首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tourmalinites that are distally associated with tungsten deposits of the Pampa del Tamboreo area, San Luis, Argentina, contain tourmalines retaining evidence for its origin and evolution. Tourmaline grains uncommonly contain small grains of detrital tourmaline. Analysis of a single detrital tourmaline grain reveals that it is a Ca-rich “oxy-dravite”. Proximal to the detrital cores there are inner domains of asymmetric tourmaline overgrowths that developed during low grade metamorphism. Volumetrically dominant tourmaline overgrowths in the outer domain are concentrically zoned aluminous dravite and “oxy-dravite” with Al/(Al + Fe + Mg) = 0.71–0.74 and Mg/(Mg + Fe) = 0.64–0.71. Variability of Al is primarily controlled by the deprotonation substitution R + OH = Al + O2− (where R = Fe + Mg), and is a function of the activity of H2O. A likely evolutionary scenario is one in which volcanogenic material is altered by hydrothermal fluids in the sea floor resulting in an aluminous and magnesian residuum. With further hydrothermal circulation and incipient metamorphism, boron-rich fluids are expelled from metasedimentary and metavolcanic basement rocks and develop Mg-rich tourmalinites in the aluminous, magnesian host rocks. The tourmalinization process occurs over a range of metamorphic conditions and with fluids of variable activity of H2O.  相似文献   

2.
The ultramafic-hosted Logatchev Hydrothermal Field (LHF) at 15°N on the Mid-Atlantic Ridge and the Arctic Gakkel Ridge (GR) feature carbonate precipitates (aragonite, calcite, and dolomite) in voids and fractures within different types of host rocks. We present chemical and Sr isotopic compositions of these different carbonates to examine the conditions that led to their formation. Our data reveal that different processes have led to the precipitation of carbonates in the various settings. Seawater-like 87Sr/86Sr ratios for aragonite in serpentinites (0.70909 to 0.70917) from the LHF are similar to those of aragonite from the GR (0.70912 to 0.70917) and indicate aragonite precipitation from seawater at ambient conditions at both sites. Aragonite veins in sulfide breccias from LHF also have seawater-like Sr isotope compositions (0.70909 to 0.70915), however, their rare earth element (REE) patterns show a clear positive europium (Eu) anomaly indicative of a small (< 1%) hydrothermal contribution. In contrast to aragonite, dolomite from the LHF has precipitated at much higher temperatures (~ 100 °C), and yet its 87Sr/86Sr ratios (0.70896 to 0.70907) are only slightly lower than those of aragonite. Even higher temperatures are calculated for the precipitation of deformed calcite veins in serpentine–talc fault schists form north of the LHF. These calcites show unradiogenic 87Sr/86Sr ratios (0.70460 to 0.70499) indicative of precipitation from evolved hydrothermal fluids. A simple mixing model based on Sr mass balance and enthalpy conservation indicates strongly variable conditions of fluid mixing and heat transfers involved in carbonate formation. Dolomite precipitated from a mixture of 97% seawater and 3% hydrothermal fluid that should have had a temperature of approximately 14 °C assuming that no heat was transferred. The much higher apparent precipitation temperatures based on oxygen isotopes (~ 100 °C) may be indicative of conductive heating, probably of seawater prior to mixing. The hydrothermal calcite in the fault schist has precipitated from a mixture of 67% hydrothermal fluid and 33% seawater, which should have had an isenthalpic mixing temperature of ~ 250 °C. The significantly lower temperatures calculated from oxygen isotopes are likely due to conductive cooling of hydrothermal fluid discharging along faults. Rare earth element patterns corroborate the results of the mixing model, since the hydrothermal calcite, which formed from waters with the greatest hydrothermal contribution, has REE patterns that closely resemble those of vent fluids from the LHF. Our results demonstrate, for the first time, that (1) precipitation from pure seawater, (2) conductive heating of seawater, and (3) conductive cooling of hydrothermal fluids in the sub-seafloor all can lead to carbonate precipitation within a single ultramafic-hosted hydrothermal system.  相似文献   

3.
Submarine metalliferous sedimentary rocks are chemical precipitates resulted from hydrothermal exhalation near mid‐ocean ridge or faults. They record the submarine hydrothermal activity between lithosphere and hydrosphere and are critical for understanding Fe cycling in marine environment. Fe was expelled from the hydrothermal vent systems and was oxidized and precipitated in the ambient seawater, where the precipitation of hydrothermal Fe is largely controlled by oxidation state of seawater and is potentially revealed by its Fe isotope compositions. This hydrothermal process in modern hydrothermal vent systems have been well observed, but that for the ancient ones are still not well known. Umbers, or ferromanganoan sediments, overlying Troodos ophiolite in Cyprus of Mid‐Cretaceous age thus provides an excellent example for understanding the Fe cycles in ancient submarine hydrothermal process. Samples were collected from Margi village in Troodos and are mostly amorphous Fe‐Mn oxy‐hydroxides with very minor quartz, goethite, smectite and silicates such as clinopyroxene derived from the volcanic rocks. There is no terrestrial, detrital component. Samples were analyzed for their whole‐rock element and Fe isotope compositions. The results show that samples are composed mainly of SiO2 (13~80 wt%), Fe2O3 (9~54 wt%) and MnO (1.5~10.4 wt%), with minor Al2O3 (0.7~4.3 wt%). PAAS‐normalized REE patterns are near flat with significantly negative Ce anomalies (Ce/Ce* is from 0.2 to 0.5) and slightly positive Eu anomalies (Eu/Eu* is around 1.1), indicating a source from the oxidized seawater and the high‐temperature hydrothermal fluids. δ56FeIRMM‐014 values of samples are ‐0.32‰ to ‐0.15‰, with an average of ‐0.20‰, which are consistent with those of the hydrothermal fluids previously reported. The narrow Fe isotope compositions of Cyprus umbers that are close to those of submarine hydrothermal fluids indicates near complete oxidation of hydrothermal Fe2+ during its expulsion from the hydrothermal vent.  相似文献   

4.
The Early Cambrian black shale sequence of the Niutitang Formation in South China hosts a synsedimentary, organic carbon-rich, polymetallic sulfide layer with extreme metal concentrations, locally mined as polymetallic Ni–Mo–PGE–Au ore. In combination with previously reported data, we present Mo isotope, platinum-group element (PGE), and trace and rare-earth element (REE) data for the polymetallic sulfide ores and host black shales from four mine sites (Dazhuliushui and Maluhe in Guizhou Province, and Sancha and Cili in Hunan Province, respectively), several hundred kilometers apart. The polymetallic sulfide ores have consistently heavy δ98/95Mo values of 0.94 to 1.38‰ (avg. 1.13 ± 0.14‰, 1σ, n = 11), and the host black shale and phosphorite have slightly more variable δ98/95Mo values of 0.81‰ to 1.70‰ (n = 14). This latter variation is due to variable paleoenvironmental conditions from suboxic to euxinic, and partly closed-system fractionation in isolated marine sedimentary basins. Both the polymetallic sulfides and host black shales show PGE distribution patterns similar to that of present-day seawater, but different from those of ancient submarine-hydrothermal deposits and modern submarine hydrothermal fluids. The polymetallic sulfide bed has a generally consistent metal enrichment by a factor of 107 compared to present-day seawater. PAAS-normalized REE + Y patterns of the polymetallic sulfide bed are characterized by a remarkably positive Y anomaly, consistent with an origin of the REE predominantly from seawater. Small positive Eu anomalies in some of the sulfide ores could reflect minor hydrothermal components involved. The Mo isotope, PGE, and trace and rare-earth element geochemical data suggest that metals in the polymetallic Ni–Mo–PGE–Au sulfide ore layer were scavenged mostly from Early Cambrian seawater, by both in-situ precipitation and local re-deposition of sulfide clasts.  相似文献   

5.
The Geysers–Clear Lake area has a long history of research on its active hydrothermal systems. It is a unique area containing a number of hydrothermal systems which include: the Geysers steam field, one of the largest vapor-dominated geothermal systems yet recognized; the McLaughlin gold deposit, an extremely well preserved hot-spring style gold deposit; and the Sulphur Bank mercury deposit, one of the first locations where geothermal systems were recognized as modern analogues to epithermal deposits. There is also a variety of active hot- and mineral-springs, including Wilbur Springs, or the Sulphur Creek district, which has been considered one of the type localities for connate fluids.The McLaughlin gold–mercury deposit is a fossil hot-spring system dominated by meteoric waters that exchanged with sedimentary rocks of the Great Valley sequence. Mineralization was syntectonic, occurring contemporaneously with fault movement. The fluids circulated in syntectonic dilation zones that resulted in, and maintained, high permeability of the fluid conduits permitting large volumes of fluid flow. The fluids precipitated metals in response to physical and chemical changes associated with boiling. The hydrothermal fluids that formed the McLaughlin deposit have the highest reservoir temperature, salinity and are isotopically the most enriched, of the Coast Range hydrothermal systems. The McLaughlin deposit is considered an end-member “fluid-dominated” hydrothermal system.The Geysers steam field, in its earliest phase was likely similar to the McLaughlin deposit being fluid-dominated and forming, at least on a small scale, a vein system enriched in silver and anomalous in gold, base metals, antimony and mercury. The hydrothermal system evolved into a vapor-dominated system as a result of decreased permeability of the reservoir, decreased recharge and/or increased heat flow. The modern day reservoir is encapsulated in impermeable rocks and is a “vapor-dominated” end-member hydrothermal system.Active hot- and mineral-springs in the Coast Ranges of northern California are intermediate between the fluid- and vapor-dominated end-member systems. The chemical and isotopic compositions of these fluids are the result of thermal processes and are not explained by simple mixing models between connate fluids and meteoric groundwater. Their isotopic and chemical composition is best explained by meteoric-dominated systems with repeated non-equilibrium subsurface vapor loss (evaporation) in a near closed system, with the relative deuterium and 18O enrichment proportional to the reservoir temperature.  相似文献   

6.
Airborne hyperspectral imagery was used to study the distribution of white mica minerals in Archean (3.2 Ga) submarine hydrothermal systems associated with volcanogenic massive sulfide mineralization in a well-exposed volcanic sequence of the Soansville greenstone belt in the Pilbara, Western Australia. White mica mineral abundance and distribution maps were compared with published hydrothermal alteration maps and differences were interpreted using whole-rock geochemistry and temperature estimates from oxygen isotope geothermometric studies of hydrothermally altered rocks. Three different zones were identified from the hyperspectral imagery: 1) Al-rich white mica zones in the upper parts of the volcanic sequence which are related to recharge of unevolved seawater, 2) Al-poor white mica zones at middle and upper levels of the volcanic sequence predominantly related to K alteration by more-evolved hydrothermal fluids, and 3) high to intermediate Al-content white mica zones in lower levels of the sequence and in cross-cutting zones related to intense alteration by laterally flowing and upwelling evolved fluids. The integrated study of the spatial distribution of hyperspectrally detected white mica minerals together with published maps and rock analyses allowed characterization of the hydrothermal systems and reconstruction of paleo fluid pathways.  相似文献   

7.
In the spring of 1979, 350°C springs precipitating hydrothermal sulphides and sulphates directly on to the sea-floor were discovered on the crest of the East Pacific Rise (EPR) at 21°N by the astonished scientific party of the RISE submersible expedition. These hot springs are within a linear field of active and inactive hydrothermal vents extending 6 km along the rise axis. Typically the mineral deposits at EPR, 21°N consist of basal sulphide mounds surmounted by mineralized sulphide-sulphate edifices, or “chimneys”, reaching heights up to 13 m above the sea floor. The mounds rest directly on fresh basalt and cover areas up to 450 m2. Chimneys atop mounds may be active or dead. The hottest active chimneys (350°C) spew forth fluids blackened by fine-grained sulphide precipitates, dominantly hexagonal pyrrhotite and iron-rich sphalerite. These “black smokers” are distinguished from cooler “white smoker” chimneys which are encrusted by worm tubes and emit milky fluids bearing amorphous silica, barite, and pyrite.  相似文献   

8.
Throughout the geological history of the Earth, submarine hydrothermal activity has played an important role in seawater chemistry, biological evolution and enrichment of metals in the Earth crust. However, the prospect of hydrothermal activity for extreme element accumulation during the early Cambrian, a key geological period, in South China has not been well-constrained. This study reports geochemical (e.g. REE and Sr isotope) investigations of a coarse-grained limestone layer and associated calcite veins in Zunyi and Nayong areas, Guizhou Province, to constrain the hydrothermal activity and evaluate the significance of hydrothermal contribution to extreme element accumulation during the early Cambrian, South China. Our results reveal positive Eu anomalies and higher initial 87Sr/86Sr ratios (0.7083–0.7150) for carbonate samples than those of early Cambrian seawater, indicating the presence of hydrothermal processes. Combined with constraints from the spatial relationships and coincidence with adjacent mineralization, these hydrothermal processes provide the most probable contribution for polymetallic Ni–Mo–PGE mineralization. Furthermore, there are abundant hydrothermal dolomite and barite-calcite veins in the dolostone of the Dengying Formation, indicating the occurrence of a variety of hydrothermal fluids. Overall, multi-stage hydrothermal pulses with different fluid compositions spanned the Ediacaran–Cambrian transition in South China. In particular, these hydrothermal fluids with positive Eu anomalies and enriched radiogenic Sr, originating from Proterozoic mafic/ultramafic rocks, may have flowed through the underlying Precambrian silicate clastic rocks (e.g., Xiajiang, Banxi and Lengjiaxi Groups) and may have been crucial for the marine environment, biological diversity and extreme element accumulation during the early Cambrian, South China.  相似文献   

9.
The Bijgan barite deposit, which is located northeast of Delijan in Markazi Province of Iran, occurs as a small lenticular body at the uppermost part of an Eocene volcano-sedimentary rock unit. The presence of fossiliferous and carbonaceous strata suggests that the host rocks were deposited in a quiet marine sedimentary environment. Barite, calcite, iron oxides and carbonaceous clay materials are found as massive patches as well as thin layers in the deposit. Barite is marked by very low concentrations of Sr (1–2%) and total amounts of rare earth elements (REEs) (6.25–17.39?ppm). Chondrite-normalized REE patterns of barite indicate a fractionation of light REEs (LREEs) from La to Sm, similar to those for barite of different origins from elsewhere. The LaCN/LuCN ratios and chondrite-normalized REE patterns reveal that barite in the Bijgan deposit is enriched in LREE relative to heavy rare earth elements (HREEs). The similarity between the Ce/La ratios in the barite samples and those found in deep-sea barite supports a marine origin for barite. Lanthanum and Gd exhibit positive anomalies, which are common features of marine chemical sediments. Cerium shows a negative anomaly in most samples that was inherited from the negative Ce anomaly of hydrothermal fluid that mixed with seawater at the time of barite precipitation. The δ18O values of barites show a narrow range of 9.1–11.4‰, which is close to or slightly lower than that of contemporaneous seawater at the end of the Eocene. This suggests a contribution of oxygen from seawater in the barite-forming solution. The δ34S values of barites (9.5–15.3‰) are lower than that of contemporaneous seawater, which suggests a contribution of magmatic sulfur to the ore-forming solution. The oxygen and sulfur isotope ratios indicate that submarine hydrothermal vent fluids are a good analog for solutions that precipitated barite, due to similarities in the isotopic composition of the sulfates. The available data including tectonic setting, host rock characteristics, REE geochemistry, and oxygen and sulfur isotopic compositions support a submarine hydrothermal origin for the Bijgan barite deposit. At the seafloor, barite deposition occurred where ascending Ba-bearing hydrothermal fluids encountered seawater. Sulfate was derived from the sulfate-bearing marine waters, and, to a lesser extent, by oxidized H2S, which was derived from magmatic hydrothermal fluids.  相似文献   

10.
Mafic to felsic predominantly marine volcanic members on the west flank of the major volcanic vent of the relatively unmetamorphosed and undeformed Archean upper Blake River Group of the Noranda area were sampled at approximately 100 m centres in a 100 km2 area for whole-rock analysis as part of an integrated exploration program during 1977–1980. Automatic processing of the resulting approximately 2000 analyses yielded not only the expected improved definition of primary rock types but also synvolcanic alteration patterns of varying intensity. Essentially two-dimensional sea floor “weathering” on paleo-bedding surfaces and the more fully three-dimensional, hydrothermal, volcanogenic, footwall alteration systems were discovered. The data, when integrated with existing drill and mining information provide a unique insight into the hidden shape of the sub-sea-floor plumbing of the recently discovered active hydrothermal, biologic systems observed in two dimensions at crustal spreading centres on today's ocean floor.Polarized compositional gradients observed within the footwall alteration patterns are interpreted to be potent exploration guides to proximal, polymetallic, sulphide facies exhalite deposits and their associated “stringer” zones.  相似文献   

11.
Neodymium, Sr and Pb isotopic compositions, along with rare earth element (REE) concentrations were determined for twelve black ores and one yellow ore from twelve localities of the Kuroko deposits, Japan. The ores were generated by submarine hydrothermal activity during the Miocene age. Neodymium isotopic compositions of the ores (Nd: –4.9 to +6.5) mostly overlap with spatially associated igneous rocks. On a Nd versus Sr isotopic correlation diagram, however, 87Sr/86Sr ratios are shifted from the associated igneous rocks towards the higher contemporaneous seawater ratio. REE patterns are highly variable, ranging from light REE enriched to depleted, and show no Ce anomalies, as would be expected if they were derived from seawater. These results suggest that the REEs contained in ores were mainly derived from the associated igneous rocks, but that the ore Sr is a mixture derived from both seawater and the igneous rocks. Most Pb isotopic compositions fall within the range defined by the associated igneous rocks (206Pb/204Pb=18.35–18.84, 207Pb/204Pb=15.59–15.97 and 208Pb/204Pb=38.53–39.90), although several samples have very radiogenic compositions that were most likely derived from basement rocks. Our new Pb isotopic results display greater variation, and have a larger range of more radiogenic compositions than has been noted previously for these ores. In addition, the black ore with the most radiogenic Pb isotopic composition also has the least radiogenic Nd isotopic composition. This suggests that at least some of the Pb contained in the ores was derived mainly from older basement rocks. The large positive Eu anomalies for some black ores are consistent with a high-temperature origin for the parental fluids, irrespective of the source rock. The single yellow ore examined, however, has a small negative Eu anomaly, which may indicate derivation from a lower temperature fluid. Previous studies suggested that the Kuroko ores were formed in the presence of organic materials in an anoxic basin. Combined Nd, Sr, Pb and Os isotopic and REE abundance data indicate that multiple sources were involved in the genesis of Kuroko ores.  相似文献   

12.
The Loihi hydrothermal plume provides an opportunity to investigate iron (Fe) oxidation and microbial processes in a system that is truly Fe dominated and distinct from mid-ocean ridge spreading centers. The lack of hydrogen sulfide within the Loihi hydrothermal fluids and the presence of an oxygen minimum zone at this submarine volcano’s summit, results in a prolonged presence of reduced Fe within the dispersing non-buoyant plume. In this study, we have investigated the potential for microbial carbon fixation within the Loihi plume. We sampled for both particulate and dissolved organic carbon in hydrothermal fluids, microbial mats growing around vents, and the dispersing plume, and carried out stable carbon isotope analysis on the particulate fraction. The δ13C values of the microbial mats ranged from −23‰ to −28‰, and are distinct from those of deep-ocean particulate organic carbon (POC). The mats and hydrothermal fluids were also elevated in dissolved organic carbon (DOC) compared to background seawater. Within the hydrothermal plume, DOC and POC concentrations were elevated and the isotopic composition of POC within the plume suggests mixing between background seawater POC and a 13C-depleted hydrothermal component. The combination of both DOC and POC increasing in the dispersing plume that cannot solely be the result of entrainment and DOC adsorption, provides strong evidence for in-situ microbial productivity by chemolithoautotrophs, including a likelihood for iron-oxidizing microorganisms.  相似文献   

13.
The Kaapvaal craton in southern Africa and the Pilbara craton of northwestern Australia are the largest regions on Earth to have retained relatively pristine mid-Archaean rocks (3.0–4.0 Ga).The Kaapvaal craton covers about 1.2×106 km2, and varies in lithospheric thickness between 170 and 350 km. At surface, the craton can be subdivided into a number of Archaean sub-domains; some of the subdomains are also well defined at depth, and local variations in tomography of the lithosphere correspond closely with subdomain boundaries at surface.The Archaean history of the Kaapvaal craton spans about 1 Gyr and can be conveniently subdivided into two periods, each of about the same length as the Phanerozoic. The first period, from circa 3.7-3.1 Ga, records the initial separation of the cratonic lithosphere from the asthenosphere, terminating with a major pulse of accretion tectonics between 3.2 and 3.1 Ga, which includes the formation of “paired metamorphic belts”. This period of continental growth can be compared to plate tectonic processes occurring in modern-day oceanic basins. However, the difference is that in the mid-Archaean, these oceanic processes appear to have occurred in shallower water depths than the modern ocean basins. The second period, from circa 3.1-2.6 Ga, records intra-continental and continental-edge processes: continental growth during this period occurred predominantly through a combination of tectonic accretion of crustal fragments and subduction-related igneous processes, in much the same way as has been documented along the margins of the Pacific and Tethys oceans since the Mesozoic.The intra-oceanic processes resulted in small, but deep-rooted continental nucleii; the first separation of this early continental lithosphere could only have occurred when the mean elevation of mid-oceanicridges sank below sea-level. Substantial recycling of continental lithosphere into the mantle must have occurred during this period of Earth history. During the second period, at least two large continental nucleii amalgamated during collisional processes which, together with internal chemical differentiation processes, created the first stable continental landmass. This landmass, which is known to have been substantially bigger than its present outline, may have been part of the Earth's first supercontinent.The oldest known subdomains of the craton include the oceanic-like rocks of the Barberton greenstone belt. The comagmatic mafic-ultramafic rocks (3.48–3.49 Ga) of this belt represent a remnant of very early oceanic-like lithosphere (known as the Jamestown Ophiolite Complex), which was obducted, approximately 45 Ma after its formation, onto a volcanic arc-like terrain by processes similar to those which have emplaced modern ophiolites at convergent margins of Phanerozoic continents. The early metamorphic history, metamorphic mineralogy, oxygen isotope profiles and degree of hydration of the 3.49 Ga Jamestown Ophiolite Complex are similar to present day subseafloor hydrothermal systems. The ratio of ΔMg to ΔSi for hydrothermally altered igneous rocks, both present day and Archaean, are remarkably uniform at −5(±0.9) and the same as that of hydrothermal fluids venting on the present-day East Pacific Rise. This observation suggests that the process of Mg exchange for Si in hydrothermal systems was commonplace throughout Earth's history.The chemistry of vent fluids and hydrothermally altered igneous rocks was combined with an inventory of 3He in the mantle to model Earth's total hydrothermal flux. An Archaean flux (at 3.5 Ga) of about 10 times present day was accompanied by a correspondingly greater abundance of Mg(OH), SiO2, carbonate and Fe---Mn metasomatic rock types as well as massive sulphides. Assuming a constant column of seawater since the Archaean, the average residence time of seawater in the oceanic crust was 1.65−8.90×105 years in the Archaean. Assuming that 3He and heat are transported from the mantle in silicate melts in uniform proportions, the model stipulates that accretion of oceanic crust decreased from about 3.43−6.5×1017 g/yr to a present-day rate of 0.52−0.8×1017 g/yr, with a drop in heat flow from 1.4−2.6×1020 cal/yr to 2.1−3.2×1019 cal/year.The total amounts of SiO2 and Fe mobilised in marine hydrothermal systems since 3.5 Ga is less than their masses in the present exosphere reservoirs (crust, hydrosphere, atmosphere). The total amounts of Mg, K, CO2, Ca and Mn are greater than their respective masses in exosphere reservoirs; therefore, they must have been recycled into mantle. The total mass of recycled hydrothermal components is small compared to the mass of the mantle. The flux of volatiles in hydrothermal systems is large compared to their volume in the atmosphere suggesting that the CO2 and O2 budgets of the atmosphere have been influenced by hydrothermal processes, especially in the Archaean.  相似文献   

14.
Depending on the geological setting, the interaction of submarine hydrothermal fluids with the host rock leads to distinct energy and mass transfers between the lithosphere and the hydrosphere. The Nibelungen hydrothermal field is located at 8°18′S, about 9 km off-axis of the Mid-Atlantic Ridge (MAR). At 3000 m water depth, 372 °C hot, acidic fluids emanate directly from the bottom, without visible sulfide chimney formation. Hydrothermal fluids obtained in 2009 are characterized by low H2S concentrations (1.1 mM), a depletion of B (192 μM) relative to seawater, lower Si (13.7 mM) and Li (391 μM) concentrations relative to basaltic-hosted hydrothermal systems and a large positive Eu anomaly, and display a distinct stable isotope signature of hydrogen (?2HH2O = 7.6–8.7‰) and of oxygen (?18OH2O = 2.2–2.4‰).The heavy hydrogen isotopic signature of the Nibelungen fluids is a specific feature of ultramafic-hosted hydrothermal systems and is mainly controlled by the formation of OH-bearing alteration minerals like serpentine, brucite, and tremolite during pervasive serpentinization. New isotopic data obtained for the ultramafic-hosted Logatchev I field at 14°45′N, MAR (?2HH2O = 3.8–4.2‰) display a similar trend, being clearly distinguished from other, mafic-hosted hydrothermal systems at the MAR.The fluid geochemistry at Nibelungen kept stable since the first sampling campaign in 2006 and is evident for a hybrid alteration of mafic and ultramafic rocks in the subseafloor. Whereas the ultramafic-fingerprint parameters Si, Li, B, Eu anomaly and ?2HH2O distinguish the Nibelungen field from other hydrothermal systems venting in basaltic settings at similar physico-chemical conditions and are related to the interaction with mantle rocks, the relatively high concentrations of trace alkali elements, Pb, and Tl can only be attributed to the alteration of melt-derived gabbroic rocks. The elemental and isotopic composition of the fluid suggest a multi-step alteration sequence: (1) low- to medium-temperature alteration of gabbroic rocks, (2) pervasive serpentinization at moderate to high temperatures, and (3) limited high-temperature interaction with basaltic rocks during final ascent of the fluid. The integrated water/rock ratio for the Nibelungen hydrothermal system is about 0.5.The fluid compositional fingerprint at Nibelungen is similar to the ultramafic-hosted Logatchev I fluids with respect to key parameters. Some compositional differences can be ascribed to different alteration temperatures and other fluid pathways involving a variety of source rocks, higher water/rock ratios, and sulfide precipitation in the sub-seafloor at Logatchev I.  相似文献   

15.
Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back-arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite-normalized (REEN) distribution patterns (LaN/SmN ∼ 0.6-11; LaN/YbN ∼ 0.6 - 71; ). REEN distribution patterns in different vent fluids range from light-REE enriched, to mid- and heavy-REE enriched, to flat, and have a range of positive Eu-anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid-ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near-seafloor mixing between high-temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.  相似文献   

16.
Studies of sulfur and lead isotopic compositions in hydrothermal deposits are an important tool to determine the source and processes of both sulfur and lead, and to understand the origin of hydrothermal ore deposits. Here, the sulfur and lead isotopic compositions of sulfide minerals have been studied for different hydrothermal fields in the East Pacific Rise (EPR), Mid-Atlantic Ridge (MAR), Central Indian Ridge (CIR), Southwest Indian Ridge (SWIR), and North Fiji Basin (NFB). The sulfur isotopic compositions of the studied sulfide samples are variable (δ34S 0.0 to 9.6‰, avg. δ34S 4.7‰; n = 60), being close to the associated igneous rocks (~ 0‰ for, e.g., basalt, serpentinized peridotite), which may reflect the S in the sulfide samples is derived mainly from the associated igneous rocks, and a relatively small proportion (< 36%) of seawater sulfur incorporated into these sulfides during mixing between seawater (δ34S 21‰) and hydrothermal fluid. In contrast for a mixed origin for the source of S, the majority of the lead isotopic compositions (206Pb/204Pb 17.541 ± 0.004 to 19.268 ± 0.001, 207Pb/204Pb 15.451 ± 0.001 to 15.684 ± 0.001, 208Pb/204Pb 37.557 ± 0.008 to 38.988 ± 0.002, n = 21) of the sulfides possess a basaltic Pb isotopic composition, suggesting that the lead in the massive sulfide is mainly leached from local basaltic rocks that host the sub-seafloor hydrothermal systems in sediment-free mid-ocean ridges and mature back-arc basins. Furthermore, sulfide minerals in the super-fast and fast spreading mid-ocean ridges (MORs) exhibit less spread in their the δ34S values compared to sulfides from super-slow, and slow spreading MORs, which is most easily explained as a lesser degree of fluid-rock interaction and hydrothermal fluid-seawater mixing during hydrothermal ore-forming process. Additionally, the S and Pb isotope compositions of sulfides are controlled by the fluid processes for forming seafloor massive sulfide deposits. We demonstrate that the variable sulfur and lead isotopic compositions exhibit a relationship with the sulfur and lead sources, fluid–rock interaction, and fluid–seawater mixing.  相似文献   

17.
The Ar Rjum goldfield is an example of late Neoproterozoic Au mineralization that is hosted by submarine arc assemblage and syn-anorogenic intrusive rocks. Apart from ancient workings, recent exploration in the goldfield defined three main targets along 3 km N–S corridor (Um Na'am, Ghazal and Wasema), and indicated that Wasema alone hosts 11.8 Mt @ 2.5 g/t Au. The majority of gold and sulfide mineralization is confined to diorite, where gold content increases with shearing, pyrite–sericite–carbonate alteration and development stockworks of quartz–carbonate–pyrite veins and stringers. Generally, the concentration of gold increases in the diorite samples that experienced variable degrees of hydrothermal alterations near local shear zones. Anomalous gold content (up to 11.76 g/t) in some metachert is the result of the remobilization of volcanogenic lattice-bound (refractory) Au into free Au due to post-metamorphic hydrothermal alterations. The chemistry of pyrite from the mineralized veins and stringers indicates considerable amounts of gold that reaches ~ 0.3 wt.%.Chlorite that co-exists with pyrite in the hydrothermally altered metavolcanics is mostly sheridanite with up to ~ 25 wt.% FeOt and minor amounts of ripidolite. Chlorite geothermometry suggests that two temperature ranges affecting the area. The first temperature range (290–334 °C) is consistent with regional greenschist facies metamorphism, and the second (306–355 °C) is interpreted to be related to recrystallization-submarine hydrothermal alteration related to the gold mineralization. Stable isotope (δ34S, δ18O and δ13C) data suggest an original volcanogenic arc signature that has been slightly modified by low-grade metamorphism, and finally by the late interaction of hydrothermal fluids. Ore evolution model for the Ar Rjum goldfield includes seafloor sulfide alteration, several deformation episodes and intrusive effects, and in this context the ore resulted from the reduction of seawater sulfates. The gold-rich veins interpreted as orogenic lode deposits are confined to localized shear zones in a syn-orogenic diorite.  相似文献   

18.
Germanium geochemistry and mineralogy   总被引:1,自引:0,他引:1  
  相似文献   

19.
Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope ratios of anhydrite are used to identify sub-seafloor processes governing the formation of hydrothermal fluids in the convergent margin Manus Basin, Papua New Guinea. Samples comprise drill-core vein anhydrite and seafloor massive anhydrite from the PACMANUS (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) active hydrothermal fields. Chondrite-normalized REE patterns in anhydrite show remarkable heterogeneity on the scale of individual grains, different from the near uniform REEN patterns measured in anhydrite from mid-ocean ridge deposits. The REEN patterns in anhydrite are correlated with REE distributions measured in hydrothermal fluids venting at the seafloor at these vent fields and are interpreted to record episodes of hydrothermal fluid formation affected by magmatic volatile degassing. 87Sr/86Sr ratios vary dramatically within individual grains between that of contemporary seawater and that of endmember hydrothermal fluid. Anhydrite was precipitated from a highly variable mixture of the two. The intra-grain heterogeneity implies that anhydrite preserves periods of contrasting hydrothermal versus seawater dominant near-seafloor fluid circulation. Most sulfate δ34S values of anhydrite cluster around that of contemporary seawater, consistent with anhydrite precipitating from hydrothermal fluid mixed with locally entrained seawater. Sulfate δ34S isotope ratios in some anhydrites are, however, lighter than that of seawater, which are interpreted as recording a source of sulfate derived from magmatic SO2 degassed from underlying felsic magmas in the Manus Basin. The range of elemental and isotopic signatures observed in anhydrite records a range of sub-seafloor processes including high-temperature hydrothermal fluid circulation, varying extents of magmatic volatile degassing, seawater entrainment and fluid mixing. The chemical and isotopic heterogeneity recorded in anhydrite at the inter- and intra-grain scale captures the dynamics of hydrothermal fluid formation and sub-seafloor circulation that is highly variable both spatially and temporally on timescales over which hydrothermal deposits are formed. Microchemical analysis of hydrothermal minerals can provide information about the temporal history of submarine hydrothermal systems that are variable over time and cannot necessarily be inferred only from the study of vent fluids.  相似文献   

20.
《Ore Geology Reviews》2003,22(1-2):61-90
Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 °C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号