首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cadmium has been determined in a range of silicate rock standards using the stable isotope dilution technique incorporating solid source mass spectrometry. Our recommended values are, in general, lower than the previously reported data.  相似文献   

2.
The mass spectrometric isotope dilution technique was used to measure the elemental abundances of Pd, Ag, Cd and Te in Orgueil (C1), Ivuna (C1), Murray (C2) and Allende (C3) chondrites. The Pd abundance of 554 ppb for the C1 chondrites is almost identical to the recommended value of Anders and Ebihara (1982); that for Cd (712 ppb) is approximately 5% higher, whereas that for Ag (198 ppb) is approximately 10% lower than the recommended values. A smooth distribution for the abundances of the odd-A nuclides between65 ≦ A ≦ 209 have been observed except for small irregularities in the Pd-Ag-Cd and the Sm-Eu mass regions (ANDERS and Ebihara, 1982). The results from the present work have the effect of smoothing out the dip in the Pd-Ag-Cd region and indicate that there is no systematic fractionation of cosmochemical element groups in this mass region.A Te abundance of 2.25 ppm has been determined for the C1 chondrites Orgueil and Ivuna in agreement 2+with the value of Smith et al. (1977). This value is some 30% lower than the value of Krähenbühl et al. (1973) but is in good agreement with the more recent measurements from Chicago. The Krähenbühl et al. value causes 128Te and 130Te to lie approximately 30% above the r-process peak at A = 130 (Käppeler el al., 1982), whereas the new value fits smoothly into the general trend.  相似文献   

3.
Bismuth has been determined by alpha counting of the 210Po daughter activity of the 210Bi formed by thermal neutron activation. Results are presented for thirty chondrites, six achondrites, eight separated meteoritic phases, and six U.S. Geological Survey standard rocks. There is no resolvable difference in Bi abundances among the different groups of ordinary chondrites. Bismuth concentration decreases with increasing petrologic grade among the ordinary chondrites. The enstatite chondrites are separable into two groups on the basis of Bi data.  相似文献   

4.
The development is described of a mixed-solvent ion-exchange technique for separating trace amounts of rare-earth elements from silicate rocks and minerals. A two-column method is used, bulk separation of rare earths from other elements being accomplished on the first, and separation into three groups for mass-spectrometric analysis on the second. This has been applied to the determination of nine REE (La, Ce, Nd, Sm, Eu, Gd, Dy, Er and Yb) in standard rock samples. Smooth variation of the chondrite-normalized abundance distributions and comparison with other published results indicate that the accuracy of the method, with the exception of La, is generally ± 2%.  相似文献   

5.
Isotope dilution mass spectrometry with negative thermal ions was applied to determine Cl, Br and I in rocks which, in part, contained less than 100 ppb of Br and I. Two sets of samples have been investigated: a) a series of Al-rich metapelites of increasing metamorphic grade from the Damara Orogen, Namibia and b) fresh and hydrothermally altered greywackes from the Pb−Zn deposit Bad Grund in Germany. It was found that regional metamorphism of Al-rich metapelites causes no strong fractionation of the halides. The Br/Cl ratios in the metapelites are similar to those of sea water. The I/Cl and I/Br ratios, however, are 500 times higher. The I depleted in the ocean most probably is associated with organic matter stored in sediments. The unaltered greywackes from near the Pb−Zn vein have about the same concentrations of halides as the metamorphic Al-rich pelites. By contrast, the hydrothemally altered greywackes contain about twice as much Cl and I, and about 2–5 times as much Br as the unaltered samples. The element ratios, however, are similar for all three categories of rocks, thereby indicating that sea water played no role in the hydrothermal system.  相似文献   

6.
7.
8.
李龙  郑永飞等 《岩石学报》2002,18(1):109-116
硅酸盐岩中总是或多或少地含有一些微量碳酸盐,但是至今尚未对其碳氧同位素地球化学开展研究。本文建立了对硅酸盐岩中微量碳酸盐的碳氧同位素分析方法,并以大别山双河地区两种片麻岩为例,讨论了其地球化学应用。通过对比实验证明,微量法通常可将碳含量检出限降低至5μg/g。对大别山双河两种片麻岩中微量碳酸盐的碳氧同位素测量发现,黑云母副片麻与花岗质正片麻岩具有明显不同的特征。副片麻岩的碳含量较高,δ^13值为-4.5‰-0‰,批示其原岩为正常海相沉积环境,并与邻近大理岩原岩的灰岩沉积环境不同。正片麻岩的碳含量较低,δ^13值为-23.4‰--2.1‰,反映出地表有机碳对岩浆岩原岩的混染。两种片麻岩中碳酸盐与硅酸盐全岩之间的氧同位素分馏既仍处于平衡状态,也有处于不平衡状态。不平衡分馏指示其受到过后期退变质流体的影响。不过,变质岩中微量碳酸盐的碳含量和碳机位素比值分析能够对原岩类型提供有效的区别。  相似文献   

9.
A group of stony meteorites, mainly unequilibrated chondrites ( and , 1965), has been analysed chemically. The chemical analyses of ten meteorites are given in this paper. Detailed studies of the petrology and mineralogy of these meteorites are in progress.  相似文献   

10.
We report on the abundances of Ru isotopes in (1) iron meteorites, (2) stony-iron meteorites (pallasites), (3) ordinary and carbonaceous chondrites, and (4) in refractory inclusions from the carbonaceous meteorite Allende. We have developed improved Multiple-Collector, Negative-ion Thermal Ionization Mass Spectrometric (MC-NTIMS) techniques for Ru, with high ionization efficiency of 4% and with chemical separation techniques for Ru, which reduce mass interferences to the ppm level, so that no mass interference corrections needed to be applied. Our data were normalized to 99Ru/101Ru to correct for mass-dependent fractionation. We find no Ru isotopic effects in the ordinary chondrites and group IAB iron meteorites we have measured. There are significant effects (deficits) in the pure s-process nuclide 100Ru, in the Allende whole-rock and in refractory inclusions of up to 1.7 parts in 10,000 (εu). There are also endemic deficits in 100Ru in iron meteorites and in pallasites of up to 1.1 εu. The Ru data suggest a wide spread and large scale heterogeneity in p-, s-, and r-process components resulting in a deficit in s-process nuclides or enhancements in both p- and r-process nuclides, in refractory siderophiles condensing in the early solar nebula. In contrast, the data on bulk Murchison suggest an excess in 100Ru and in 104Ru, which are distinct from the rest of the measured patterns. Our results establish the presence of significant isotopic heterogeneity for Ru in the early solar nebula. The observation of endemic Ru effects in planetary differentiates, such as iron meteorites and pallasites, must reflect the siderophile nature of Ru and the preservation in condensing FeNi metal of refractory metal condensate grains formed in the early solar nebula. Once incorporated in the metal phase, the refractory siderophiles remained in the metal phase through the melting and differentiation of planetesimals to form FeNi cores and silicate mantles and crusts.  相似文献   

11.
Contributors to chromium isotope variation of meteorites   总被引:3,自引:0,他引:3  
We report the results of a comprehensive, high precision survey of the Cr isotopic compositions of primitive chondrites, along with some differentiated meteorites. To ensure complete dissolution of our samples, they were first fused with lithium borate-tetraborate at 1050-1000 °C. Relative to the NIST Cr standard SRM 3112a, carbonaceous chondrites exhibit excesses in 54Cr/52Cr from 0.4 to 1.6ε (1ε = 1 part in 10,000), and ordinary chondrites display a common 54Cr/52Cr deficit of ∼0.4ε. Analyses of acid-digestion residues of chondrites show that carbonaceous and ordinary chondrites share a common 54Cr-enriched carrier, which is characterized by a large excess in 54Cr/52Cr (up to 200ε) associated with a very small deficit in 53Cr/52Cr (<2ε). We did not find 54Cr anomalies in either bulk enstatite chondrites or in leachates of their acid-digestion residues. This either requires that the enstatite chondrite parent bodies did not incorporate the 54Cr anomaly carrier phase during their accretion, or the phase was destroyed by parent body metamorphism. Chromium in the terrestrial rocks and lunar samples analyzed here show no deviation from the NIST SRM 3112a Cr standard. The eucrite and Martian meteorites studied exhibit small deficits in 54Cr/52Cr. The 54Cr/52Cr variations among different meteorite classes suggest that there was a spatial and/or temporal heterogeneity in the distribution of a 54Cr-rich component in the inner Solar System.We confirm the correlated excesses in 54Cr/52Cr and 53Cr/52Cr for bulk carbonaceous chondrites, but the new data yield a steeper slope (∼6.6) than that reported in Shukolyukov and Lugmair (2006). The correlated excesses may affect the use of the Mn-Cr chronometer in carbonaceous chondrites. We could not confirm the bulk carbonaceous chondrite Mn-Cr isochron reported by Shukolyukov and Lugmair (2006) and Moynier et al. (2007), mostly because we find much smaller total variations in ε53Cr (∼0.2). All bulk chondrites have small ε53Cr excesses (up to 0.3) relative to the Earth, most likely reflecting the sub-chondritic Mn/Cr ratio of the Earth. The ε53Cr variations in chondrites do seem to grossly correlate with Mn/Cr and yield an initial Solar System 53Mn/55Mn value of 5.4(±2.4) × 10−6, corresponding to an absolute age of 4566.4 (±2.2) Ma.Nuclear interactions with cosmic rays result in coupled excesses in ε54Cr and ε53Cr with a ∼4:1 ratio in phases with high Fe/Cr. These are most dramatically demonstrated in the iron meteorite Carbo, showing excesses in ε54Cr of up to 140ε. These new results show that the Mn-Cr chronometer should be used with caution in samples/minerals with high Fe/Cr and long cosmic ray exposure ages.  相似文献   

12.
Fragments of aluminous enstatite from lunar meteorites of highland origin were investigated. It was found that such fragments usually occur in impact breccias of troctolitic composition. The aluminous enstatite contains up to 12 wt % Al2O3 and shows low CaO (<1 wt %) and almost constant high Mg/(Mg + Fe) ratio (89.5 ± 1.4 at %) identical to that of the Earth’s mantle. With respect to these parameters, the aluminous enstatites are distinctly different from common orthopyroxene of lunar rocks. The aluminous enstatite associates with spinel (pleonaste), olivine, anorthite (clinopyroxene was never found), and accessory minerals: rutile, Ti-Zr oxides, troilite, and Fe-Ni metal. The same assemblage was described in rare fragments of spinel cataclasites from the samples of the Apollo missions. Thermobarometry and the analysis of phase equilibria showed that the rocks hosting aluminous enstatite are of deep origin and occurred at depths from 25 km to 130–200 km at T from 800 to 1300°C, i.e., at least in the lower crust and, possibly, in the upper mantle of the Moon. These rocks could form individual plutons or dominate the composition of the lower crust. The most probable source of aluminous enstatite is troctolitic magnesian rocks and, especially, spinel troctolites with low Ca/Al and Ca/Si ratios. The decompression of such rocks must produce cordierite-bearing assemblages. The almost complete absence of such assemblages in the surficial rocks of lunar highlands implies that vertical tectonic movements were practically absent in the lunar crust. The transport of deep-seated materials to the lunar surface was probably related to impact events during the intense meteorite bombardments >3.9 Ga ago.  相似文献   

13.
According to their genesis, meteorites are classified into heliocentric (which originate from the asteroid belt) and planetocentric (which are fragments of the satellites of giant planets, including the Proto-Earth). Heliocentric meteorites (chondrites and primitive meteorites genetically related to them) used in this study as a characteristic of initial phases of the origin of the terrestrial planets. Synthesis of information on planetocentric meteorites (achondrites and iron meteorites) provides the basis for a model for the genesis of the satellites of giant planets and the Moon. The origin and primary layering of the Earth was initially analogously to that of planets of the HH chondritic type, as follows from similarities between the Earth’s primary crust and mantle and the chondrules of Fe-richest chondrites. The development of the Earth’s mantle and crust precluded its explosive breakup during the transition from its protoplanetary to planetary evolutionary stage, whereas chondritic planets underwent explosive breakup into asteroids. Lunar silicate rocks are poorer in Fe than achondrites, and this is explained in the model for the genesis of the Moon by the separation of a small metallic core, which sometime (at 3–4 Ga) induced the planet’s magnetic field. Iron from this core was involved into the generation of lunar depressions (lunar maria) filled with Fe- and Ti-rich rocks. In contrast to the parent planets of achondrites, the Moon has a olivine mantle, and this fact predetermined the isotopically heavier oxygen isotopic composition of lunar rocks. This effect also predetermined the specifics of the Earth’s rocks, whose oxygen became systematically isotopically heavier from the Precambrian to Paleozoic and Mesozoic in the course of olivinization of the peridotite mantle, a processes that formed the so-called roots of continents.  相似文献   

14.
Tellurium isotope data acquired by multiple-collector inductively coupled plasma-mass spectrometry (MC-ICPMS) are presented for sequential acid leachates of the carbonaceous chondrites Orgueil, Murchison, and Allende. Tellurium isotopes are produced by a broad range of nucleosynthetic pathways and they are therefore of particular interest given the isotopic anomalies previously identified for other elements in these meteorites. In addition, the data provide new constraints on the initial solar system abundance of the r-process nuclide 126Sn, which decays to 126Te with a half-life of 234,500 years. The 126Te/128Te ratios of all leachates were found to be identical, within uncertainty, despite variations in 124Sn/128Te of between about 0.002 and 1.4. The data define a 126Sn/124Sn ratio of <7.7 × 10−5 at the time of last isotopic closure, consistent with the value of <18 × 10−5 previously reported for bulk carbonaceous chondrites. How close this is to the initial 126Sn/124Sn ratio of the solar system depends on when the investigated samples last experienced redistribution of Sn and Te. No clear evidence is found for nucleosynthetic anomalies in the abundances of p-, s-, and r-process nuclides. The largest effect detected in this study is a small excess of the r-process nuclide 130Te in a nitric acid leachate of Murchison. This fraction displays an anomalous ε130Te of +3.5 ± 2.5. Although barely resolvable given the analytical uncertainties, this is consistent with the presence of a small excess r-process component or an s-process deficit. The general absence of anomalies contrasts with previous results obtained for K, Cr, Zr, Mo, and Ba isotopes in similar leachates, which display nucleosynthetic anomalies of up to 3.8%. The reason for this discrepancy is unclear but it may reflect volatility and more efficient mixing of Te in the solar nebula.  相似文献   

15.
The physical processes by which materials may move within porous rocks are briefly reviewed. In impermeable rocks diffusion through the solid rock limits mass transfer. Diffusion coefficients in solids are typically of the order 10–15 to 10–8 cm2/sec and temperature-dependent. When there is no fluid convection in a permeable rock, diffusion through liquid-filled pores, with diffusion coefficients of the order 10–6 cm2/sec, will be the dominant mass transport process. Fluid convection in permeable rocks can increase mass transfer rates by many orders of magnitude. The pressure gradient in the fluid, fluid viscosity, and the specific permeability of the rock are dominant in determining the fluid velocity and mass transfer rates. The role of these transport processes in the deposition and leaching of orebodies in porous rocks is discussed.
Zusammenfassung Massenbewegung in undurchlässigem Gestein ist durch die Diffusion durch das feste Gestein begrenzt. Die temperaturabhängigen Diffusionskoeffizienten in Festkörpern sind von der Größenordnung 10–15 bis 10–8 cm2/sek. Wo keine Flüssigkeitskonvektion in einem durchlässigen Gestein stattfindet, ist Diffusion durch flüssigkeitshaltige Poren, mit Diffusionskoeffizienten von der Größenordnung 10–6 cm2/sek., der wichtigste Massentransport-Prozeß. Der Massentransport durch durchlässiges Gestein kann durch Flüssigkeitskonvektion um viele GrÖßenordnungen vergrößert werden. Der Druckgradient in der Flüssigkeit, die Viskosität der Flüssigkeit und die spezifische Permeabilität des Gesteins sind die wichtigsten Faktoren, welche die Geschwindigkeit und Menge des Massentransportes bestimmen. Das Wesen dieser Transportprozesse bei der Ablagerung und Auslaugung von Erzlagerstätten wird diskutiert.
  相似文献   

16.
Sulfur isotope ratios have been determined in 27 selected volcanic rocks from Iceland together with their whole rock chemistry. The 34S of analyzed basalts ranges from –2.0 to +0.4 with an average value of –0.8 Tholeiitic and alkaline rocks exhibit little difference in 34S values but the intermediate and acid rocks analyzed have higher 34S values up to +4.2 It is suggested that the overall variation in sulfur isotope composition of the basalts is caused by degassing. The small range of the 34S values and its similarity to other oceanic and continental basalts, suggest that the depleted mantle is homogeneous in its sulfur isotope composition. The 34S of the depleted mantle is estimated to be within the range for undegassed oceanic basalts, –0.5 to +1.0  相似文献   

17.
Oxygen isotope exchange and closure temperatures in cooling rocks   总被引:3,自引:0,他引:3  
Retrograde exchange of oxygen isotopes between minerals in igneous and metamorphic rocks by means of diffusion is explored using a finite difference computer model, which predicts both the zonation profile of δ18O within grains, and the bulk δ18O value of each mineral in the rock. Apparent oxygen isotope equilibrium temperatures that would be observed in these rocks are calculated from the δ18O values of each mineral pair within the rock. In systems which cool linearly from a sufficiently high temperature or at a low enough cooling rate, such that the final oxygen isotope values are not dependent upon the initial oxygen isotope values ('slow cooling'), the apparent oxygen isotope temperature derived for a rock composed of a single mineral pair can be shown to be simply related to the Dodson closure temperatures ( T c) for the two phases and the mode of the rock. Adding a third phase into a system which undergoes 'slow' cooling will cause the apparent temperature derived for the two minerals already present to differ from the simple relationship for a two-phase system. In some systems oxygen isotope reversals can be developed. If cooling is not 'slow', then the mineral δ18O values resulting from cooling will be partly dependent upon the initial temperature of the system concerned. The model successfully simulates the mineral δ18O values that are often observed in granitic rocks. Application of the model will help in assessing the validity of oxygen isotope thermometry in different geological settings, and allows quantitative prediction of the oxygen isotope fractionations that are developed in cooling closed systems.  相似文献   

18.
The concentrations of the trace elements Na, K, Rb and Sr and the isotopic composition of Sr have been measured in a suite of ultramafic rocks, including alpine-type intrusions, inclusions in basalts and kimberlite pipes, zones from stratiform sheets, and a mica peridotite. From these data and those available in the literature the following conclusions can be drawn. Alpine-type ultramafic material appears to be residual in nature and can be neither the source material for the derivation of basalts nor the refractory residue of modern basalts. Alpine-type ultramafic intrusions appear to have no relationship with ultramafic zones in stratiform sheets and were probably derived from the upper mantle. A genetic relationship exists between basalts and their ultramafic inclusions, but it is extremely doubtful that this inclusion material could give rise to basalts by partial fusion. There is a possible genetic relationship between basalts and ultramafic inclusions in kimberlite pipes, and this ultramafic material is a potential source for the derivation of basalts. Ultramafic inclusions in basalts are probably not fragments of an alpine-type ultramafic zone in the mantle. An attempt has been made to synthesize the data and interpretations of this study by way of speculations on the role of ultramafic rocks in the differentiation history of the earth.  相似文献   

19.
《Chemical Geology》2003,193(1-2):59-80
The increment method is applied to calculation of oxygen isotope fractionation factors for common magmatic rocks. The 18O-enrichment degree of the different compositions of magmatic rocks is evaluated by the oxygen isotope indices of both CIPW normative minerals and normalized chemical composition. The consistent results are obtained from the two approaches, pointing to negligible oxygen isotope fractionation between rock and melt of the same compositions. The present calculations verify the following sequence of 18O-enrichment in the magmatic rocks: felsic rocks>intermediate rocks>mafic rocks>ultramafic rocks. Two sets of internally consistent fractionation factors are acquired for phenocryst–lava systems at the temperatures above 1000 K and rock–water systems in the temperatures range of 0–1200 °C, respectively. The present calculations are consistent with existing data from experiments and/or empirical calibrations. The obtained results can be used to quantitatively determine the history of water–rock interaction and to serve geological thermometry for various types of magmatic rocks (especially extrusive rocks).  相似文献   

20.
For most iron meteorites studied, the carbon isotopic composition of nodular graphite falls in the range ?4.8 to ?8.2%. vs PDB and shows a mode between ?5 and ?6%.. Fourteen cohenite analyses from the Magura meteorite fall between ?18.1 and ?19.2%. with a pronounced clustering around ?18.5%.. Carbon of a taenite separate from the same meteorite has an isotopic composition of ?18.8%.; compositions between ?19.7 and ?22.1%. were found for taenite carbon in five other octahedrites. It is suggested that the 12C enrichment in cohenite and taenite relative to the nodular graphite is a general phenomenon in iron meteorites, and that the study of 13C abundances in iron meteorites may aid in the elucidation of their history. To this end an experimental study of carbon isotope fractionations in the system Fe-Ni-C is essential. The 13C content of carbon from several silicate inclusions in the Four Corners and ‘El Taco’ (Campo del Cielo) meteorites is generally similar to the nodular graphite, the 12C enrichment (?13%.) in one specimen may be interpreted in terms of a mixing model involving an original inclusion carbon and carbon exsolved from the taenite upon cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号