首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The petrogenesis of Apollo 14 high-Al basaltic melts was studied using crystal stratigraphy, which involves textural (crystal size distributions — CSDs) and chemical analyses (electron microprobe and laser ablation inductively coupled plasma mass spectrometry). The samples studied here include pristine basalt 14072 and basaltic clasts from breccia 14321, and impact-generated crystalline samples 14073, 14276 and 14310. Plagioclase was the focus of this study because of its relatively high modal abundances and because it was on the liquidus for much of the melt cooling histories. Plagioclase crystals were analyzed (core-to-rim compositions where possible) to test and refine petrogenetic models based upon whole-rock compositions (Groups A, B, and C designations) and to investigate basalt 14072 and impact-melt crystallization. Textural studies have shown that each basalt group has distinctive plagioclase CSDs, which are in turn distinctive from those of the impact melts. Evolution of the individual basaltic melts was studied by comparing the equilibrium-melt compositions (calculated from plagioclase compositions using relevant partition coefficients) to fractional crystallization (FC) and assimilation and fractional crystallization (AFC) models. Petrogenetic modeling of trace elements in Group A basalts revealed that petrogenesis continued beyond 40% total crystallization required to model whole-rock compositions, and that there were open-system processes that affected the magma during plagioclase crystallization. Petrogenetic modeling of pristine high-Al basalts (14072 and Groups A, B and C) using trace elements shows that the equilibrium-melt compositions do not fall on a single AFC or FC trajectory. This is consistent with fluctuating degrees of assimilation (i.e., variable r-values) and/or variable assimilant compositions during petrogenesis. Petrogenetic modeling reveals that the impact melts experienced only closed-system fractional crystallization. This work demonstrates the importance of crystal stratigraphy in revealing the intricacies of lunar basalt petrogenesis.  相似文献   

2.
Chemical data are reported for the first time for lunar soil size fractions smaller then 2 μm. We report chemical data for 30 elements by INAA in eight size fractions (370−200, 200−94, 94−74, 74−40, 40−10, 10−5, 5−2 and <2 μm) and petrology of five size fractions (down to 40−10 μm) in two Luna 24 soils, 24176 and 24214. Consistent with our previous results for lunar soils, the compositions of coarser fractions (>10 μm) are quite similar to each other but quite different from the fine fractions (<10 μm). The finer fractions (10–5, 5–2, <2 μm) become increasingly feldspathic and enriched in large-ion lithophile elements (LILE) with decreasing grain size. Chemical data for the finer fractions provide direct evidence in favor of efficient comminution of rock mesostasis and feldspar leading to their preferential incorporation into the finer fractions. High concentrations of meteoritic indicator elements (Ni, Au, Ir) in the finer fractions are consistent with the comminution process by micrometeorite impacts. The chemical data strongly support the F3 (fusion of the finest fraction) model for agglutinate formation.Based on grain size distribution, petrology, and LILE patterns of size fractions, the Luna 24 soils are less reworked than most lunar soils. The Luna 24 regolith appears to have formed as a result of mixing more mature and fine grained material with less mature coarse material in different proportions at different depth intervals.  相似文献   

3.
Gough Island: Evaluation of a fractional crystallization model   总被引:3,自引:0,他引:3  
Gough Island is composed of an alkaline olivine basalt-trachyte series. A fractional crystallization model for the development of these rocks has been evaluated by correlating the geochemical trends of major and trace elements. Beginning with an alkali olivine basalt parent the major element abundances were used to determine the varying proportions of crystallizing minerals required to generate the various residual liquids. A least-squares computer model was used for this calculation. The modal proportions of cumulative minerals and trace element distribution coefficients were used to predict the trace element abundances in each rock type.Three significant trace element trends are observed in Gough Island rocks: (1) increasing rare earth (RE) abundance and relative light RE enrichment with increasing major element differentiation, (2) marked Eu, Sr, and Ba depletions in late stage trachytes, (3) Cr and M enrichment in picrite basalt.The trace element abundances predicted by the fractional crystallization model are in good agreement with these observed trends. A fractional crystallization process involving olivine, pyroxene, feldspar, and apatite accounts for all the significant major and trace element trends observed in Gough Island rocks.  相似文献   

4.
The Significance of the Mesostasis of Basic Layered Igneous Rocks   总被引:4,自引:1,他引:3  
HENDERSON  P. 《Journal of Petrology》1970,11(3):463-473
Many layered igneous rocks consist of two main parts: the cumulus(plus adcumulus and heteradcumulus) material and the pore material,or mesostasis, produced by the crystallization of the trappedliquid. Knowledge of the chemistry of the mesostasis will beuseful in deducing magma fractionation trends and in the determinationof solid/liquid trace element partition coefficients, whichin turn will be significant in helping to elucidate the petrogeneticrelationship between certain basalts and layered gabbros. Anew geochemical method for the determination of both the compositionand amount of mesostasis in layered rocks is proposed. Thismethod uses elements of contrasting behaviour and is best appliedto rhythmically layered rocks rich in mafic or felsic minerals.Data on strontium, cobalt, and uranium are used to apply themethod to two rocks from the Skaergaard intrusion. The resultsobtained are in agreement with published data.  相似文献   

5.
Data on mineral-hosted melt, fluid, and crystalline inclusions were used to study the composition and evolution of melts that produced rocks of Changbaishan Tianchi volcano, China–North Korea, and estimate their crystallization parameters. The melts crystallized within broad ranges of temperature (1220–700°C) and pressure (3100–1000 bar), at a drastic change in the redox potential: Δ log \(f_{O_2}\) from NNO + 0.92 to +1.42 for the basalt melts, NNO –1.61 to –2.09 for the trachybasaltic andesite melts, NNO –2.63 to –1.89 for the comendite melts, and NNO –1.55 to –3.15 for the pantellerite melts. The paper reports estimates of the compositions of melts that produced the continuous rock series from trachybasalt to comendite and pantellerite. In terms of trace-element concentrations, all of the mafic melts are comparable with OIB magmas. The silicic melts are strongly enriched in trace elements and REE. The most strongly enriched melts contain concentrations of certain elements almost as high as in ores of these elements. The paper reports data on H2O concentrations in melts of different composition. It is demonstrated that the variations in the H2O concentrations were controlled by magma degassing. Data are reported on the Sr and Nd composition of the rocks. The deviations in the Sr isotopic composition are proportional to the 87Sr/86Sr ratio and could be produced in a melt with a high enough 87Sr/86Sr ratio during a geologically fairly brief time period. The evolution of melts that produced rocks of the volcano was controlled by crystallization differentiation of the parental basalt magmas at insignificant involvement of melt mixing and liquid immiscibility of silicate and sulfide melts. The alkaline salic rocks were generated in shallow-sitting (13–3.5 km) magmatic chambers in which the melts underwent profound differentiation that gave rise to pantellerites and comendites strongly enriched in trace elements (Th, Nb, Ta, Zr, and REE). Data on the composition of the magmas and parameters of their derivation are used to develop a generalized petrologic–geodynamic model for the origin of Changbaishan Tianchi volcano.  相似文献   

6.
The results of experimental studies and examination of variations in major elements, trace elements and Sr isotopes indicate that fractionation, assimilation and magma mixing combined to produce the lavas at Medicine Lake Highland. Some characteristics of the compositional differences among the members of the calc-alkalic association (basalt-andesite-dacite-rhyolite) can be produced by fractional crystallization, and a fractionation model reproduces the major element trends. Other variations are inconsistent with a fractionation origin. Elevated incompatible element abundances (K and Rb) observed in lavas intermediate between basalt and rhyolite can be produced through assimilation of a crustal component. An accompanying increase in 87Sr/86Sr from ∼ 0.07030 in basalt to ∼0.7040 in rhyolite is also consistent with crustal assimilation. The compatible trace element contents (Ni and Sr) of intermediate lavas can not be produced by fractional crystallization, and suggest a magma-mixing origin for some lavas. Unusual phenocryst assemblages and textural criteria in these lavas provide additional evidence for magma mixing. A phase diagram constructed from the low pressure melting experiments identifies a distributary reaction point, where olivine+augite react to pigeonite. Parental basalts reach this point at low pressures and undergo iron-enrichment at constant SiO2 content. The resulting liquid line of descent is characteristic of the tholeiitic trend. Calc-alkalic differentiation trends circumvent the distributary reaction point by three processes: fractionation at elevated pH2O, assimilation and magma mixing.  相似文献   

7.
Major elements can be modelled in ways similar to the quantitative petrogenetic modelling used for trace elements. In contrast to modelling with trace elements, however, modelling with major elements is constrained by the stoichiometry of the solid phases. Within these constraints, the same equations for partial melting and crystallization which have been used to such advantage for trace elements may be used for major elements.Calculated MgO and FeO abundances in a mantle-melt system are used as an example of the modelling technique. Such modelling yields limited fields of permissible melts and residues for a given parent composition, but does not give the paths of melting. It does allow the temperature and extent of melting which gave rise to a melt to be determined from the MgO and FeO abundances of the melt or residual solid. Applying the results of the modelling to igneous rocks and ultramafic nodules leads to the following conclusions, which are subject to the uncertainties in the available distribution coefficients. Least differentiated basalt glasses from the ocean floor are derived from parent melts with less than 15.5 weight % MgO and 8.2 wt. % FeO. Komatiites may be derived by less than 60% melting of a pyrolite source leaving a residue of olivine and pyroxene. Many nodules from the subcontinental mantle appear to be residues of large fractions of melting (>30%) at high temperature and pressure, whereas ultramafic nodules from oceanic basalts appear to be residues of smaller fractions of melting (<30%) at lower temperatures and pressures.  相似文献   

8.
The paper presents new petrographic, geochemical, and petrologic data from volcanic rocks of suprasubduction origin of the Char shear zone in eastern Kazakhstan. We discuss bulk rock composition (concentrations of major and trace elements), types of mantle sources and parameters of their melting, conditions of crystallization of mafic magma, and geodynamic settings of basalt eruption. According to the major element composition, the volcanic rocks are basalt, andesibasalt, and andesite of tholeiitic and transitional, from tholeiitic to calc-alkaline, series. They are characterized by low TiO2 (0.85 wt.% on average) and crystallization trends in MgO–major elements plots. In terms of trace element composition, the volcanic rocks possess moderately LREE-enriched rare-earth element patterns and are characterized by negative Nb anomalies present on the multi-element spectra (Nb/Lapm = 0.14–0.47; Nb/Thpm = 0.7–1.6). The distribution of rare-earth elements (La/Smn = 0.8–2.3, Gd/Ybn = 0.7–1.9) and the results of geochemical modeling in the Nb–Yb system suggest high degrees of melting of a depleted mantle source at spinel facies depths. Fractional crystallization of clinopyroxene, plagioclase, and opaque minerals also affected the final composition of the volcanic rocks. Clinopyroxene monomineral thermometry calculations suggest that the melts crystallized within a range of 1020–1180 °C. We think that this volcanic complex formed at a western active margin of the Paleo-Asian Ocean.  相似文献   

9.
探索了利用高温炉合成玄武岩玻璃制作原位微区主微量元素含量分析的标准物质的实验条件.选取玄武岩标准物质GBW07105(GSR-3)进行高温熔融、淬火实验研究,获得玄武岩玻璃,为合成其他地质样品微区分析标准参考物质的研制提供了参考方法.用激光剥蚀-四极杆等离子体质谱(LA-Q-ICPMS)对样品微区46个主元素和微量元素...  相似文献   

10.
Equilibrium melt trace element contents are calculated from Proterozoic Nain Plutonic Suite (NPS) mafic and anorthositic cumulates, and from plagioclase and orthopyroxene megacrysts. Assumed trapped melt fractions (TMF) <20% generally eliminate all minor phases in most mafic cumulate rocks, reducing them to mixtures of feldspar, pyroxene and olivine, which would represent the high-temperature cumulus assemblage. In anorthosites, TMF <15% generally reduce the mode to a feldspar-only assemblage. All model melts have trace element profiles enriched in highly incompatible elements relative to normal mid-ocean ridge basalt (NMORB); commonly with negative Nb and Th anomalies. Most mafic cumulates yield similar profiles with constant incompatible element ratios, and can be linked through fractional crystallization. High K-La subtypes probably represent crust-contaminated facies. Mafic cumulates are inferred to belong to a tholeiitic differentiation series, variably contaminated by upper and lower crustal components, and probably related to coeval tholeiitic basaltic dyke swarms and lavas in Labrador. Model melts from anorthosites and megacrysts have normalized trace element profiles with steeper slopes than those calculated from mafic cumulates, indicating that mafic cumulates and anorthosites did not crystallize from the same melts. Orthopyroxene megacrysts yield model melts that are more enriched than typical anorthositic model melts, precluding an origin from parental melts. Jotunites have lower K-Rb-Ba-Y-Yb and higher La-Ce than model residues from fractionation of anorthositic model melts, suggesting they are not cosanguineous with them, but provide reasonable fits to evolved mafic cumulate model melts. Incompatible element profiles of anorthositic model melts closely resemble those of crustal melts such as tonalites, with steep Y-Yb-Lu segments that suggest residual garnet in the source. Inversion models yield protoliths similar to depleted lower crustal granulite xenoliths with aluminous compositions, suggesting that the incompatible trace element budget of the anorthosites are derived from remobilization of the lower crust. The similarity of the highly incompatible trace elements and LILE between anorthositic and mafic cumulate model melts suggests that the basalts parental to the mafic cumulates locally assimilated considerable quantities of the same crust that yielded the anorthosites. The reaction between underplating basalt and aluminous lower crust would have forced crystallization of abundant plagioclase, and remobilization of these hybrid plagioclase-rich mushes then produced the anorthosite massifs.  相似文献   

11.
Archean volcanic rocks in the Confederation Lake area, northwestern Ontario, Canada, are in three mafic to felsic cycles collectively 8,500 to 11,240 m thick. Each cycle begins with pillowed basalt and andesite flows and is capped with andesitic to rhyolitic pyroclastic rocks and minor flows. Seventy five samples from this succession were analyzed for major and trace elements including the rare earth elements. In two cycles, tholeiitic basalts are overlain by calcalkaline andesite to rhyolite. In the third, cycle, the tholeiitic basalts are overlain by tholeiitic rhyolites. Fe enrichment in basalts is accompanied by depletion of Ca, Al, Cr, Ni, and Sr, and enrichment in Ti, P, the rare earth elements, Nb, Zr, and Y. This is interpreted as open system fractionation of olivine, plagioclase, and clinopyroxene. Si enrichment in dacites and rhyolites is attributed to fractional crystallization of plagioclase, K-feldspar, and biotite. Tholeiitic basalt liquids are believed to be mantle-derived. Intercalated andesites with fractionated rare earth patterns appear to be products of mixing of tholeiitic basalt and rhyolite liquids and, andesites with flat rare earth patterns are probably produced by melting of previously depleted mantle. Felsic magmas are partial melts of tholeiitic basalt or products of liquid immiscibility in a tholeiitic system perhaps involving extreme fractionation in a high level magma chamber, and assimilation of sialic crust. It is concluded that Archean cyclical volcanism in this area involves the interplay of several magmatic liquids in processes of fractional crystallization, magma mixing, liquid immiscibility, and the probable existence of compositionally zoned magma chambers in the late stages of each cycle. The compositionally zoned chambers existed over the time period represented by the upper felsic portion of each cycle.  相似文献   

12.
New trace element analyses are reported for 25 samples of basalt taken from a vertical traverse in an 11 m thick single flow of Icelandic tholeiite. Compositional variations among the samples substantially exceed those expected from analytical uncertainties and are random with respect to height in the flow. These variations in an undifferentiated single flow suggest a short-range segregation model in which the proportions of phenocrysts. groundmass minerals and residual liquid vary randomly among different samples of the flow. A least-squares mixing model is used to determine whether the compositional variations reflect different proportions of crystallizing phases and residual liquid. Most elements (alkalis and alkaline earths excepted) are fit to within their analytical uncertainties, supporting the short-range segregation model. A Monte-Carlo calculation is used to model the phase modes and compositions of various samples of a hypothetical basalt. Most compositional and interelement variations for the Icelandic basalt resemble those of the hypothetical basalt. The calculations show that short-range segregation produces inhomogeneity as large as interflow compositional differences and results in incoherence among elements with different geochemical behaviors while preserving coherence among elements of similar behavior.  相似文献   

13.
A comprehensive model is developed to explain the major, trace element and strontium and neodymium isotopic characteristics of alkali basalts from Hawaii. The model is similar to that of Chen and Frey (1983) in that it requires mixing of a small melt fraction of MORB-source material with another component to generate the alkalic suite of a particular Hawaiian volcano. It differs from the Chen and Frey model in that the other end-member must be different from primitive mantle if it is to be consistent with both trace element and isotopic data. Alkali basalts and tholeiites from Kauai analyzed in this study show a nearly complete transition in Sr and Nd isotopes. There is a relatively well-constrained array on a Nd-Sr isotope correlation plot that can be explained by two-component mixing of Kauai tholeiite magma and a small amount of melt of East Pacific Rise source rock. After corrections are made for fractional crystallization (involving primarily clinopyroxene and olivine), the Sr and Ba concentrations of Kauai lavas plot along mixing curves defined by the above sources, providing positive tests of the mixing hypothesis. Implications of this model are: (1) the main source of Hawaiian shield-building tholeiites is a mixture of subducted crust, primitive mantle and depleted asthenosphere that has been homogenized prior to melting, (2) early alkalic volcanism (as at Loihi seamount) will be characterized by greater isotopic heterogeneity than will late-stage alkali basalt production, and (3) there are two fundamentally distinct types of alkalic lavas erupted towards the end of magmatism at a given Hawaiian volcano. One represents smaller degrees of melting of the same source that generated shield-building tholeiites (Kohala-type); the other derives from the mixed source discussed in this paper (Haleakala-, Kauai-type).  相似文献   

14.
Distribution coefficients have been experimentally determined for the partitioning of nickel, cobalt and manganese between calcium-rich clinopyroxenes and coexisting silicate liquids. Temperatures ranged from 1110–1360°C and oxygen fugacities in the furnaces were controlled by gas mixtures at one atmosphere total pressure. Bulk compositions used include synthetic compositions in the system albite-anorthite-diopside and a natural basalt. Charges were doped with a few percent transition metal oxides and analyzed by electron microprobe. Measured clinopyroxene/liquid distribution coefficients range from 1.5–14 for Ni, 0.5–2.0 for Co and 0.3–1.2 for Mn. Diopside/liquid distribution coefficients for nickel are shown to be independent of Ni content over a range of from 3 ppm to 3 wt.% Ni in the liquid and to increase with decreasing temperature. From analyses of pyroxenes grown from experimental charges differing only in the amounts of transition metals present, nickel and cobalt are shown to occupy the M1 site of diopside while manganese occupies both M1 and M2.Ordinary weight ratio distribution coefficients are strongly dependent on liquid composition as well as temperature. For example, experiments on synthetic Ab-An-Di compositions give clinopyroxene/liquid distribution coefficients higher by about a factor of five than those from experiments at the same temperature on a natural basalt. For Ni and Co, which occupy only the M1 site of clinopyroxene, an equilibrium constant can be defined in terms of activities of components in the liquid and solid phases. Activities of components in the solid are approximated by their mole fractions. An activity/concentration model based on the viscosity model of BOTTINGA and WEILL (1972) is used for the liquid. This model approximates the activity of silica as its mole fraction among the network-forming components SiO2, TiO2, KAlO2, NaAlO2 and Ca0.5AlO2.Activities of network modifiers such as CaO are approximated as their mole fractions among the network-modifying components CaO, MgO, FeO, FeO1.5, etc. When these estimated activities are used in the expression for the equilibrium constant, the effects of compositional differences on trace element distribution coefficients can be understood and the results of experiments on synthetic and natural compositions reconciled.  相似文献   

15.
O'HARA  M. J. 《Journal of Petrology》1995,36(4):1111-1132
The mixing (integration) of liquids obtained as different massfractions of partial melting from source material of the samebulk composition, travelling along different mantle flow-linesthrough a melting regime, can result in deficiencies in therelative concentrations of those incompatible elements whosebulk distribution coefficients are numerically approximatelyequal to the average mass fraction of melt extracted from thetotal source material involved in the provision of the mixedmelts. These deficiencies can be very substantial, exceeding50% of the concentration which would have been expected to bepresent in the liquid if that same average mass fraction ofmelt had been extracted from the whole melting regime by simpleequilibrium or accumulated perfect fractional partial melting.The size of the deficit varies with the shape and plan-formof the melting region, and can be greatly reduced by subsequentperfect fractional crystallization of that liquid. Discriminationis increased between all elements whose distribution coefficientsare numerically smaller than the average mass fraction of partialmelt extracted from the whole region. These effects can leadto steepening of chondrite-normalized REE patterns and to apparentselective light rare earth enrichment in liquid and source. KEY WORDS: melt integration; shaped melting regimes; trace elements; numerical modelling  相似文献   

16.
A stochastic model of the magmatic differentiation by fractional crystallization is given. The probability distribution of the quantity of crystallized solid removed from silicate melt was assumed to be binomial at any stage of the differentiation. According to this model, when concentrations of an element are transformed into their powers by using the reciprocal of the difference between bulk-partition coefficient for the element and unity as an exponent, the resultant frequency-distribution pattern becomes absolutely normal. The patterns of concentrations, however, cannot be expressed by a particular type of function but are variable according to the values of bulk-partition coefficients. Frequency distributions of element concentrations were computed under selected conditions on the basis of the model. The result shows that the skewed pattern often observed in frequency distributions of minor-element concentrations is explained by this fractional crystallization process. The frequency distributions of Ni and Cr concentrations in the geosynclinal basalt of southwestern Japan were examined in terms of this model. It was concluded that the model can be applied to the formation of the basalt concerning at least these two elements.  相似文献   

17.
Calcium- and aluminum-rich inclusions (CAIs), occurring in chondritic meteorites and considered the oldest materials in the solar system, can provide critical information about the environment and time scale of creation of planetary materials. However, interpretation of the trace element and isotope compositions of CAIs, particularly the light elements Li, Be, and B, is hampered by the lack of constraint on melilite-melt and spinel-melt partition coefficients. We determined melilite-melt and spinel-melt partition coefficients for 21 elements by performing controlled cooling rate (2 °C/h) experiments at 1 atmosphere pressure in sealed platinum capsules using a synthetic type B CAI melt. Trace element concentrations were measured by secondary ion mass spectrometry (SIMS) and/or laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Melilites vary only slightly in composition, ranging from Åk31-43. Results for the partitioning of trace elements between melilite and melt in three experiments and between spinel and melt in two experiments show that partition coefficients are independent of trace element concentration, are in good agreement for different analytical techniques (SIMS and LA-ICP-MS), and are in agreement with previous measurements in the literature. Partition coefficients between intermediate composition melilites and CAI melt are the following: Li, 0.5; Be, 1.0; B, 0.22; Rb, 0.012; Sr, 0.68; Zr, 0.004; Nb, 0.003; Cs, 0.002; Ba, 0.018; La, 0.056; Nd, 0.065; Sm, 0.073; Eu, 0.67; Er, 0.037; Yb, 0.018; Hf, 0.001; Ta, 0.003; Pb, 0.15; U, 0.001; Th, 0.002. Site size energetics analysis is used to assess isovalent partitioning into the different cation sites. The Young’s modulus deduced from +2 cations partitioning into the melilite X site agrees well with the bulk modulus of melilite based on X-ray diffraction methods. The changes in light element partitioning as melilite composition varies are predicted and used in several models of fractional crystallization to evaluate if the observed Li, Be, and B systematics in Allende CAI 3529-41 are consistent with crystallization from a melt. Models of crystallization agree reasonably well with observed light element variations in areas previously interpreted to be unperturbed by secondary processes [Chaussidon, M., Robert, F., McKeegan, K.D., 2006. Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system. Geochim. Cosmochim. Acta70, 224-245], indicating that the trends of light elements could reflect fractional crystallization of a melt. In contrast, areas interpreted to have been affected by alteration processes are not consistent with crystallization models.  相似文献   

18.
The mafic–ultramafic Fariman complex in northeastern Iran has been interpreted as a Paleo-Tethyan ophiolitic fragment with subduction- and plume-related characteristics as well as a basin deposit on an active continental margin. Contributing to this issue, we present geochemical, geochronological, and mineralogical data for transitional and tholeiitic basalts. Thermodynamic modeling suggests picritic parental magmas with 16–21 wt% MgO formed at plume-like mantle potential temperatures of ca. 1460–1600 °C. Rare pyroxene spinifex textures and skeletal to feather-like clinopyroxene attest to crystallization from undercooled magma and high cooling rates. Chromium numbers and TiO2 concentrations in spinel are similar to those in intraplate basalts. 40Ar–39Ar dating of magmatic hornblende yielded a plateau age of 276?±?4 Ma (2σ). Transitional basalt with OIB-like trace element characteristics is the predominant rock-type; less frequent are tholeiitic basalts with mildly LREE depleted patterns and picrites with intermediate trace element characteristics. All samples show MORB-OIB like Pb/Ce, Th/La, and Th/Nb ratios which preclude subduction-modified mantle sources and felsic crustal material. Tholeiitic basalts and related olivine cumulate rocks show MORB-like initial εNd values of +?9.4 to +?6.2 which define a mixing line with the data for the transitional basalts (εNd ca. +?2.6). Initial 187Os/188Os ratios of 0.124–0.293 support mixed sources with a high proportion of recycled mafic crust in the transitional basalts. High concentrations of highly siderophile elements are in agreement with the high mantle potential temperatures and inferred high-melting degrees. It is argued that the Fariman complex originated by melting of a mantle plume component as represented by the OIB-like transitional basalt and entrained asthenosphere predominant in the MORB-like tholeiites. Two lines of evidence such as association of the Fariman complex with pelagic to neritic sedimentary rocks and the tectonic position at the boundary of two continental blocks defined by ophiolites and accretionary complexes of different ages suggest formation in an oceanic domain. Thus, we interpret it as a fragment of an oceanic plateau, which escaped subduction and was accreted as exotic block in the Paleo-Tethyan suture zone.  相似文献   

19.
The simplified model of basalt genesis described in Part I of this series, equilibrium partial melting followed by Rayleigh-type fractional crystallization, is applied to a stratigraphically controlled sequence of basalt flows from Kohala volcano. Major-element compositions were determined for 52 samples and show a time-stratigraphic progression from tholeiites through transitional basalts to alkali basalts. Twenty-six of these samples were analyzed by isotope dilution for K, Rb, Cs, Sr, Ba and the REE, 13 for87Sr/86Sr, and 19 for Co, Cr, Ni and V by atomic absorption. After a simple, first-order correction for the effects of fractional crystallization (involving mostly olivine and aluminous clinopyroxene), the major element concentrations cluster tightly, and the incompatible trace elements show monotonic increases in concentration as a function of stratigraphic height. The process identification plot shows that all the (fractionation corrected) melt compositions can be explained by equilibrium partial melting of compositionally identical batches of source material. The REE and Sr are fractionated because of the presence of residual clinopyroxene. Garnet may also be present but in much smaller amounts. In this respect our results differ significantly from those of Leeman et al. (1980). The calculated chondrite-normalized REE patterns of the source are nearly flat to slightly convex upward. Therefore there is no need to invoke special mechanisms, such as metasomatic REE preenrichment of the source, in order to explain the petrogenesis of the suite of lavas. Specifically, Ce concentrations ranging from 20 to 250 times chondritic are all explained by the same calculated source pattern having a chondrite-normalized ratio of Ce/Sm=0.9±0.2. However, the normalized ratio Ce/Ba?2 shows that the source is not simply primitive mantle.  相似文献   

20.
Süphan is a 4,050 m high Pleistocene-age stratovolcano in eastern Anatolia, Turkey, with eruptive products consisting of transitional calc-alkaline to mildly alkaline basalts through trachyandesites and trachytes to rhyolites. We investigate the relative contributions of fractional crystallization and magma mixing to compositional diversity at Süphan using a combination of petrology, geothermometry, and melt inclusion analysis. Although major element chemistry shows near-continuous variation from basalt to rhyolite, mineral chemistry and textures indicate that magma mixing played an important role. Intermediate magmas show a wide range of pyroxene, olivine, and plagioclase compositions that are intermediate between those of basalts and rhyolites. Mineral thermometry of the same rocks yields a range of temperatures bracketed by rhyolite (~750°C) and basalt (~1,100°C). The linear chemical trends shown for most major and trace elements are attributed to mixing processes, rather than to liquid lines of descent from a basaltic parent. In contrast, glassy melt inclusions, hosted by a wide range of phenocryst types, display curved trends for most major elements, suggestive of fractional crystallization. Comparison of these trends to experimental data from basalts and trachyandesites of similar composition to those at Süphan indicates that melt inclusions approximate true liquid lines of descent from a common hydrous parent at pressures of ~500 MPa. Thus, the erupted magmas are cogenetic, but were generated at depths below the shallow, pre-eruptive magma storage region. We infer that chemical differentiation of a mantle-derived basalt occurred in the mid- to lower crust beneath Süphan. A variety of more and less evolved melts with ≥55 wt% SiO2 then ascended to shallow level where they interacted. The presence of glomerocrysts in many lavas suggests that cogenetic plutonic rocks were implicated in the interaction process. Blending of diverse, but cogenetic, minerals, and melts served to obscure the true liquid lines of descent in bulk rocks. The fact that chemical variation in melt inclusions preserves deep-seated chemical differentiation indicates that inclusions were trapped in phenocrysts prior to shallow-level blending. Groundmass glasses evolved after mixing and display trends that are distinct from those of melt inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号