首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Lu-Hf同位素方法已趋成熟,主要得益于其化学方法的极大改进和与之配套的高电离率质谱仪的使用。Lu-Hf同位素方法在地球的早期性质研究中表明,部分古太古代片麻岩Sm-Nd同位素体系所记录的早期地幔的“极度”亏损,实际是对其同位素体系热扰动的反映;关于大陆地壳的生长模式,石英岩锆石Lu-Hf同位素特征支持了幕式增生的观点  相似文献   

2.
报道了Lu-Hf同位素体系在地幔端元的地球化学研究中的部分最新应用成果。大量的大洋玄武岩Lu-Hf同位素研究表明:具亏损地幔端元(DMM)来源的洋中脊玄武岩岩浆部分熔融的初熔区位于石留石稳定场深度,即深度为80 ̄90km的石榴石二辉橄榄岩地幔,而不是原来所认为的尖晶石二辉橄榄岩区(深度小于60km);以高放射成因Pb为特征的主U地幔端元(HIMU)应代表了下地幔物质在某一特定时期发生分异作用的结果  相似文献   

3.
应用信通公司研制的离子质谱计(ST-IMS),建立了地质样品镁同位素分析的实验流程和误差分析方法,为进一步分析微量地质样品中镁同位素组成和分布奠定了基础。  相似文献   

4.
系统介绍了近年来地幔同位素地球化学的研究进展,概述了Sr-Nd-Hf-Pb、Os、He-Ar和Ne同位素在的岩石示踪和成因鉴别上所取得的成果,指出同位素在地幔岩石研究的重要作用,简要总结了全球及区域地幔成分的主要研究手段和某些全球均一化比值的意义;并提出了分析技术的落后和基础理论的停滞是影响同位素和微量元素在地幔研究中应用和发展的主要因素。  相似文献   

5.
GC-IRMS技术在地球化学中的应用现状与前景   总被引:1,自引:0,他引:1  
GC-IRMS技术在地球化学中的应用现状与前景熊永强,耿安松(中国科学院广州地球化学研究所.广州510640)关键词色谱-同位素质谱,地球化学,单体稳定碳同位素有机质的碳同位素组成特征含有丰富的母质来源和沉积环境等信息,一直是有机地球化学的重要研究领...  相似文献   

6.
报道了P507-pMBP溶剂浸渍滤纸(SIFP)的制备及其吸附性质;提出含微量Zr、Hf的岩矿样品经碱熔分解后用强阳离子交换树脂静态吸附分离大量干扰元素,再用P507-PMBPSIFP富集Zr与Hf,然后用XRF光谱直接测定SIFP上Zr、Hf的方法;考察了阳离子交换树脂分离干扰元素的条件,以及在残留干扰元素存在下P507-PMBPSIFP对Zr、Hf的富集情况等;对分析误差的来源,样品分析的精密度,SIFP样片的稳定性等也进行了讨论;所拟方法经用GSR及GSS系列部分地质标准样品分析验证,其结果与推荐值符合。  相似文献   

7.
张海政  阎欣 《地质实验室》1996,12(6):330-332
应用ICP-MS法测定了岩石中的痕量Nb、Ta、Zr、Hf、Th、U,给出了检出限,并对酸溶和碱熔两种制样方法进行了对比实验。  相似文献   

8.
一个造山后的辉长岩—河南新县王母观岩体的地球化学特征   总被引:17,自引:1,他引:17  
张旗  马文璞 《地球化学》1995,24(4):341-350
河南新县王母观辉长岩(261Ma)侵位在定远组(391Ma)中。岩体贫K、Zr、Y、Ta、Th、Hf,LREE略亏损,具明显的Eu正异常,εNd(t)较低(+3--1.0),εSr(t)低(-5--8),δ^18O在地幔范围内(+5.6‰-+6.4‰)。Nd-Sr同位素关系暗示岩体源于大陆下略亏损的地幔源区,推测为亏损地幔端元(DMM)与第一类富集地幔端元(EMI)混合的产物。矿物、微量元素和同位  相似文献   

9.
地壳风化系统中的Sr同位素地球化学   总被引:10,自引:0,他引:10  
马英军  刘丛强 《矿物学报》1998,18(3):350-358
近20年来,人们利用Rb-Sr同位素体系对地表-近地表地球化学过程、尤其是水圈-岩石圈之间化学物质的循环进行了广泛而深入的研究。大陆地壳风化物质以及地表径流的Sr同位素组成变化揭示了不同流域盆地的地质背景和风化作用的特征。古海洋的Sr同位素组成变化则是地壳和地幔演化以及不同地质历史时期壳-幔相互作用的共同结果。本文对地壳风化系统Sr同位素地球化学研究的全面而详细的综述表明,Rb-Sr同位素体系仍将是研究地壳风化、水圈-岩石圈之间化学物质循环的重要手段,根据古海水及其化学沉积物的Sr同位素记录研究壳-幔演化和地球圈层演化过程中的物质循环特征以及地表古环境变化将是本研究领域的重点。  相似文献   

10.
黄土中硼的同位素组成变化及其气候示踪意义研究   总被引:1,自引:0,他引:1  
自然界中硼的同位素组成变化很大(δ11B=-30‰~+40‰),但在不问类型地质体中的分布或一定地质地球化学过程造成的分馏却有特定的范围。硼同位素分馏的主要原因是流体—固体反应体系的pH条件和水-岩比值变化。硼的这些特殊地球化学性质在不同地质地球化学作用示踪,特别是与流体作用有关的地球化学过程的研究中得到了广泛的应用。近年来有学者利用硼同位素组成示踪古海水的pH变化,但利用硼同位素示踪其它古环境或气候变化的研究却相当少。本文试图通过研究黄土中不同相态硼的同位素组成变化来识别黄土化学风化过程中流体介质的pH条件以及其它与风化作用强度有关的各种信息,并进一步发掘硼同位素组成变化在反映古气候、古环境  相似文献   

11.
On the Lu-Hf Isotope Geochemistry of Silicate Rocks   总被引:9,自引:0,他引:9  
This paper reviews the history (TIMS, hot‐SIMS, MC‐ICP‐MS), significance, geochemical behaviour and current uncertainties (λ176 Lu, Hf‐Nd Bulk Silicate Earth) surrounding the Lu‐Hf isotope system, and thus marks two decades of its application to geochemical problems. An appendix further presents (a) improvements to the original chemistry protocol of Blichert‐Toft et al. (1997) for application to Mg‐rich samples and (b) a compilation of previously published and new Hf isotope determinations by MC‐ICP‐MS for a set of international rock reference materials. Prior to the advent of multiple‐collector plasma source mass spectrometry (MC‐ICP‐MS), routine analysis of the Lu‐Hf isotope system developed only slowly because of the extreme difficulty of measuring Hf isotope compositions with thermal ionisation mass spectrometry, caused by the very high first ionisation potential of Hf. However, Hf isotope compositions can be measured relatively easily using MC‐ICP‐MS and this new technique now provides reproducible measurements at high precision regardless of the matrix from which Hf is separated. Of the commonly used long‐lived radiogenic isotope systems, only the Sm‐Nd and Lu‐Hf isotope systems are unaffected by parent/daughter fractionations related to volatile nebular processes and core formation. While other systems (Rb‐Sr, U‐Th‐Pb, Re‐Os) may also be used to investigate the chemical evolution of the Earth, Moon, Mars and parent bodies of differentiated meteorites, the larger uncertainties in their bulk chemical and isotopic values limit their application to determine geochemical budgets and assess planetary mantle‐crust evolution. In the study of garnet‐bearing rocks, both for dating purposes and as an isotopic tracer for source provenance and mantle processes, the Lu‐Hf isotope system likewise is of major interest because of the high partition coefficient of Lu compared to Hf for garnet with respect to other minerals. Furthermore, the larger Lu/Hf fractionation compared to Sm/Nd during melting beneath ridges produces proportionally higher Lu/Hf in the residue and faster in‐growth of a radiogenic Hf isotopic signature (compared to Nd), which may help shed light on the dynamics of mantle melting. While the chemistry protocol and mass spectrometric technique for high‐precision Lu‐Hf isotope analysis have been resolved in satisfactory ways over the past five years, more accurate determination of the decay constant for 176 Lu, at present known with a precision of only about 4%, still needs to be completed and a consensus reached on which value to use for future Lu‐Hf isotope studies. Although the current combined Lu‐Hf and Sm‐Nd Bulk Silicate Earth parameters are plagued by possible incompatibilities in chondrite selection and potential interlaboratory biases, a more accurate set of values may not be readily established owing to heterogeneities in the isotopic composition of chondrites that far exceed present analytical accuracy.  相似文献   

12.
In this contribution, we report Hf isotopic data and Lu and Hf mass fractions for thirteen Chinese rock reference materials (GBW07 103–105, 109–113 and 121–125, that is GSR 1–3, 7–11 and 14–18, respectively) that span a broad compositional range. Powdered samples were spiked with a 176Lu‐180Hf enriched tracer and completely digested using conventional HF, HNO3 and HClO4 acid dissolution protocols. Fluoride salts were dissolved during a final H3BO3 digestion, and chemical purification was performed using a single Ln resin. All measurements were carried out on a MC‐ICP‐MS. This work provides the first comprehensive report of the Lu‐Hf isotopic composition of Chinese geochemical rock reference materials, and results indicate that they are of comparable quality to the well‐characterised and widely used USGS and GSJ rock reference materials.  相似文献   

13.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   

14.
This paper contains the results of an extensive isotopic study of United States Geological Survey GSD‐1G and MPI‐DING reference glasses. Thirteen different laboratories were involved using high‐precision bulk (TIMS, MC‐ICP‐MS) and microanalytical (LA‐MC‐ICP‐MS, LA‐ICP‐MS) techniques. Detailed studies were performed to demonstrate the large‐scale and small‐scale homogeneity of the reference glasses. Together with previously published isotopic data from ten other laboratories, preliminary reference and information values as well as their uncertainties at the 95% confidence level were determined for H, O, Li, B, Si, Ca, Sr, Nd, Hf, Pb, Th and U isotopes using the recommendations of the International Association of Geoanalysts for certification of reference materials. Our results indicate that GSD‐1G and the MPI‐DING glasses are suitable reference materials for microanalytical and bulk analytical purposes.  相似文献   

15.
锆石Hf同位素组成的LAM-MC-ICPMS精确测定   总被引:23,自引:1,他引:23  
在配备了NewWaveMerchantekLUV213型紫外激光探针进样系统的Isoprobe型MC—ICPMS上进行了溶液和锆石单矿物的Hf同位素比值测定,并对^176Yb和^176Lu对^176Hf的同质异位素干扰校正进行了试验。结果表明,由于自然界Lu的丰度远远小于Yb,所以^176Hf的同质异位素干扰主要来自^176Yb。当Yb/Hf较低时,可以通过同质异位素干扰校正直接难确测定出^176Hf/^177Hf比值;当Yb/Hf比值较高时,则需要进行同质异位素干扰校正和外部校正来获得难确的^176Hf/^177Hf比值。因此,用LAM—MC-ICPMS可以难确、快速地测定锆石的Hf同位素组成。  相似文献   

16.
Potential applications of the Lu-Hf isotope system have long been impeded by the analytical difficulties of obtaining data on a wide variety of geological materials. Many of these limitations will now be eliminated because Hf isotopes can be readily measured with high precision and accuracy on small and/or Hf-poor samples using the newly developed magnetic sector-multiple collector ICP-MS, also known as MC-ICP-MS or the `Plasma 54'. We present here a new method to separate and determine isotopic compositions of both Hf and Lu from various types of geological materials using MC-ICP-MS. The chemical separation of Hf and Lu has been designed to take advantage of the characteristics of this unique instrument. The separation of Hf can be achieved with a straightforward two-step ion-exchange column chemistry, which has a high efficiency (better than 85% recovery) and low blanks (typical total blanks less than 150 pg for the largest samples of 1 g bulk rock). The isolation of Lu is achieved with a single-stage ion-exchange column procedure with near 100% yields and blanks below 20 pg. Hf isotopic compositions can be routinely measured on 50 ng Hf with an internal precision better than 20 ppm in less than 15 min and with an external precision better than 40 ppm. Our value for the 176Hf/177Hf ratio of the JMC 475 Hf standard currently is 0.282163 ± 9 (2s). The Lu isotopic ratio is measured rapidly and precisely without isolating Lu from the bulk of Yb, and a mass fractionation correction increases the accuracy of the results compared with TIMS data. Our current reproducibility of the Lu/Hf ratio is ≈1%. Selected Lu-Hf isotope analyses of some modern and ancient geological samples validate the technique we have described here and illustrate the new opportunities for Lu-Hf isotope geochemistry that have opened up with the advent of magnetic-sector ICP mass spectrometry. Received: 12 September 1996 / Accepted: 13 January 1997  相似文献   

17.
Matrix‐matched reference materials are necessary for accurate microbeam U‐Pb dating and Hf isotopic determination. This study introduces the RMJG rutile as a new potential reference material, which was separated from Palaeoproterozoic pelitic granulites collected in Hebei Province, China. LA‐ICP‐MS measurements indicate the RMJG rutile has extremely low Th (< 0.003 ± 0.01 µg g?1) and common Pb contents, but high Hf (102 ± 34 µg g?1), U (61 ± 11 µg g?1), and radiogenic Pb (~ 20 µg g?1) contents. Moreover, the rutile yields relatively constant U‐Pb ages and Hf isotopic data. The LA‐ICP‐MS analyses suggest that this rutile has a concordant U‐Pb age with a statistical mean 206Pb/238U and 207Pb/235U ages of 1749.9 ± 32.1 Ma and 1750.0 ± 26.4 Ma, respectively (2s), which are statistically indistinguishable from its ID‐TIMS ages (1750.6 ± 8.4 and 1750.1 ± 4.7 Ma). Precise determination of the 176Hf/177Hf ratio by MC‐ICP‐MS in solution mode (0.281652 ± 0.000006) is in good agreement with the statistical mean of the LA‐MC‐ICP‐MS measurements (0.28166 ± 0.00018). Therefore, the limited variations of RMJG U‐Pb age and Hf isotopic composition together with its extremely low common Pb and high Hf, U and Pb contents make it an ideal calibration and monitor reference material for LA‐ICP‐MS measurements.  相似文献   

18.
In the contact aureole of the Makhavinekh Lake Pluton (MLP), Labrador, garnet resorption caused redistribution of Lu and loss of Hf, creating spuriously young Lu–Hf garnet ages. Garnet grew during granulite facies regional metamorphism at 1860–1850 Ma. At 1322 Ma, garnet rims were replaced by coronas of cordierite and orthopyroxene during contact metamorphism. Garnet–ilmenite Lu–Hf geochronology using bulk‐garnet separates yields apparent ages that young from 1876 ± 21 Ma at 4025 m from the contact to 1396 ± 8 Ma at 450 m from the contact. Toward the contact, garnet crystals are progressively more resorbed. Concentrations of Lu measured by LA‐ICP‐MS along radial traverses on central sections through relict garnet decrease gently away from the cores but rise steeply within 50–200 μm of the edges of the relicts. Enrichments of Lu in rims of relict garnet demonstrates strong partitioning of Lu into garnet during resorption and modest intracrystalline diffusion. Hafnium distributions could not be measured, but considering the strong incompatibility of Hf with garnet, it is likely that nearly all Hf in resorbed portions of the garnet was lost from the crystals. Lu–Hf ages in the aureole are thus controlled predominantly by this retention of Lu and loss of Hf during garnet resorption. This deduction was tested with a simple numerical model in which the partial retention of Lu and loss of Hf is tracked as a population of garnet is resorbed. Assuming a spherical geometry for garnet porphyroblasts, Rayleigh fractionation is used to approximate initial Lu zoning profiles ranging from flat to steeply decreasing toward garnet rims. The model simulates: (i) Lu–Hf decay for a specified period before resorption; (ii) instantaneous resorption with retention of Lu and loss of Hf from the resorbed portion of the crystal and (iii) Lu–Hf decay during a specified period after resorption. Several parameters influence the modelled age, but garnet resorption and Lu retention are the primary factors. When all other parameters are held constant, larger amounts of resorption and higher degrees of Lu retention produce younger apparent ages (false ages). Similarly, flatter initial Lu profiles yield younger apparent ages as a consequence of the larger proportion of Lu and Hf that resides in the outer portions of the porphyroblast. The difference between the apparent and actual ages is greater if the duration of the pre‐resorption decay period is large relative to the post‐resorption decay period. Larger crystals in a Gaussian crystal‐size distribution (CSD) generally dominate the Lu–Hf budget and produce an older apparent age relative to the age of the mean crystal size. Compared to a symmetrical Gaussian CSD, positively skewed CSDs result in reduced resorption of large crystals and produce an older apparent age. Application of the model to the MLP aureole, positing growth at 1850 Ma and resorption at 1320 Ma, yields model ages that young from 1850 to 1374 Ma toward the contact, in good agreement with the apparent ages determined from geochronology.  相似文献   

19.
卡瓦布拉克杂岩带出露于中天山地块东段卡瓦布拉克—阿克塔格地区,沿卡瓦布拉克断裂呈东西向展布。笔者选择构成该杂岩带的中—基性岩石主体闪长岩,开展了LA-ICP-MS锆石U-Pb年代学和LA-MC-ICP-MS锆石Hf同位素研究。结果表明:闪长岩中锆石呈自形—半自形,发育典型的岩浆锆石振荡生长环带,Th/U值较高(均大于0.40),且Th、U含量呈现较好的正相关关系,为典型的岩浆成因锆石;这些锆石的206Pb/238 U年龄加权平均值为(375±1)Ma,MSWD=0.081,属晚泥盆世,可代表其结晶年龄;锆石具有较均一的Hf同位素组成,初始比值为0.282 655~0.282 747、εHf(t)值为4.0~7.2,其对应的亏损地幔模式年龄为714~842Ma。结合区域地质资料认为,卡瓦布拉克杂岩带中的闪长岩由亏损岩石圈地幔发生部分熔融而形成。  相似文献   

20.
This GGR biennial critical review covers developments and innovations in key analytical methods published since January 2014, relevant to the chemical, isotopic and crystallographic characterisation of geological and environmental materials. In nine selected analytical fields, publications considered to be of wide significance are summarised, background information is provided and their importance evaluated. In addition to instrumental technologies, this review also presents a summary of new developments in the preparation and characterisation of rock, microanalytical and isotopic reference materials, including a précis of recent changes and revisions to ISO guidelines for reference material characterisation and reporting. Selected reports are provided of isotope ratio determinations by both solution nebulisation MC‐ICP‐MS and laser ablation‐ICP‐MS, as well as of radioactive isotope geochronology by LA‐ICP‐MS. Most of the analytical techniques elaborated continue to provide new applications for geochemical analysis; however, it is noted that instrumental neutron activation analysis has become less popular in recent years, mostly due to the reduced availability of nuclear reactors to act as a neutron source. Many of the newer applications reported here provide analysis at increasingly finer resolution. Examples include atom probe tomography, a very sensitive method providing atomic scale information, nanoscale SIMS, for isotopic imaging of geological and biological samples, and micro‐XRF, which has a spatial resolution many orders of magnitude smaller than conventional XRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号