriched in 18O (97%) further revealed that the 18O from the solution is incorporated in the product apatite, as measured by micro-Raman spectroscopy. Monitoring the distribution of 18O with Raman spectroscopy was possible because the incorporation of 18O in the PO 4 group of apatite generates four new Raman bands at 945.8, 932, 919.7 and 908.8 cm −1, in addition to the ν1(PO 4) symmetric stretching band of apatite located at 962 cm −1, which can be assigned to four 18O-bearing PO 4 species. The relative intensities of these bands reflect the 18O content in the PO 4 group of the apatite product. By using equilibrated and non-equilibrated solutions, with respect to the 18O distribution between aqueous phosphate and water, we could show that the concentration of 18O in the apatite product is linked to the degree of 18O equilibration in the solution. The textural and chemical observations are indicative of a coupled mechanism of aragonite dissolution and apatite precipitation taking place at a moving reaction interface. 相似文献
18.
Cryogenic cave carbonate (CCC) represents a specific type of speleothem. Its precipitation proceeds at the freezing point and is triggered by freezing-induced concentration of solutes. Compared to classical speleothems (stalagmites, flowstones), CCC occurs as accumulations of loose uncemented aggregates. The grain sizes range from less than 1 μm to over 1 cm in diameter. Karst groundwater chemistry and its freezing rate upon entering the cave are responsible for highly variable grain morphology. Rapid freezing of water results in the formation of CCC powders with grain size typically below 50 μm. Slow freezing of water in caves (usually in systems where the CO 2 escape is partly restricted; e.g., ice covered water pools) results in the formation of large mineral grains, with sizes from less than 1 mm to about 20 mm. The range of carbon and oxygen stable isotope compositions of CCC is larger than for a typical carbonate speleothem. Rapid freezing of water accompanied by a quick kinetic CO 2 degassing results in large ranges of δ 13C of the CCC powders (between –10‰ and +18‰ PDB). Slow freezing of water, with a restricted CO 2 escape results in gradual increase of δ 13C values (from −9‰ to +6‰ PDB; data ranges in individual caves are usually much more restricted), accompanied by a δ 18O decrease of the precipitated carbonate (overall range from −10‰ to −24‰ PDB). These unusual trends of the carbonate δ 18O evolution reflect incorporation of the heavier 18O isotope into the formed ice. New isotope data on CCC from three Romanian ice caves allow better understanding of the carbon and oxygen isotope fingerprint in carbonates precipitated from freezing of bulk water. CCCs are proposed as a new genetic group of speleothems. 相似文献
19.
The δ 13C carb and 87Sr/ 86Sr secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local δ 13C carb fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative δ 13C carb excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590–544 Myr interval, and two age-groups at 660–610 and 740–690 Myr can be resolved. 相似文献
|