首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenocryst zoning patterns are used to identify open-systemmagmatic processes in the products of the 2001 eruption of ShiveluchVolcano, Kamchatka. The lavas and pumices studied are hornblende–plagioclaseandesites with average pre-eruptive temperatures of 840°Cand fO2 of 1·5–2·1 log units above nickel–nickeloxide (NNO). Plagioclase zoning includes oscillatory and patchyzonation and sieve textures. Hornblendes are commonly unzoned,but some show simple, multiple or patchy zoning. Apatite microphenocrystsdisplay normal and reverse zoning of sulphur. The textural similarityof patchy hornblende and plagioclase, together with Ba–Srsystematics in patchy plagioclase, indicate that the cores ofthese crystals were derived from cumulate material. Plagioclase–liquidequilibria suggest that the patchy texture develops by resorptionduring H2O-undersaturated decompression. When H2O-saturatedcrystallization recommences at lower pressure, reduced pH2Oresults in lower XAn in plagioclase, causing more Al-rich hornblendeto crystallize. Plagioclase cores with diffuse oscillatory zoning,and unzoned hornblende crystals, probably represent a populationof crystals resident in the magma chamber for long periods oftime. In contrast, oscillatory zoning in the rims of plagioclasephenocrysts may reflect eruption dynamics during decompressioncrystallization. Increasing Fe/Al in oscillatory zoned rimssuggests oxidation as a result of degassing of H2O during decompression.A general lack of textural overlap between phenocryst typessuggests that different phenocryst populations were spatiallyor temporally isolated during crystallization. We present evidencethat the host andesite has mixed with both more felsic and moremafic magmas. Olivine and orthopyroxene xenocrysts with reactionor overgrowth rims and strong normal zoning indicate mixingwith basalt. Sieve-textured plagioclase resulted from mixingof a more felsic magma with the host andesite. The mineralogyand mineral compositions of a mafic andesite enclave are identicalto those of the host magma, which implies efficient thermalquenching, and thus small volumes of intruding magma. Mixingof this magma with the host andesite results in phenocryst zoningbecause of differences in dissolved volatile contents. We suggestthat small magma pulses differentiated at depth and ascendedintermittently into the growing magma chamber, producing incrementalvariations in whole-rock compositions. KEY WORDS: patchy zoning; magma mixing; Shiveluch  相似文献   

2.
Over the last several hundred years, Stromboli has been characterizedby steady-state Strombolian activity. The volcanic productsare dominated by degassed and highly porphyritic (HP-magma)black scoria bombs, lapilli and lava flows of basaltic shoshoniticcomposition. Periodically (about one to three events per year),more energetic explosive eruptions also eject light colouredvolatile-rich pumices with low phenocryst content (LP-magma)that have more mafic compositions than the HP-magma. An in situmajor and trace element and Sr isotope microanalysis study ispresented on four samples chosen to characterize the differentmodes of activity at Stromboli: a lava flow (1985–1986effusive event), a scoria bomb from the ‘normal’present-day activity of Stromboli (April 1984), and a scoriaand coeval pumice sample from a recent more explosive eruption(September 1996). Plagioclase (An62–90) and clinopyroxene(Mg-number between 0·69 and 0·91) phenocrystsin all samples record marked major element variations. Largeand comparable Sr isotope variations have been detected in plagioclaseand clinopyroxene. HP-magma crystals have resorbed cores, witheither high 87Sr/86Sr (0·70635–0·70630)or low 87Sr/86Sr (0·70614–0·70608); thelatter values are similar to the values of the outer cores.Mineral rims and glassy groundmasses generally have intermediate87Sr/86Sr (0·70628–0·70613). Similarly,mineral growth zones with three groups of 87Sr/86Sr values characterizeminerals from the LP-pumice, with the lowest values presentin mineral rims and groundmass glass. These results define amixing process between HP- and LP-magmas, plus crystallizationof clinopyroxene, plagioclase and olivine, occurring in a shallowmagma reservoir that feeds the present-day magmatic activityof Stromboli. An important observation is the presence of athird component (high 87Sr/86Sr in mineral cores) consideredto represent a pre-AD 1900 cumulus crystal mush reservoir situatedjust below the shallow magma chamber. These cumulus phases areincorporated by the LP-magma arriving from depth and transportedinto the shallow reservoir. A rapid decrease of 87Sr/86Sr inthe replenishing LP-magma immediately prior to eruption of theAD 1985 lava flow is associated with an increased volume ofLP-magma in the shallow magma chamber. The HP-magma in the shallowreservoir is not fully degassed when it interacts with the LP-magma,making efficient mixing possible that ultimately produces awell overturned homogeneous magma. Further degassing and crystallizationoccur at shallower levels as the HP-magma moves through a conduitto the surface. KEY WORDS: isotopic microsampling; mineral recycling; mixing; Sr isotope disequilibria; Stromboli  相似文献   

3.
Partially turbid alkali feldspars from hydrothermally altered Tertiary granites on the Isle of Skye (the Red Hills granites) were studied using light microscopy, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. Limpid cores and turbid rims of individual crystals were compared to determine the causes of the turbidity. The limpid cores were cryptoperthitic, with lamellar widths of 0.1–0.3 μm. In contrast, the turbid rims contained K-rich and Narich areas coarsened to >0.5 μm. Turbid regions contained abundant inclusions, whereas limpid regions did not. Two generations of turbidity were recognized. Feldspars from the Beinn an Dubhaich granite, a granite with near-normal values for 18O/16O possessed limpid cores surrounded by turbid rims that cast a reddish-brown hue in transmitted light. When viewed in darkfield light microscopy, the regions with the reddish-brown turbidity were blue. This is consistent with the hypothesis that the cloudy appearance of these turbid regions arises from the scattering of light by micrometerto submicrometer-sized inhomogeneities in refractive index caused by fluid-filled cavities. Feldspars from the Loch Ainort granite, a granite with low values for 18O/16O possessed limpid and reddish-brown-turbid cores surrounded by turbid rims that cast a blackish hue in transmitted light. Ion thinning of the turbid areas produced an abundance of small holes (≤1–2 μm) apparently the remains of fluid inclusions. Transmission electron microscopy revealed that some holes from regions of reddish-brown turbidity contained non-feldspar material, including halite and metal-rich phases of various compositions. In contrast, blackish turbid regions contained cavities filled with alteration products, such as kaolinite. Hence, the feldspars from granites on the Isle of Skye apparently record interactions with at least two fluids: a saline fluid (possibly a late-stage magmatic fluid) and a meteoric fluid.  相似文献   

4.
The processes operating in the development of chemical zonationin silicic magma chambers have been addressed with a Sr–Nd–Pb–Hf–Thisotope study of the chemically zoned trachyte pumice depositof the Fogo A eruption, Fogo volcano, Azores. Sr isotopic variationis observed in whole rocks, glass separates and sanidine phenocrysts(whole-rock 87Sr/86Sr: 0·7049–0·7061; glass87Sr/86Sr: 0·7048–0·7052; sanidine 87Sr/86Sr:0·7048–0·7062). Thorium isotopic variationis observed in glass separates, with (230Th/232Th)o rangingfrom 0·8737 to 0·8841, and exhibiting a negativecorrelation with Sr isotopes. The Nd, Pb and Hf isotopic compositionsof the whole-rock trachytic pumices are invariant and indistinguishablefrom basalts flanking the volcano. The Sr isotope variationsin the whole rocks are proposed to be the result of three distinctprocesses: contamination of the Fogo A magma by assimilationof radiogenic seawater-altered syenite wall rock, to explainthe Sr and Th isotopic compositions of the glass separates;incorporation of xenocrysts into the trachytic magma, requiredto explain the range in feldspar Sr isotopic compositions; andpost-eruptive surface alteration. This study emphasizes theimportance of determining the isotopic composition of glassand mineral separates rather than whole rocks when pre-eruptivemagmatic processes are being investigated. KEY WORDS: Azores; open-system processes; Sr isotopes; trachytic pumices; zoned magma chambers  相似文献   

5.
Mafic microgranular enclaves (MMEs) are widespread in the Horoz pluton with granodiorite and granite units. Rounded to elliptical MMEs have variable size (from a few centimetres up to metres) and are generally fine-grained with typical magmatic textures. The plagioclase compositions of the MMEs range from An18?CAn64 in the cores to An17?CAn29 in the rims, while that of the host rocks varies from An17 to An55 in the cores to An07 to An33 in the rims. The biotite is mostly eastonitic, and the calcic-amphibole is magnesio-hornblende and edenite. Oxygen fugacity estimates from both groups?? biotites suggest that the Horoz magma possibly crystallised at fO2 conditions above the nickel?Cnickel oxide (NNO) buffer. The significance of magma mixing in their genesis is highlighted by various petrographic and mineralogical characteristics such as resorption surfaces in plagioclases and amphibole; quartz ocelli rimmed by biotite and amphibole; sieve and boxy cellular textures, and sharp zoning discontinuities in plagioclase. The importance of magma mixing is also evident in the amphiboles of the host rocks, which are slightly richer in Si, Fe3+ and Mg in comparison with the amphiboles of MMEs. However, the compositional similarity of the plagioclase and biotite phenocrysts from MMEs and their host rocks suggests that the MMEs were predominantly equilibrated with their hosts. Evidence from petrography and mineral chemistry suggests that the adakitic Horoz MMEs could be developed from a mantle-derived, water-rich magma (>3 mass%) affected by a mixing of felsic melt at P >2.3?kbar, T >730°C.  相似文献   

6.
Robert J. Stull 《Lithos》1978,11(3):243-249
Mantled feldspars that formed by resorption, development of skeletal plagioclase crystals, and filling with alkali feldspar are common in the Golden Horn batholith, Washington. Subhedral plagioclase mantles have weak normal zoning from An17 to An10. Plagioclase zoning and twinning are crosscut by resorption channels. Resorption cavities and channels are coated with albite (An10). Anhedral, perthitic orthoclase within the plagioclase is optically continuous with orthoclase in channels and on the mantle exterior.This texture resulted from resorption of calcic cores of plagioclase as pressure decreased when water-undersaturated granite magma intruded to a shallow crustal level. At shallow level, only alkali feldspar and quartz crystallized and were available to fill the skeletal plagioclase.  相似文献   

7.
On the basis of internal structures, laser ablation U–Pb ages and trace element compositions, the origin of zircon in jadeitite in the Nishisonogi metamorphic rocks was examined. The zircon comprises euhedral zoned cores overgrown by euhedral rims. The cores contain inclusions of muscovite, quartz, albite and possibly K‐feldspar, yield 238U–206Pb ages of 126 ± 6 Ma (±2 SD, n = 45, MSWD = 1.0), and have Th/U ratios of 0.48–1.64. The rims contain inclusions of jadeite, yield 238U–206Pb ages of 84 ± 6 Ma (±2 SD, n = 14, MSWD = 1.1), and have Th/U ratios of <0.06. The cores are richer in Y, Th, Ti and rare earth elements (REEs), but the rims are richer in Hf and U. Chondrite‐normalized REE patterns of the cores indicate higher SmN/LaN ratios, lower YbN/GdN ratios and larger positive Ce anomalies compared with those of the rims. Thus, the cores and rims have different 238U–206Pb ages and trace element compositions, suggesting two stages of zircon growth. Although the 238U–206Pb ages of the rims are consistent with the reported 40Ar/39Ar spot‐fusion ages of matrix muscovite in the jadeitite, the 238U–206Pb ages of the cores are older. The mineral inclusions and high Th/U ratios in the cores are best explained by crystallization from felsic magma. Therefore, the cores are considered relicts from igneous precursor rocks. The rims surrounding the inherited cores possibly precipitated from aqueous fluids during jadeitite formation. The elevated U concentrations in the rims suggest that infiltration of external fluids was responsible for the precipitation. This study provides an example of jadeitite formation by metasomatic replacement of a protolith.  相似文献   

8.
The Brown Leucitic Tuff (BLT) is a poorly to strongly lithified compositionally zoned pyroclastic-flow deposit with a minimum volume of 3 to 5 km3. It erupted from Roccamonfina Volcano about 385000 years ago, after formation of the summit caldera. Individual flow units are grouped into three facies (white, brown, and orange) which primarily differ in pumice color, lithic content, and matrix cementation. Pumices from the BLT range from phonolitic leucite-tephrites to leucite-trachytes (7.0 to 2.2 wt% CaO), covering over half of the total spectrum of High-K Series magmas known from Roman Region volcanoes. White-facies units dominate in lower stratigraphic levels and their pumices have the lowest CaO contents, indicating a general trend toward more basic compositions as the eruption evolved. At higher stratigraphic levels, however, orange- and brown-facies units are interbedded with other whitefacies units, indicating reversals in the dominant compositional progression.BLT pumices have crystal contents of 9.9 to 0.6 vol%, with green salite>plagioclase>sanidine>biotite>titanomagnetite>analcime (after leucite)>apatite>pyrrhotite. In most samples, plagioclase (An85–95) and sanidine (Or75–90) have much lower Na2O contents than usually found in coexisting feldspars, yet these are interpreted as equilibrium pairs. Primary leucite has been almost completely replaced by analcime. All samples also contain xenocrysts of colorless diopside and forsteritic olivine (Fo83–92). Recurrent alternations from colorless diopside to green salite are present in single clinopyroxene crystals and appear to reflect a complex history of magma mixing.Whole-rock BLT pumice compositions conform closely to High-K Series lavas from Roccamonfina for all elements except Na2O and K2O. The former is relatively enriched and the latter relatively depleted in mafic BLT pumices with >5.6% CaO; these differences reflect strong analcimization of abundant groundmass leucite crystals in these pumices. Otherwise, major and trace element data support fractionation of observed minerals in generating the compositional diversity among BLT pumices. Mineral assemblages and compositions of cumulate monzonite and syenite nodules carried to the surface during the BLT eruption correspond closely to the fractionated phases predicted by least-squares modeling.  相似文献   

9.
Andesite and dacite from Barren and Narcondam volcanic islands of Andaman subduction zone are composed of plagioclase, orthopyroxene, clinopyroxene, olivine, titanomagnetite, magnesio-hornblende and rare quartz grains. In this study, we use the results of mineral chemical analyses of the calc-alkaline rock suite of rocks as proxies for magma mixing and mingling processes. Plagioclase, the most dominant mineral, shows zoning which includes oscillatory, patchy, multiple and repetitive zonation and ‘fritted’ or ‘sieve’ textures. Zoning patterns in plagioclase phenocrysts and abrupt fluctuations in An content record different melt conditions in a dynamic magma chamber. ‘Fritted’ zones (An55) are frequently overgrown by thin calcic (An72) plagioclase rims over well-developed dissolution surfaces. These features have probably resulted from mixing of a more silicic magma with the host andesite. Olivine and orthopyroxene with reaction and overgrowth rims (corona) suggest magma mixing processes. We conclude that hybrid magma formed from the mixing of mafic and felsic magma by two-stage processes – initial intrusion of hotter mafic melt (andesitic) followed by cooler acidic melt at later stage.  相似文献   

10.
Back-scattered electron (BSE)-derived zoning patterns of plagioclase phenocrysts are used to identify magma processes at Bezymianny Volcano, Kamchatka, based on the 2000–2007 sequence of eruptive products. The erupted magmas are two-pyroxene andesites, which last equilibrated at ~915°C temperature, 77–87 MPa pressure, and a water content of ~1.4 wt%. Textural and compositional zoning of individual plagioclase phenocrysts typically includes a repeated core-to-rim sequence of oscillatory zoning (An50–60) truncated by a dissolution surface followed by an abrupt increase in An content (up to An85), which then gradually decreases rimward. This zoning pattern is interpreted to be the result of frequent replenishments of the magma chamber which cause both thermal and chemical interaction between resident and recharge magmas. The outermost 70- to 150-μm-wide zoning patterns of plagioclase phenocrysts are composed of dissolution surface with a subsequent increase in An and Fe contents. Zoning patterns of the rims exhibit correlation among plagioclase phenocrysts within one eruption. Rims are interpreted as a result of crystallization of a batch of magma in the conduit after recharge event.  相似文献   

11.
Li, Be, B and δ7Li SIMS analyses of plagioclase phenocrysts from the 1040–1941 Niki dacite lava (Nea Kameni, Santorini, Greece) exhibit varied processes. From their anorthite contents alone, the crystals may be segregated into four main types: type-N shows the normal decline in An during crystallisation (An62–40); type-O has only oscillatory zoning accompanied by resorption surfaces (An58–39); type-C is complex with high-An cores (subtype C1: An64–58, subtype C2: An88–73) and normal rims (An55–42). Type-A plagioclase with high An content (An92–82) is found within mafic enclaves. On the basis of their Li concentrations, type-O crystals may be subdivided into subtype O1 with flat Li concentration profiles and subtype O2 with decreasing Li concentration from core to rim. The concentrations of Be and B of all four types show a negative correlation with anorthite content (An), but Li concentration profiles differ amongst the different plagioclase types. Types N and O1, and the cores of type-C, are equilibrated in Li concentration. Types O2 and A, and the mantles of type-C display an initial enrichment in Li, probably from volatile influx into the melt. Consistent with the propensity towards equilibrium with the melt, these crystals display dramatic rim-ward declines in Li concentration. All analysed plagioclase crystals, except for the xenocrystic type-A, have nearly the same Li, Be and B concentrations at their rims. These coincide with the composition of plagioclase microlites in the groundmass, thereby affording estimates of plagioclase-melt partitioning for the light elements: K Li = 0.19–0.28, K Be = 0.24–0.38 and K B = 0.007–0.009. δ7Li profiles in type-O2 and type-A phenocrysts manifest an unmistakable inverse relation to Li concentration, with variations of up to ~39 ‰, revealing preferential kinetic diffusion. This may have been driven by Li loss from the melt, most likely through degassing during decompression, perhaps in the course of magma ascent to subsequent eruption. Considering the rapid diffusion of Li in plagioclase, in situ phenocryst analyses may yield useful information about processes leading up to, or even causing, eruptions.  相似文献   

12.
We present elemental and Sr–Nd–Pb isotopic data for the magmatic suite (~79 Ma) of the Harşit pluton, from the Eastern Pontides (NE Turkey), with the aim of determining its magma source and geodynamic evolution. The pluton comprises granite, granodiorite, tonalite and minor diorite (SiO2 = 59.43–76.95 wt%), with only minor gabbroic diorite mafic microgranular enclaves in composition (SiO2 = 54.95–56.32 wt%), and exhibits low Mg# (<46). All samples show a high-K calc-alkaline differentiation trend and I-type features. The chondrite-normalized REE patterns are fractionated [(La/Yb) n  = 2.40–12.44] and display weak Eu anomalies (Eu/Eu* = 0.30–0.76). The rocks are characterized by enrichment of LILE and depletion of HFSE. The Harşit host rocks have weak concave-upward REE patterns, suggesting that amphibole and garnet played a significant role in their generation during magma segregation. The host rocks and their enclaves are isotopically indistinguishable. Sr–Nd isotopic data for all of the samples display I Sr = 0.70676–0.70708, ε Nd(79 Ma) = −4.4 to −3.3, with T DM = 1.09–1.36 Ga. The lead isotopic ratios are (206Pb/204Pb) = 18.79–18.87, (207Pb/204Pb) = 15.59–15.61 and (208Pb/204Pb) = 38.71–38.83. These geochemical data rule out pure crustal-derived magma genesis in a post-collision extensional stage and suggest mixed-origin magma generation in a subduction setting. The melting that generated these high-K granitoidic rocks may have resulted from the upper Cretaceous subduction of the Izmir–Ankara–Erzincan oceanic slab beneath the Eurasian block in the region. The back-arc extensional events would have caused melting of the enriched subcontinental lithospheric mantle and formed mafic magma. The underplating of the lower crust by mafic magmas would have played a significant role in the generation of high-K magma. Thus, a thermal anomaly induced by underplated basic magma into a hot crust would have caused partial melting in the lower part of the crust. In this scenario, the lithospheric mantle-derived basaltic melt first mixed with granitic magma of crustal origin at depth. Then, the melts, which subsequently underwent a fractional crystallization and crustal assimilation processes, could ascend to shallower crustal levels to generate a variety of rock types ranging from diorite to granite. Sr–Nd isotope modeling shows that the generation of these magmas involved ~65–75% of the lower crustal-derived melt and ~25–35% of subcontinental lithospheric mantle. Further, geochemical data and the Ar–Ar plateau age on hornblende, combined with regional studies, imply that the Harşit pluton formed in a subduction setting and that the back-arc extensional period started by least ~79 Ma in the Eastern Pontides.  相似文献   

13.
The Rotoiti (~120 km3) and Earthquake Flat (~10 km3) eruptions occurred in close succession from the Okataina Volcanic Centre at ~50 ka. While accessory mineral geochronology points to long periods of crystallization prior to eruption (104–105 years) and separate thermal histories for the magmas, little was known about the rates and processes of the final melt production and eruption. Crystal zoning patterns in plagioclase and quartz reveal the thermal and compositional history of the magmatic system leading up to the eruption. The dominant modal phase, plagioclase, displays considerable within-crystal zonation: An37–74, ~40–227 ppm MgO, 45–227 ppm TiO2, 416–910 ppm Sr and 168–1164 ppm Ba. Resorption horizons in the crystals are marked by sharp increases (10–30%) in Sr, MgO and XAn that reflect changes in melt composition and are consistent with open system processes. Melt inclusions display further evidence for open system behaviour, some are depleted in Sr and Ba relative to accompanying matrix glass not consistent with crystallization of modal assemblage. MI also display a wide range in XH2O that is consistent with volatile fluxing. Quartz CL images reveal zoning that is truncated by resorption, and accompanied by abrupt increases in Ti concentration (30–80 ppm) that reflect temperature increases ~50–110°C. Diffusion across these resorption horizons is restricted to zones of <20 μm, suggesting most crystallization within the magma occurred in <2000 years. These episodes are brief compared to the longevity (104–105 year) of the crystal mush zones. All textural and compositional features observed within the quartz and plagioclase crystals are best explained by periodic mafic intrusions repeatedly melting parts of a crystal-rich zone and recharging the system with silicic melt. These periodic influxes of silicic melt would have accumulated to form the large volume of magma that fed the caldera-forming Rotoiti eruption.  相似文献   

14.
The U–Pb ages, REE content, and oxygen isotopic composition of zircon rims developed within a major shear zone in the Kalak Nappe Complex (KNC), Arctic Norway have been determined along with the age of monazite crystals. Different generations of granitic veins have been distinguished based on both field criteria and monazite ages of 446 ± 3 and 424 ± 3 Ma. Within each of these veins, inherited zircon cores are mantled by homogeneous low CL-response zircon rims which yield a range of concordant U–Pb dates of ca. 470–360 Ma. Significant numbers of zircon rims coincide with the timing of monazite crystallization. The zircon rims have moderate light REE enrichment compared to cores, distinctive (Sm/La) n values of less than 12, and La between 0.3 and 10 ppm. This indicates free elemental exchange between newly formed zircon rims and the surrounding matrix. The rims have calculated accumulated alpha-radiation dosages corresponding with a crystalline structure and δ18O values of 1‰. This implies rim crystallization directly from a zirconium-saturated hydrothermal fluid which was modified by some silicate melt. Growth of the zircon rims was prolonged and locally variable due to preferential fluid flow. A third type of zircon can be recognized, forming both rims and cores, with high alpha-radiation doses, and significant enrichment in La, Pr, and Eu. These are interpreted as low-temperature hydrothermally altered metamict zircons. The high volatile input and partial melting in the shear zone favoured prolonged zircon rim growth due to its ability to easily nucleate on inherited seeds. On the other hand, monazite, susceptible to dissolution and re-growth, crystallized in brief episodes, as has been predicted from theoretical phase diagrams. From a regional perspective, these results elucidate cryptic Ar–Ar cooling ages, providing the first record of a Late Ordovician heating and cooling phase within the KNC prior to the climactic Scandian collision.  相似文献   

15.
Petrogenesis of high Mg# adakitic rocks in intracontinental settings is still a matter of debate. This paper reports major and trace element, whole-rock Sr–Nd isotope, zircon U–Pb and Hf isotope data for a suite of adakitic monzogranite and its mafic microgranular enclaves (MMEs) at Yangba in the northwestern margin of the South China Block. These geochemical data suggest that magma mixing between felsic adakitic magma derived from thickened lower continental crust and mafic magma derived from subcontinental lithospheric mantle (SCLM) may account for the origin of high Mg# adakitic rocks in the intracontinental setting. The host monzogranite and MMEs from the Yangba pluton have zircon U–Pb ages of 207 ± 2 and 208 ± 2 Ma, respectively. The MMEs show igneous textures and contain abundant acicular apatite that suggests quenching process. Their trace element and evolved Sr–Nd isotopic compositions [(87Sr/86Sr)i = 0.707069–0.707138, and εNd(t) = −6.5] indicate an origin from SCLM. Some zircon grains from the MMEs have positive εHf(t) values of 2.3–8.2 with single-stage Hf model ages of 531–764 Ma. Thus, the MMEs would be derived from partial melts of the Neoproterozoic SCLM that formed during rift magmatism in response to breakup of supercontinent Rodinia, and experience subsequent fractional crystallization and magma mixing process. The host monzogranite exhibits typical geochemical characteristics of adakite, i.e., high La/Yb and Sr/Y ratios, low contents of Y (9.5–14.5 ppm) and Yb, no significant Eu anomalies (Eu/Eu* = 0.81–0.90), suggesting that garnet was stable in their source during partial melting. Its evolved Sr–Nd isotopic compositions [(87Sr/86Sr)i = 0.7041–0.7061, and εNd(t) = −3.1 to −4.3] and high contents of K2O (3.22–3.84%) and Th (13.7–19.0 ppm) clearly indicate an origin from the continental crust. In addition, its high Mg# (51–55), Cr and Ni contents may result from mixing with the SCLM-derived mafic magma. Most of the zircon grains from the adakitic monzogranite show negative εHf(t) values of −9.4 to −0.1 with two-stage Hf model ages of 1,043–1,517 Ma; some zircon grains display positive εHf(t) of 0.1–3.9 with single-stage Hf ages of 704–856 Ma. These indicate that the source region of adakitic monzogranite contains the Neoproterozoic juvenile crust that has the positive εHf(t) values in the Triassic. Thus, the high-Mg adakitic granites in the intracontinental setting would form by mixing between the crustal-derived adakitic magma and the SCLM-derived mafic magma. The mafic and adakitic magmas were generated coevally at Late Triassic, temporally consistent with the exhumation of deeply subducted continental crust in the northern margin of the South China Block. This bimodal magmatism postdates slab breakoff at mantle depths and therefore is suggested as a geodynamic response to lithospheric extension subsequent to the continental collision between the South China and North China Blocks.  相似文献   

16.
We present 40Ar/39Ar data acquired by infra-red (CO2) laser step-heating of alunite crystals from the large Miocene Colquijirca district in central Peru. Combined with previously published data, our results show that a long (at least 1.3 My) and complex period of magmatic-hydrothermal activity associated with epithermal Au–(Ag) mineralization and base metal, Cordilleran ores took place at Colquijirca. The new data indicate that incursion of magmatic SO2-bearing vapor into the Colquijirca epithermal system began at least as early as ∼11.9 Ma and lasted until ∼10.6 Ma. Four alunite samples associated with high-sulfidation epithermal Au–(Ag) ore gave 40Ar/39Ar plateau ages between ∼11.9 and ∼11.1 Ma (compared to the previously documented ∼11.6 to ∼11.3 Ma). By combining individually these new ages with crosscutting relationships, the duration of the Au–(Ag) deposition period can be estimated to at least 0.4 My. Three new 40Ar/39Ar plateau ages on alunite associated with the base-metal Cordilleran ores are consistent with previously obtained ages, all of them between 10.83 ± 0.06 and 10.56 ± 0.06 Ma, suggesting that most of the sulfide-rich polymetallic deposits of Smelter and Colquijirca formed during this short period. The recognition of consecutive alunite-bearing and alunite-free mineral assemblages within both the Au–(Ag) and the base-metal Cordilleran ores may suggest that SO2-bearing magmatic vapor entered the epithermal environment as multiple discontinuous pulses, a number of which was not necessarily associated in time with ore fluids. It is likely that a period of SO2-bearing vapor degassing longer than 11.9 to 10.6 Ma may be recognized with further more detailed work. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The volume thermal expansion coefficient and the anisotropy of thermal expansion were determined for nine natural feldspars with compositions, in terms of albite (NaAlSi3O8, Ab) and anorthite (CaAl2Si2O8, An), of Ab100, An27Ab73, An35Ab65, An46Ab54, An60Ab40, An78Ab22, An89Ab11, An96Ab4 and An100 by high resolution powder diffraction with a synchrotron radiation source. Unit-cell parameters were determined from 124 powder patterns of each sample, collected over the temperature range 298–935 K. The volume thermal expansion coefficient of the samples determined by a linear fit of V/V 0 = α(T − T 0) varies with composition (X An in mol %) as:
aV = 2.90( 4 ) ×10 - 5 - 3.0( 2 ) ×10 - 7 *X\textAn + 1.8( 2 ) ×10 - 9 *X\textAn2 \alpha_{V} = 2.90\left( 4 \right) \times 10^{ - 5} - 3.0\left( 2 \right) \times 10^{ - 7} *X_{\text{An}} + 1.8\left( 2 \right) \times 10^{ - 9} *X_{\text{An}}^{2}  相似文献   

18.
Large pyroclastic rhyolites are snapshots of evolving magma bodies, and preserved in their eruptive pyroclasts is a record of evolution up to the time of eruption. Here we focus on the conditions and processes in the Oruanui magma that erupted at 26.5 ka from Taupo Volcano, New Zealand. The 530 km3 (void-free) of material erupted in the Oruanui event is comparable in size to the Bishop Tuff in California, but differs in that rhyolitic pumice and glass compositions, although variable, did not change systematically with eruption order. We measured the concentrations of H2O, CO2 and major and trace elements in zoned phenocrysts and melt inclusions from individual pumice clasts covering the range from early to late erupted units. We also used cathodoluminescence imaging to infer growth histories of quartz phenocrysts. For quartz-hosted inclusions, we studied both fully enclosed melt inclusions and reentrants (connecting to host melt through a small opening). The textures and compositions of inclusions and phenocrysts reflect complex pre-eruptive processes of incomplete assimilation/partial melting, crystallization differentiation, magma mixing and gas saturation. ‘Restitic’ quartz occurs in seven of eight pumice clasts studied. Variations in dissolved H2O and CO2 in quartz-hosted melt inclusions reflect gas saturation in the Oruanui magma and crystallization depths of ∼3.5–7 km. Based on variations of dissolved H2O and CO2 in reentrants, the amount of exsolved gas at the beginning of eruption increased with depth, corresponding to decreasing density with depth. Pre-eruptive mixing of magma with varying gas content implies variations in magma bulk density that would have driven convective mixing. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

19.
The caldera-forming 26·5 ka Oruanui eruption (Taupo,New Zealand) erupted 530 km3 of magma, >99% rhyolitic, <1%mafic. The rhyolite varies from 71·8 to 76·7 wt% SiO2 and 76 to 112 ppm Rb but is dominantly 74–76 wt% SiO2. Average rhyolite compositions at each stratigraphiclevel do not change significantly through the eruption sequence.Oxide geothermometry, phase equilibria and volatile contentsimply magma storage at 830–760°C, and 100–200MPa. Most rhyolite compositional variations are explicable by28% crystal fractionation involving the phenocryst and accessoryphases (plagioclase, orthopyroxene, hornblende, quartz, magnetite,ilmenite, apatite and zircon). However, scatter in some elementconcentrations and 87Sr/86Sr ratios, and the presence of non-equilibriumcrystal compositions imply that mixing of liquids, phenocrystsand inherited crystals was also important in assembling thecompositional spectrum of rhyolite. Mafic compositions comprisea tholeiitic group (52·3–63·3 wt % SiO2)formed by fractionation and crustal contamination of a contaminatedtholeiitic basalt, and a calc-alkaline group (56·7–60·5wt % SiO2) formed by mixing of a primitive olivine–plagioclasebasalt with rhyolitic and tholeiitic mafic magmas. Both maficgroups are distinct from other Taupo Volcanic Zone eruptivesof comparable SiO2 content. Development and destruction by eruptionof the Oruanui magma body occurred within 40 kyr and Oruanuicompositions have not been replicated in vigorous younger activity.The Oruanui rhyolite did not form in a single stage of evolutionfrom a more primitive forerunner but by rapid rejuvenation ofa longer-lived polygenetic, multi-age ‘stockpile’of silicic plutonic components in the Taupo magmatic system. KEY WORDS: Taupo Volcanic Zone; Taupo volcano; Oruanui eruption; rhyolite, zoned magma chamber; juvenile mafic compositions; eruption withdrawal systematics  相似文献   

20.
Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up (~50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic (~62–65 wt% SiO2) ignimbrite with an estimated erupted volume of ~500 km3 and an average of ~45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from ~750 to >800?°C) of an upper crustal mush in response to hotter recharge from below. Zircon U–Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location ~0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures (~710–760?°C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号