首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Wolf River Batholith is an anorogenic rapakivi massif in central and northeastern Wisconsin with an age of 1.5 Ga. The Batholith has alkaline affinities and consists of biotite granite and biotite-hornblende adamellite with minor occurrences of quartz syenite and older monzonite and anorthosite. The batholith is part of a major Late Precambrian (1.4–1.5 Ga) magmatic event of continental proportions, represented by separate intrusions extending from Labrador to southern California (Silver et al., 1977).The major and trace element composition (Li, Rb, Sr, Ba, and REE) of 40 samples from the anorthosite, monzonite, and rapakivi granite and adamellite plutons precludes a comagmatic (although not cogenetic) model between all three rock units. However, the monzonite may be related to the anorthosite alone by fractional crystallization of plagioclase, orthopyroxene, clinopyroxene, and apatite. Alternatively, the monzonite may be a separate parent melt or a hybrid associated with the granite and adamellite plutons. The high REE content of the monzonite precludes it from being related to the rapakivi granite and adamellite plutons as a source material, a residuum, or a cumulate.A major portion of the Batholith is an undifferentiated intrusive sequence ranging from older rapakivi granite to younger adamellite. The compositions of these plutons suggest a crustal fusion origin at intermediate to lower levels of the crust (25–36 km). The trace element data are consistent with partial fusion of tonalitic to granodioritic source material.During crystallization and emplacement into the upper crust (less than 4 km), 55–70% fractionation of two feldspars, biotite and hornblende from one of the granite plutons produced a small volume of differentiated granitic melt high in Si, Fe/Mg, Rb, Li, and REE (except Eu), and low in Ca, Mg, Al, Ca/Na, Sr, Ba, and K/Rb and with a large negative Eu anomaly. Presumed associated cumulate material ranges from silica-poor quartz monzonite and quartz syenite.The chemical and mineralogical similarity between the Wolf River Batholith and younger magmatic analogs associated in continental break-up (Nigerian younger granites, White Mountain magma series, and the peralkaline volcanics of the Red Sea Region) are suggestive but not conclusive of an extensional tectonic setting. A preliminary tectonic model suggests that the 1.4–1.5 Ga event is in response to thermal doming in an extensional regime leading to continental separation in the western Cordillera (pre-Belt) and extensive crustal fusion with no rifting or separation across the North American Craton.  相似文献   

2.
Anorthosite—adamellite complexes are the chief manifestations of Elsonian magmatic activity of Paleohelikian age (about ?1500 to ?1400 Ma) in Labrador, Canada. Magmatism of similar age and anorogenic character, though with fewer occurrences of massif anorthosite, is present in a belt across the mid-continent and southwestern United States. Anorthosite—quartz mangerite complexes in the Grenville Province lie along the trend of this belt and, although few ages older than the profound Grenvillian regional metamorphism about ?1100 Ma have been determined on them, circumstantial evidence suggests that these also are dominantly of Paleohelikian age.The Labrador complexes are intruded into high-grade metamorphic terrane, older by at least 200 to 300 Ma than the Elsonian magmatism. Typical association of anorthosite massifs with high-grade metamorphic terranes, in Labrador and elsewhere, is probably due to their intrusion into older, stabilized, cratonic crust. The anorthosite—adamellite (and anorthosite—quartz mangerite) complexes are products of bimodal magmatism, and an anorogenic cratonic setting is considered to be of fundamental importance to development of the suites. Olivine tholeiite magmas fractionate to produce high-A1 tholeiitic magmas at or near the base of the cratonic crust, and these magmas are the parents from which anorthosite massifs develop by plagioclase fractionation at higher levels within the crust. Adamellite (quartz mangerite) magmas develop mainly by partial fusion of deep crustal rocks, caused by heat of crystallization from the fractionating olivine tholeiite magmas in the staging region, at or near the base of the crust, and are intruded upward into the crustal complexes; rapakivi textures and chemistries are characteristic products of these magmas. Ferrodiorites, widely associated with anorthosite massifs, probably form as late-stage fractionation products of basic magmas in the subcrustal staging region and are intruded into the massifs in their final stages of development (before intrusion of adamellite or quartz mangerite magmas).The Neohelikian record, dominated by terrestrial sedimentation, basaltic extrusive and intrusive activity, and alkalic magmatism, began soon after ?1400 Ma in the mid-continent United States, central Labrador and southern Greenland. The lithological assemblages have been interpreted by several authors as similar to those of intracontinental rift zones. The following sequence of events: intrusion of Paleohelikian anorthosite—adamellite complexes (granitic intrusion and/or rhyolitic extrusion only, in some places), strong uplift and erosion, crustal attenuation causing basin formation, Neohelikian terrestrial sedimentation, rifting or incipient rifting, renewed basaltic magmatism, and alkalic magmatism, is believed to record a continuing evolving process of mantle—crust interactions over a broad belt across North America.  相似文献   

3.
The Bathurst batholith is a complex of massive granitic intrusions cutting across deformed early and middle Palaeozoic rocks of the Lachlan Fold Belt of New South Wales. An adamellite from Dunkeld, near the western edge of the batholith, has yielded K‐Ar ages of 304 ± 4 m.y. (total‐rock) and 301 ± 6 m.y. (biotite).

Recalculated radiometric ages on rocks from the eastern end (Hartley) and northern edge (Yetholme), together with the new data from the western end (Dunkeld) of the Bathurst batholith yield a mean age of emplacement of 310 m.y. (8 values, standard deviation = 6.8 m.y.). This age is supported by Re‐Os data from molybdenite at Yetholme. As yet these data do not allow establishment of temporal relationships between separate intrusive phases of the Bathurst batholith, although the Durandal Adamellite at Yetholme appears to be the oldest phase yet dated.  相似文献   

4.
Rb-Sr and U-Pb isotopic studies of the two contrasting granite types of the Daguzhai and Luobuli massifs in South China provide new constraints on the interpretation of isotopic age data for plutonic igneous rocks. A Rb-Sr internal isochron age of 146±7Ma for the Luobuli adamellite is interpreted to represent the age of magma crystallization, whereas the whole rock Rb- Sr isochron yields an older apparent age of 161±10Ma which is regarded as resulting from contamination processes affecting the petrogenesis of this adamellite. In the Daguzhai granite the marked scatter of whole- rock Rb-Sr data in isochron diagram is ascribed to the open system behavior of Rb during postmagmatic autometasomatism. Uniformity of initial87Sr /86Sr ratio in this granite is indicated in a plot of87Sr versus86Sr. The autometasomatism has also affected zircon U-Pb system, resulting in a spread of data along the concordia curve between 165 and 125Ma. This spread is regarded as indicating the duration of the autometasomatism.  相似文献   

5.
辽西台里地区花岗质岩石主要由花岗质片麻岩、斑状花岗质片麻岩和黑云母二长花岗岩等组成,这些花岗质岩石均曾被视为新太古代花岗岩。根据各类花岗质岩石的产状序次关系确定,块状/片麻状黑云母二长花岗岩呈岩脉或岩枝状侵入太古宙花岗质片麻岩和斑状花岗质片麻岩中,分别出露于研究区南北两侧。地球化学研究表明,黑云母二长花岗岩属于准铝质-弱过铝质的I型花岗岩,显示火山弧花岗岩的特点。黑云母二长花岗岩中锆石组成复杂,大量继承性锆石和新生锆石共存。新生锆石岩浆结晶特征明显,内部发育振荡生长环带,并具较高的Th/U值(0.15~1.70)。两个样品的新生锆石U-Pb定年结果(加权平均年龄)分别为(153.7±2.0) Ma和(153.7±4.7) Ma。研究表明,黑云母二长花岗岩为源自下地壳中基性火成岩的晚侏罗世花岗质侵入岩,其构造背景与古太平洋板块向亚洲大陆下俯冲作用有关。  相似文献   

6.
三里岗二长花岗岩与花山蛇绿混杂岩中的基性火山岩呈侵入接触关系,其年龄的确定可解决花山蛇绿混杂岩中基性岩形成年龄的上限问题. 本文对三里岗二长花岗岩分别进行了Sm、Nd同位素研究及Rb-Sr、40Ar/39Ar同位素年龄测定.3个全岩样品的Nd模式年龄平均值为1 064±105 Ma;12个全岩样品的Rb-Sr等时线年龄为422±53(2σ)Ma;二长花岗岩中所含角闪石矿物的40Ar/39Ar坪年龄为141.4±0.3 Ma,等时线年龄为142±2 Ma.这些结果暗示了花山蛇绿混杂岩中基性火山岩的形成年龄不可能晚于422 Ma.  相似文献   

7.
滇西至滇中一带新元古代镁铁质岩类、花岗岩类等岩浆岩有广泛分布,前人利用不同岩石组合指示这些岩浆岩形成于不同的地质构造背景.通过对祥云一带调查研究,新确定了南华纪花岗岩体,花岗岩体中含有大量的超镁铁质岩(橄榄辉长岩)、闪长岩类包体,包体与花岗岩不规则边界呈成分渐变,混合形成为花岗闪长岩、石英闪长岩、英云闪长岩类岩石.对花岗岩和铁镁质包体进行锆石U-Pb LA-ICP-MS同位素测年,获得了相近的206Pb/238U平均年龄:761.9±4.1 Ma、761.7±4.2 Ma、761.3±3.7 Ma和757.5±5.9 Ma.花岗岩主量元素显示具有高碱(alk)、中等Mg#(38~57,平均值为50)、低TiO2、P和亏损Ta、Nb、Sr特点,展现了富集轻稀土元素(LREEs)、亏损重稀土元素(HREEs)和选择性富集大离子亲石元素(LILEs)等特点,并且其εNd(t)为负值(-2.73~-4.90),表明花岗岩浆的物质应为早期古老地壳部分熔融的产物;橄榄辉长岩包体地球化学特征为:低K2O,低稀土总量,LREEs和LILEs略富集或不富集,具明显P负异常,Nb-Ta和Zr-Hf无亏损,具有非常高的Mg#(71~83)等特点,这些特征都指示这些橄榄辉长岩来源于幔源,应为地幔边缘岩浆熔融的产物.花岗闪长岩、闪长岩具有略富集LREE和LILE、亏损HREE,其Mg#(45~71)较高,P亏损、负εNd(t)值等特征,Ta、Nb、Ti、Sr、P略亏损或不亏损,组分介于花岗岩和橄榄辉长岩之间,显示了幔源和古老地壳部分熔融混合特点.这些岩石都展示陆源弧岩浆岩的构造背景,大洋板块向扬子板块俯冲导致幔源物质重熔的结果.   相似文献   

8.
诸广山复式花岗岩基位于湘、赣、粤三省交界处,是南岭花岗岩的重要组成部分,由南体和北体组成,出露面积大于5000 km2,形成于加里东期、印支期、燕山期3个时代。通过对诸广山北体3期花岗岩锆石SHRIMP U-Pb定年,结果表明,加里东期花岗闪长岩锆石SHRIMP U-Pb年龄为(414.5±4.5)Ma(n=13,MSWD=0.52)、(417.3±4.8)Ma(n=12,MSWD=0.84),形成于晚志留世末。印支期黑云母二长花岗岩锆石SHRIMP U-Pb年龄(207.5±2.7)Ma(n=10,MSWD=1.6),形成于晚三叠世末。燕山期二云母二长花岗岩锆石SHRIMP U-Pb年龄(148.2±1.7)Ma(n=13,MSWD=0.93),形成于晚侏罗世。该成果为南岭地区构造-岩浆演化及成矿作用研究,提供了重要的花岗岩年代学依据。  相似文献   

9.
新疆尾亚矿区3期岩浆混合作用的初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
新疆东天山的尾亚钒钛磁铁矿矿区,发育3期岩浆混合作用。第一期为辉长质与花岗质岩浆混合.并生成闪长质岩石;第二期为闪长质与花岗质岩浆的混合,生成了石英二长质岩浆;第三期为石英二长岩浆与闪长质岩浆的混合。在各类岩石氧化物对SiO2的哈克图解上,尾亚3期岩浆混合岩石的投影点分别呈相关的线性关系。在稀土和微量元素方面,3期岩浆混合作用形成的岩石分别表现出相近的地球化学特征。配分曲线形态各自相似.形成的过渡岩石——岩浆混合岩类与各自的端元岩石具有继承关系。3期岩浆混合作用之间具有明显的继承性:第一期形成的岩浆混合岩,成分相当于闪长岩,与第二期岩浆混合的基性端元属同类岩石.且与第二期各类岩石具有相似的地球化学特征;第二期形成的石英二长闪长岩,与第三期的端元岩石石英二长斑岩体完全可以对比。尾亚地区的3期岩浆混合作用表明,混合作用可以是多阶段、多期次的,本区火成岩类最初的母岩浆是酸性的陆壳硅铝质和基性的幔源铁镁质岩浆。岩浆混合作用反映了本区壳幔相互作用的本质。  相似文献   

10.
鱼池岭斑岩型钼矿床位于华北克拉通南缘合峪花岗岩基西北部,对其赋矿母岩--花岗斑岩及其围岩--合峪花岗 岩基第三单元侵入体进行锆石LA-ICP-MS U-Pb 定年,获得年龄分别为(135.2±2.4)Ma 和(138.2±2.3)Ma,均为早白垩 世中期岩浆作用的产物,表明鱼池岭钼矿床的形成时代约为135 Ma。鱼池岭含矿花岗斑岩及其围岩花岗岩锆石Lu-Hf同位 素示踪结果显示,这二类岩石Hf同位素组成变化极大,前者176Hf/177Hf比值变化范围在0.281364~0.282420,εHf(t)=-9.6 ~-46.9, 而后者则在0.281774~0.282337 之间分布,εHf(t)=-12.5~-32.8,表明它们在结晶过程中经历了较为显著的岩浆混合作用, 其成熟度较高的端元很可能是新太古代-古元古代太华群基底,而成熟度较低的端元则为燕山期上涌并底侵于地壳底部的 幔源物质或是之前遭受幔源物质改造的下地壳组分。鱼池岭斑岩型钼矿床在中生代古太平洋构造域全面叠置、破坏并改造 古特提斯构造体系的背景下形成,强烈的地壳减薄作用诱发了基性玄武质岩浆底侵或内侵,使得该地区具高钼地球化学背 景的古老地壳岩石发生部分熔融,并不同程度混染有少量幔源组分或新生地壳物质。这样一个富钼的岩浆体系经高程度分 异演化后上升至较浅层次侵位,形成花岗斑岩体。由于围岩为花岗岩,斑岩体的外接触带裂隙较少,因而自身发生不同程 度钼矿化,表现出全岩矿化的特点。  相似文献   

11.
杨建文 《江苏地质》1998,22(3):176-181
广东塘蓬岩体中发育两类不同成因及时代的花岗岩,采用Rb-Sr等时线年龄测定,确定塘蓬主岩体的成岩时代为海西期(204Ma);应用Sm-Nd同位素,采用二元混合模型确定塘蓬岩体黑云母二长花岗岩为改造型花岗岩,黑云母花岗闪长岩为同熔型花岗岩。  相似文献   

12.
Controlled by E-W-trending faults, a Proterozoic (1.4-1.8 Ga old) rapakivi granite suite was intruded inBeijing and the area to its east (within Hebei Province), forming three parallel belts of igneous rocks. Theisotopic, trace element and rare earth element geochemical data of a bimodal rock association made up ofanorthosite, gabbro and alkali basalt and olivine-bearing quartz-syenite, rapakivi granite and trachyte as wellas potassic A-type granites and anorogenic granites—— all suggest that there exists an incipient rift in thestudy area. Fractional crystallization of a mixed magma formed by the magma derived from the upper mantleand the magma derived by small degrees of fusion of the lower crust produced anorthosite cumulates. Thewater-deficient granitic magma was differentiated into a subalkaline series. When the fractional crystallizationwas incomplete, rhythmic eruptions took place.  相似文献   

13.
院格庄花岗岩体位于烟台市牟平区境内,是胶东地区燕山晚期伟德山超单元一个典型的复式岩体。本次研究针对花岗岩体内发育的辉钼矿开展Re-Os同位素测年,同时对采集于花岗岩体的新鲜样品进行了主量元素、微量元素和稀土元素测试分析。结果显示,院格庄花岗岩属于高钾富碱的钙碱性岩,具准铝质-过铝质特征,是壳幔混合来源的花岗岩。此外,辉钼矿Re-Os等时线年龄为(117.8±5.7)Ma,加权平均年龄为(118.27±0.70)Ma,与胶东已知多个燕山晚期铜钼矿赋矿岩体特征及成矿时代一致,显示该区可能具有良好的钼多金属成矿前景。  相似文献   

14.
鞍山地区太古代岩石同位素地质年代学研究   总被引:23,自引:4,他引:23       下载免费PDF全文
乔广生 《地质科学》1990,(2):158-165
鞍山本溪地区太古代变质岩可分为三套,即含铁的表壳岩建造、侵入于铁建造中的花岗质片麻岩和铁架山奥长花岗质-花岗质片麻岩,后者为表壳岩的基底。原划为上鞍山群樱桃园组(齐大山矿带)和山城子组(歪头山-北台矿带)的斜长角闪岩分别获得2729Ma和2724Ma的Sm-Nd等时线年龄。这就为有争议的鞍本地区铁建造属于同一时代提供了依据,并讨论了表壳岩中的变质沉积岩以及铁架山基底片麻岩的同位素年代。  相似文献   

15.
This paper provides important insights into the generation, extraction and crystallization of clast-laden impact melt rocks from the Araguainha impact structure, central Brazil. Despite the mixed nature of the Araguainha target rocks (comprising a 2 km thick sequence of sedimentary rocks and underlying granitic basement), the exposed melt bodies are characterised by an alkali-rich granitic matrix embedding mineral and rock fragments derived only from the target granite. The melt rocks occur in the form of a massive impact melt sheet overlying the eroded central uplift structure, and as melt veins in the granite of the core of the central uplift. Bulk-rock major and trace element data (including platinum group elements) indicate that the precursor melts were generated locally, principally by partial melting of the target granite, without any contribution from the sedimentary sequence or the projectile. The dense network of melt veins was formed in isolation, by selective melting of plagioclase and alkali feldspar within the granite target. Plagioclase and alkali feldspar melted discretely and congruently, producing domains in the matrix of the melt veins, which closely match the stoichiometry of these minerals. The compositionally discrete initial melt phases migrated through a dense network of microfractures before being assembled into larger melt veins. Freezing of the melt veins was substantially fast, and the melt components were quenched in the form of alkali-feldspar and plagioclase schlieren in the matrix of the melt veins. The overlying impact melt rock is, in contrast, characterised by a granophyric matrix consisting of albite, sanidine, quartz, biotite and chlorite. In this case, melt components appear to have been more mobile and to have mixed completely to form a granitic parental melt. We relate the melting of the minerals to post-shock temperatures that exceeded the melting point of feldspars.  相似文献   

16.
Precambrian granitic basement rocks obtained from well BH-36 of Bombay High Field, western offshore of India has been studied both by Rb-Sr and K-Ar dating methods. Seven basement samples chosen from two cores have yielded whole rock Rb-Sr isochron age of 1446 ± 67 Ma with an initial87Sr/86Sr ratio of 0.7062 ± 0.0012. This age has been interpreted as the formation/emplacement time of the granite. Two biotite fractions of different grain size separated from a sample CC6B2T have yielded Rb-Sr mineral isochron age of 1385 ± 21 Ma. However, these fractions when studied by K-Ar dating method have yielded slightly higher but mutually consistent ages of 1458 ± 43 Ma and 1465 ± 43 Ma, respectively. Further, two biotites separated from additional samples CC5B9T and CC6B3B have yielded K-Ar ages of 1452 ± 42 Ma and 1425 ± 40 Ma with an overall mean age of 1438 ± 19 Ma. This mean K-Ar age is indistinguishable from whole rock Rb-Sr isochron as well as mineral isochron age within experimental error. The similarity in the whole rock and biotite ages obtained by different isotopic methods suggests that no thermal disturbance has occurred in these rocks after their emplacement/formation around 1450 Ma ago. The present study provides the evidence for the existence of an important Middle Proterozoic magmatic event around 1400-1450 Ma on the western offshore of India which, hitherto, was thought to be mainly confined to the eastern Ghats, Satpura and Delhi fold belt of India. This finding may have an important bearing on the reconstruction of Proterozoic crustal evolution of western Indian shield.  相似文献   

17.
胡培远  李才  苏犁  张红雨 《地质通报》2012,31(6):843-851
本松错岩基是羌塘中部规模最大的花岗岩复合岩基,面积超过1800km2,由石炭纪、三叠纪和侏罗纪3个不同时代的花岗岩岩体组成,记录了羌塘中部不同时期的岩浆活动,是研究羌塘盆地构造演化的重要窗口。蜈蚣山花岗岩位于本松错复合岩基北部,前人认为其时代为侏罗纪,但是近期在蜈蚣山地区侏罗纪花岗岩中发现有少量印支期花岗岩出露,岩性主要为花岗片麻岩和二长花岗岩,可能为侏罗纪花岗岩的捕虏体。地球化学研究表明,二长花岗岩属高钾钙碱性过铝质花岗岩,形成于同碰撞环境,与区域内其它印支期中酸性岩浆岩类似,共同构成龙木错-双湖-澜沧江板块缝合带同碰撞—后碰撞岩浆弧。此外还对花岗片麻岩片麻理中的黑云母做了40Ar-39Ar测年,获得了175.8Ma±1.1Ma的定年结果,与其围岩侏罗纪花岗岩年龄相近,推测花岗片麻岩是印支期花岗岩受后期侵入的侏罗纪岩浆改造后的产物,本松错复合岩基应当是中酸性岩浆岩多期侵入的产物。  相似文献   

18.
The paper presents data on the geochemical and geochronological characteristics of zircons from mafic rocks of part of the Monchegorsk layered complex represented by the Vurechuaivench massif. Ages of zircons (SHRIMP-II) from samples V-l-09 (anorthosite) and V-2-09 (gabbronorite) are dated back to 2508 ± 7 and 2504 ± 8 Ma, respectively. The chondrite-normalized REE patterns confirm the magmatic nature of zircons. The data unequivocally indicate that the U–Pb age of zircon from both gabbronorite and anorthosite corresponds to the age of melt crystallization in a magmatic chamber. The mantle origin of gabbroic rocks of the Vurechuaivench massif is confirmed by the REE patterns of three zircon generations with different crystallization sequences. The wide range of the Ce/Ce* ratio (9.96–105.24) established for zircons from gabbroic rocks of the Vurechuaivench massif indicates sharply oxidative conditions of zircon crystallization. For deepseated mantle rocks, these data can only be explained by significant contamination of the melt with country rock material.  相似文献   

19.
Bulk analyses of 157 lithic fragments of igneous origin and analyses of their constituent minerals (plagioclase, pyroxene, olivine, Mg-Al spinel, chromite, ilmenite, armalcolite, baddeleyite, zirkelite, K-feldspar, interstitial glass high in SiO2 and K2O) have been used to characterize the lunar highland rock suites at the Luna 20 site. The predominant suite is composed of ANT (anorthositic-noritic-troctolitic) rocks, as found at previous Apollo and Luna sites. This suite consists of an early cumulate member, spinel troctolite, and later cumulate rocks which are gradational from anorthosite to noritic and troctolitic anorthosite to anorthositic norite and troctolite; anorthositic norite is the most abundant rock type and its composition is close to the average composition for the highland rocks at this site. Spinel troctolite is a distinctive member of this suite and is characterized by the presence of Mg-Al spinel, magnesian olivine (average, Fo83), and plagioclase. High-alumina basalt with low alkali content is another important rock type and melt of this composition may be parental to the cumulate ANT suite. Alkalic high-alumina basalt (KREEP) was not found in our sample, but may be genetically related to the ANT suite in that it may have formed by partial melting of rocks similar to those of the ANT suite. Fractional crystallization of low alkali, high-alumina basalt probably cannot produce alkalic high-alumina basalt because the enrichment in KREEP component is many times greater than the simultaneous change in major element components. Formation of alkalic high-alumina basalt by mechanical mixing of ANT rocks with very KREEP-rich components is not likely because the high-alumina basalt suite falls on a cotectic in the anorthiteolivine-silica system. Mare basalts may also be genetically related in that they may have been derived by remelting of rocks formed from residual liquids of fractional crystallization of parental low-alkali, high-alumina basalt, plus mafic cumulate crystals; the resultant melt would have a negative Eu anomaly and high FeMg and pyroxeneplagioclase ratios.  相似文献   

20.
From Casper Mountain; at its northern end, to the northwestern margin of the Laramie anorthosite—syenite complex, in its central parts, the Laramie Range is underlain by granite and granitic gneiss that has a minimum age of 2.54 ± 0.04 Ga (Rb/Sr whole-rock isochron) and by metasedimentary rocks, including marble and quartzite, that appear to overlie the granitic gneiss nonconformably (minimum age: 1.7 Ga based on several horn-blende K/Ar dates). Southward from the anorthosite—syenite complex into Colorado, the Range is underlain chiefly by the Sherman Granite (1.41 Ga; Peterman and Hedge, 1968) and scattered patches of gneiss that are not dated, but are tentatively correlated wit similar gneiss in the southern Medicine Bow Mountains and in the Colorado Front Range, where they are dated as ? 1.7 Ga (Peterman and Hedge, 1968).The Laramie anorthosite—syenite complex (minimum age: ? 1.42 Ga or ? 1.51 Ga if a hornblende K/Ar date is accepted) apparently intruded the suture separating the old (? 2.5 Ga) continental edge from younger (? 1.7 Ga) geosynclinal rocks. The suture, which manifests itself as the Mullen Creek—Nash Fork shear zone in the Medicine Bow Mountains, also is the boundary between ensialic and ensimatic geosynclinal deposition that occurred during the interval 1.7–2.5 Ga ago.K/Ar dates on biotite and muscovite from rocks north of the anorthosite—syenite complex grade from 2.5 Ga on Casper Mountain down to 1.38 Ga near the complex. Near its northern tip, the Laramie Range is crossed by a geochronologic front, separating 2.5 Ga old gneiss whose K/Ar dates were not lowered by subsequent metamorphism from 2.5 Ga old gneiss whose mica dates were reset between 1.4 and 1.6 Ga ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号