首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new investigation of the coastal cliff section at Mommark in southern Denmark has revealed a complete Eemian interglacial sequence for the first time in the southwestern Baltic area. Environmental changes through the lacustrine and marine interglacial deposits are discussed on the basis of foraminiferal assemblages and stable isotope composition as well as ostracods. In general, the assemblages indicate relatively high temperatures throughout the Eemian, and the Lusitanian foraminiferal species Pseudoeponides falsobeccarii Rouvillois has been reported for the first time from the Eemian of northwest Europe. A floating chronology of the deposits is based on a previously published correlation of the local pollen stratigraphy with annually laminated sequences in northern Germany. An initial early Eemian lacustrine phase, with ostracodal indication of deposition in a large freshwater lake, lasted until c. 300 years after the beginning of the interglacial, i.e. to the transition between the regional pollen zones E2 and E3. After that, marine conditions persisted almost throughout the interglacial, and the Cyprina Clay was deposited. The foraminiferal and ostracodal assemblages indicate that relatively deep water prevailed in the area until c. 6000 years after the beginning of the interglacial. However, both the foraminiferal assemblages and the oxygen isotope results show that a trend from relatively high salinity to lower salinity conditions had begun already at about 4000 years. After c. 6000 years the fauna indicates a gradual change to shallower water and further reduction in salinity, the latter also being reflected by a general decrease in the oxygen isotope values. The marine deposition ended at c. 10 600 years after the beginning of the Eemian, i.e. within the topmost part of pollen zone E7. This was succeeded by a late Eemian and early Weichselian freshwater phase.  相似文献   

2.
The till-covered clay and silt deposits at Mertuanoja, Pohjanmaa (Ostrobothnia), western Finland, have been investigated in great detail. The Eemian interglacial environment is reconstructed here on the basis of pollen, diatom and dinoflagellate analyses. The pollen stratigraphy shows an interglacial vegetational succession reflecting stable climatic conditions typical of the Eemian Stage in the Pohjanmaa area. The initial Betula forests were followed by Pinus-Betula forests with Quercus. The next successional phase was dominated by Betula, Pinus and Alnus; temperate deciduous trees and Corylus also grew in the area. Later, Picea advanced and temperate deciduous trees declined. Some Corylus was, however, still present and thermophilous Osmunda thrived in wet places. The diatom record indicates that the sediments were deposited first in a freshwater basin, then in the Eemian Baltic Sea, and finally in a freshwater basin once more. The presence of dinoflagellates demonstrates that the Eemian Baltic Sea, when at its maximum extent, was connected to the Atlantic Ocean, which brought northern cool-temperate surface waters to Finland as far north as Mertuanoja. Mertuanoja is the first interglacial site at which numerous dinoflagellate cysts were encountered in Finnish Quaternary sediments.  相似文献   

3.
Past environmental changes in the Baltic area are discussed on the basis of foraminifera and ostracods as well as pollen and spores in marine sediments in cliff sections at Ristinge Klint, Langeland, southern Denmark. The sediment succession represents Jessen & Milthers' (1928) pollen zones d-g or Andersen's (1961, 1975) zones E2-E5, and a correlation with the annually laminated Bispingen sequence indicates that the sequence spans about 3400 years. Marine conditions seem to have occurred at c. 300-365 years after the beginning of the Eemian Interglacial, close to fully marine conditions developing by c. 2500 years. This early date of the marine ingression pre-dates that of most previous studies in the region by several hundred years, but it post-dates the initial marine ingression in the easternmost Baltic. A marked change in salinity at c. 650 years after the beginning of the Eemian was presumably caused by an opening of the Danish Belts. An indication of a major alteration in current activity is registered at c. 3000 years after the beginning of the interglacial. The recognition of the relative timing of these events may be significant for the understanding of the opening of connections between the North Sea, the Baltic and the White Sea.  相似文献   

4.
Past environmental changes in the Baltic area are discussed on the basis of pollen and spores recovered from marine sediments in a series of cliff sections at Mommark, in southern Denmark. The sediment succession represents Jessen & Milthers' (1928) Eemian pollen zones c-h, or Andersen's (1961 1975) zones E1/2-E7, as well as the earliest Weichselian pollen zone i, or EW-1, the Herning Stadial. A correlation with annually laminated German sequences (e.g. Bispingen) indicates that the sequence spans approximately 11 000 years. Marine deposition began c. 300 years after the beginning of the Eemian Interglacial Stage and continued to shortly before the end of pollen zone E7, at c. 10 600 years after the beginning of the Eemian. Sedimentation rates varied through the time period represented by the sequence, with initial deposition relatively rapid at c. 0.35 cm yr-1 for the first c. 300 years. Rates then decreased to 0.029 cm yr-1 for the next 2700 years and remained low, though varying, throughout the rest of the sequence. Overall, the rates indicate that sediment supply was highly restricted throughout the interglacial, possibly reflecting the dense forest vegetation that colonized the hinterland.  相似文献   

5.
Seventy-four meters of a 95-m-long drill core recovered from the Lappäjarvi crater, a meteoritic impact site in western Finland, consisted of Pleistocene sediments. These sediments refer to two events of glacial deposition (Saalian and Weichselian) interrupted by non-glacigenic freshwater sedimentation. The sediments contain abundant redeposited Holsteinian and Tertiary microfossils, and possibly represent a pre-Weichselian interstadial not described from elsewhere in Finland. The pollen flora indicates a mixed primary arctic to subarctic succession that followed deglaciation, i.e. the beginning of an interglacial or interstadial event. The secondary pollen component derives from an eroded interglacial deposit that can be interpreted as Holsteinian, or possibly Eemian, in age. The vegetation succession interpreted from the primary pollen flora reflects a transition from arctic conditions to subarctic birch forests. The diatom flora indicates a primary succession that can be observed clearly in the uppermost gyttja layer in which the rich alkaliphilous diatom flora refers to more or less eutrophic conditions. The diatom flora of sediments below the gyttja layer is composed of a primary component and a secondary, redeposited or relict component. The diatoms encountered are interglacial or Tertiary in origin. The results show that meteorite craters can provide long, representative stratigraphic sequences in glacially eroded Precambrian shield areas such as Finland.  相似文献   

6.
Robertsson, A.-M., Svedlund, J.-O., Andrén, T. & Sundh, M. 1997 (September): Pleistocene stratigraphy in the Dellen region, central Sweden. Boreas, Vol. 26, pp. 237–260. Oslo. ISSN 0300–9483. The Pleistocene stratigraphy in the Dellen region, central Sweden was studied using field observations made during mapping of Quaternary deposits and fabric analyses in excavated sections. The lithostratigraphy was also studied by seismic refraction measurements, analyses of grain-size distribution and organic carbon content. Biostratigraphical methods applied were pollen and diatom analyses. A general outline of the Pleistocene stratigraphy in the area is presented. Three different till beds are identified, the lowermost suggested to have been deposited during the Saalian glaciation and the other two during the Weichselian glaciation. According to the interpretation of the stratigraphy, it is questioned whether the first Weichselian ice sheet did in fact reach the Dellen area. A clayey sediment sequence at Norra Sannas accumulated during an interglacial, probably the Eemian. Most of the interglacial vegetation succession is reflected in the identified pollen flora. An initial phase with a light-demanding forest of Belula and Pinus was followed by immigration of Alnus, Picea and scattered occurrences of Corylus. A freshwater diatom flora was identified dominated by plankton taxa, e.g. Aulacoseira italica, A. distans and Cyclotella spp. In the lower part of the sequence a brackish-marine flora was registered, representing accumulation in a bay of the Eemian Sea. Fine-grained sediments at the Sundson and Vastansjd sites are interpreted as rebedded Eemian sediments according to the pollen flora. An (Early Weichselian) interstadial age is suggested for sediments found at Bjuraker. Dating by the 14C- and OSL methods was carried out on the interglacial and interstadial sediments, respectively. The ages range from approximately 19000 to 92000 BP. Correlation of interglacial vegetation history with central Finland and other areas is discussed.  相似文献   

7.
《Quaternary Science Reviews》2007,26(11-12):1557-1609
High-resolution diatom analysis was carried out to assess the limnological and climatic changes that took place at Ribains maar (French Massif Central) during the Late Pleistocene (∼131–∼105 ka BP), with a focus on the Eemian interglacial in particular. Numerical analyses were used to show that most of the variability in the fossil diatom assemblages was due to climate independently from the changes in the lake catchment vegetation (as represented by pollen data). Diatom-based quantitative reconstructions of the past limnological conditions, as well as a comprehensive literature review on the auto-ecological requirements for the principal diatom taxa, were used to interpret the record. An absolute time-scale for the sequence was derived by matching the major pollen shifts with the radiometrically dated changes in oxygen isotopes observed in Italian stalagmites. This study shows that at Ribains maar, the transition from the Riss (=Saalian) Glacial to the Eemian interglacial was marked by a gradual increase in the contribution of spring-blooming diatom species, indicating a longer growing season and milder winter/spring conditions at that time. A short cooling event interrupts this trend and may correspond to a stadial. At the start of the Eemian a peak in benthic taxa and the suppression of spring-blooming flora probably reflects the effects of deglaciation on the catchment. During the Eemian interglacial itself three main phases were distinguished within the diatom record. The first phase (∼8000 years in duration) was dominated by Stephanodiscus minutulus, which suggests that intense mixing in the water-column took place during spring. The pollen record was simultaneously dominated by Quercus and Corylus that typify this phase as the climatic optimum of the Eemian. The second phase, almost equal in duration to the first phase (∼7000 years), is generally dominated by Cyclotella taxa and suggests a less productive lake and much reduced period of spring mixing compared with the first phase. In the pollen diagram this corresponds to an interval dominated by Carpinus–Picea–Abies that indicates a cooler and wetter climate. The third and last phase of the Eemian, ∼2000 year long, saw the return to Stephanodiscus-dominated assemblages, indicating a warming that may correspond to the Dansgaard–Oeschger event 25 identified in the Greenland ice-core record. In the early stage of the Würm Glacial (=Weichselian), assemblages in the Melisey I stadial (∼3000 year long) were dominated by either Aulacoseira subarctica or Asterionella formosa, which suggest colder spring conditions than during the late Eemian, but not as cold as the ones indicated by the pollen record. Stephanodiscus spp. again dominate during the Saint-Germain Ia interstadial (∼5000 year long) suggesting a return to the conditions that prevailed before the Melisey stadial, in agreement with the pollen record. The record ends with the Montaigu cold event, which is characterised by a Pinus peak in the pollen record, and corresponds to a large abundance of A. subarctica in the diatom sequence. Throughout the Eemian the abundance of Stephanodiscus spp., which is thought to be driven by winter conditions, show cyclic fluctuations that most likely match the cooling events identified in a pollen record from Germany. Variation in insolation throughout the Eemian may have been the driving factor behind the species succession observed in the diatom sequence. While this study demonstrates that diatom analysis of lake sediment can provide very detailed information on long-term climate change, a review of the few other diatom investigations published on European Eemian deposits shows that this technique has been so far seldom used to its full potential in this context in central and southern Europe.  相似文献   

8.
A unique sequence of Late Saalian, Eemian and Early Weichselian strata is exposed in a coastal outcrop at Mommark in the western Baltic. The sedimentary facies and faunas reflect palaeoenvironmental changes from an initial freshwater lake followed by marine transgression and interglacial deposition in a palaeo-Baltic sea. The upper part of the Eemian marine record indicates regression followed by lacustrine sedimentation and deposition of Early Weichselian aeolian sediments, which are truncated by an erosional unconformity overlain by a till bed. The lower and middle parts of the sequence have previously been correlated with the European glacial-interglacial stratigraphy on the basis of pollen analysis, while the upper part has been dated for the present study using optically stimulated luminescence (OSL) of samples from the aeolian and glacial deposits. A similar complete glacial-interglacial-glacial succession has not previously been recorded from this area. The Mommark sequence of conformable strata has been subjected to lateral compression, evidenced by folding and low-angle reverse faults. Seismic records from the adjacent waters in the western Baltic reveal a system of buried Quaternary valleys in the area. It is suggested that the interglacial deposition took place in a basin within one of these valleys and that a slab constituting the Mommark sequence, originating from the margin of a valley, has been glaciotectonically displaced northwestwards to the present location.  相似文献   

9.
Here we present a multi‐proxy investigation of the Klein Klütz Höved (KKH) coastal cliff section in northeastern Germany, involving lithofacies analysis, micromorphology, micropalaeontology, palynology and luminescence dating of quartz and feldspar. We subdivide the local stratigraphy into three depositional phases. (i) Following a Saalian advance (MIS 6) of the Scandinavian Ice Sheet, the penultimate deglaciation (Termination II) at the site occurred between c. 139 and 134 ka, leading to the establishment of a braided river system and lacustrine basins under arctic‐subarctic climate conditions. (ii) In the initial phase of the Eemian interglacial lacustrine deposits were formed, containing warm‐water ostracods and a pollen spectrum indicating gradual expansion of woodlands eventually containing thermophile deciduous forest elements. A correlation of the local pollen assemblages with Eemian reference records from central Europe suggests that fewer than 750 years of the last interglacial period are preserved at KKH. The occurrence of brackish ostracods dates the onset of the Eemian marine transgression at the section at c. 300–750 years after the beginning of the last interglacial period. (iii) Directly above the Eemian record a ~10‐m‐thick sedimentary succession of MIS 2 age was deposited, implying a significant hiatus of c. 90 ka encompassing the time from middle and upper MIS 5e to late MIS 3. During the Late Weichselian, KKH featured a depositional shift from (glacio‐)lacustrine to subglacial to recessional terminoglacial facies, with the first documented Weichselian ice advance post‐dating 20±2 ka. Overall, the KKH section represents an exceptional sedimentary archive for palaeoenvironmental reconstructions, covering the period from the Saalian glaciation and subsequent Termination II to the early Eemian and Late Weichselian. The results refine the existing palaeogeographical and geochronological models of the late Quaternary history in the southwestern Baltic Sea area and allow correlations with other reference records in a wider area.  相似文献   

10.
Several till-covered organic deposits, principally lake gyttja, in Finnish Lapland have been correlated with the last (i.e. Eemian) interglacial on the basis of their lithostratigraphic position and pollen stratigraphy. Most of the sequences are short, but together with three longer sequences from Finnish Lapland and one from Swedish Lapland (Leveäniemi) they provide a complete picture of Eemian vegetational and climatic development. The Tepsankumpu site was revisited, and the till-covered thick freshwater gyttja deposit was studied in detail for pollen in order to search for signals of rapid climatic fluctuations postulated for the earlier part of the Eemian on the basis of Greenland ice core studies. The Eemian pollen stratigraphy in Finnish Lapland closely resembles the Holocene pollen stratigraphy of the area. The abundance of spruce and alder pollen suggests, however, more northerly limits for forest vegetation zones during the Eemian than during the Holocene. Oak also grew closer to Lapland, indicating a wanner climate than during the Holocene climatic optimum. The Tepsankumpu pollen stratigraphy indicates climatic stability over the entire time-span it covers, i.e. the major part of the interglacial. This finding is in conflict with results from Greenland GRIP ice core studies and interpretations of some Continental European Eemian pollen diagrams.  相似文献   

11.
Knudsen, K. L., Jiang, H., Kristensen, P., Gibbard, P. L. & Haila, H. 2011: Early Last Interglacial palaeoenvironments in the western Baltic Sea: benthic foraminiferal stable isotopes and diatom‐based sea‐surface salinity. Boreas, 10.1111/j.1502‐3885.2011.00206.x. ISSN 0300‐9483. Stable isotopes from benthic foraminifera, combined with diatom assemblage analysis and diatom‐based sea‐surface salinity reconstructions, are used for the interpretation of changes in bottom‐ and surface‐water conditions through the early Eemian at Ristinge Klint in the western Baltic Sea. Correlation of the sediments with the Eemian Stage is based on a previously published pollen analysis that indicates that they represent pollen zones E2–E5 and span ~3400 years. An initial brackish‐water phase, initiated c. 300 years after the beginning of the interglacial, is characterized by a rapid increase in sea‐surface and sea‐bottom salinity, followed by a major increase at c. 650 years, which is related to the opening of the Danish Straits to the western Baltic. The diatoms allow estimation of the maximum sea‐surface salinity in the time interval of c. 650–1250 years. After that, slightly reduced salinity is estimated for the interval of c. 1250–2600 years (with minimum values at c. 1600–2200 years). This may be related to a period of high precipitation/humidity and thus increased freshwater run‐off from land. Together with a continuous increase in the water depth, this may have contributed to the gradual development of a stratified water column after c. 1600 years. The stratification was, however, particularly pronounced between c. 2600 and 3400 years, a period with particularly high sea‐surface temperature, as well as bottom‐water salinity, and thus a maximum influence of Atlantic water masses. The freshwater run‐off from land may have been reduced as a result of particularly high summer temperatures during the climatic optimum.  相似文献   

12.
A complete interglacial cycle, named the Fjøsangerian and correlated with the Eemian by means of its pollen stratigraphy, is found in marine sediments just above the present day sea level outside Bergen, western Norway. At the base of the section there are two basal tills of assumed Saalian ( sensu lato ) age in which the mineralogy and geochemistry indicate local provenance. Above occur beds of marine silt, sand and gravel, deposited at water depths of between 10 and 50 m. The terrestrial pollen and the marine foraminifera and molluscs indicate a cold-warm-cold sequence with parallel development of the atmospheric and sea surface temperatures. In both environments the flora/fauna indicate an interglacial climatic optimum at least as warm as that during the Holocene. The high relative sea level during the Eemian (at least 30 m above sea level) requires younger neotectonic uplift. The uppermost marine beds are partly glaciomarine silts, as indicated by their mineralogy, drop stones and fauna, and partly interstadial gravels. The pollen indicates an open vegetation throughout these upper beds, and the correlation of the described interstadial with Early Weichselian interstadials elsewhere is essentially unknown. The section is capped by an Early Weichselian basal till containing redeposited fossils, sediments, and weathering products. Several clastic dikes injected from the glacier sole penetrate the till and the interglacial sediments. Radiocarbon dates on wood and shells gave infinite ages. Amino acid epimerization ratios in molluscs support the inferred Eemian age of the deposit. The Fjøsangerian is correlated with the Eemian and deep sea oxygen isotope stage 5e; other possible correlations are also discussed.  相似文献   

13.
Palaeoenvironmental records from permafrost sequences complemented by infrared stimulated luminescence (IRSL) and [Formula: See Text]Th/U dates from Bol'shoy Lyakhovsky Island (73°20'N, 141°30'E) document the environmental history in the region for at least the past 200 ka. Pollen spectra and insect fauna indicate that relatively wet grass-sedge tundra habitats dominated during an interstadial c. 200-170 ka BP. Summers were rather warm and wet, while stable isotopes reflect severe winter conditions. The pollen spectra reflect sparser grass-sedge vegetation during a Taz (Late Saalian) stage, c. 170-130 ka BP, with environmental conditions much more severe compared with the previous interstadial. Open Poaceae and Artemisia plant associations dominated vegetation at the beginning of the Kazantsevo (Eemian) c. 130 ka BP. Some shrubs (Alnus fruticosa, Salix, Betula nana) grew in more protected and wetter places as well. The climate was relatively warm during this time, resulting in the melting of Saalian ice wedges. Later, during the interglacial optimum, shrub tundra with Alnus fruticosa and Betula nana s.l. dominated vegetation. Climate was relatively wet and warm. Quantitative pollen-based climate reconstruction suggests that mean July temperatures were 4-5°C higher than the present during the optimum of the Eemian, while late Eemian records indicate significant climate deterioration.  相似文献   

14.
The occurrence of pollen and macrofossils of larch in Eemian deposits in northern Finland indicates that this species must have grown in the area during the last interglacial. Lark spread to Finland from the east, its date of arrival being deducible from the general vegetational succession. It probably did not grow in central or southern Finland during the interglacial, but is thought to have extended fairly far south in Sweden and Noway along the Fennoscandian mountain range. The Lark pollen found at the upper boundary of the interglacial deposits at Margreteberg and Stenberget in southern Sweden may suggest that it did reach southern Sweden by the very end of the Eemian, but it cannot be said for certain whethcr this pollen represents an influx of Larix from the north or from Central Europe.  相似文献   

15.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

16.
A Late Weichselian sediment succession from the Kullen Peninsula, southern Sweden, was studied by means of stable carbon and oxygen isotope analyses of calcitic valves of selected ostracod taxa. The lower part of the record was deposited in a slightly brackish marginal sea close to the receding inland ice, whereas the upper part is lacustrine in origin as a result of glacio-isostatic rebound. The site was deglaciated at c. 17 200 cal BP (c. 14 500 14C BP) within the earliest ice-free area of Sweden, and the isolation took place c. 1100 cal years later. As a result of extensive input of glacial meltwater to the near-shore, shallow basin, the isotopic records predating the isolation give no clear indications of marine conditions. However, the isolation of the lake from the marginal sea is reflected by a distinct depletion of 18O in ostracod calcite as a response to the changing isotope hydrology of the basin. The change towards a lacustrine environment also fostered a decrease in the input of minerogenic material and a related increase in organic carbon content of the sediments, which may explain a short-lasting depletion of 13C in dissolved inorganic carbon and ostracod calcite. During the period of c. 14 700-13 900 cal BP a pronounced warming occurred associated with the onset of the Late Weichselian interstadial complex (Greenland Interstadial 1). Based on a distinct enrichment of 18O in ostracod calcite and applying modern spatial relations between δ18O of precipitation and temperature, this climatic shift involved an increase in mean annual air temperature in southernmost Sweden of at least 7°C.  相似文献   

17.
A Late Pleistocene sequence at Margreteberg, southwestern Sweden   总被引:1,自引:0,他引:1  
At Margreteberg, southwestern Sweden, a comple Pleistocene sequence has been stratigraphically investigated. Strata of clay, silt, sand, peat and solifluction layers are overlain by till-like sediments which are covered by sandy-clayey strata. By means of biostratigraphical analyses (foraminifera, olluscs, wood remains, pollen and diatoms), a reconstruction of the palaeoenvirnmental development has been obtained. Radiocarbon measurements and amiono acis ratios have been carried out in order to date the sediments. The foraminifera in the lowermost clay strata indicate Arctic or boreal-Arctic marine environment during the Late Saalian or Late Elsterian perods The δ18 Ovalues and molluscs also suggest that the clay was deposited in glaciomarine conditions. Amino acid ratios (D/L=0.25) of Hiatella in the clay imply an age between the Holsteinian and Eemian Interglacials. Teh peat layers contain a pollen flora. Prtedominated by Picea and Pinus, and are pollen analytically dated to the end of the Eemian interglacial. The solofluction sediments most probably were fromed during the first stage (s) of the Early weichselian and may include the initaial phase of the Brorup Interstadial (the Rodebaek interstadial). During this stage(s) aretic-Subarctic conditions previaled reflected by a pollen flora with a predominance of herbs and shrubs. Acidophilous and aerohpilous diatoms indicate oligotrophic shallow wate conditions in an Arctic environment, when almost no leaching of mineral solis occurred. The solofluction sediments also contain reworked interglacial (Eemian) pollen and brackish-Marine diatoms. Radiocarbon dating of the peat, wood and solofluction sediments yieded infinnite ages>40,000B.P.  相似文献   

18.
The bio- and chronostratigraphy of the Eemian interglacial (marine isotope substage 5e) and an Early Weichselian glaciation (5d-a) established from representative and detailed sequences can be correlated with the deep-sea oxygen isotope stratigraphy, ice-core data, sea-level fluctuations and coupled ice sheet-climate models. Biostratigraphic sequences from Fennoscandian key sections are correlated with reference sequences from Estonia and from sections located near or beyond the margins of the last glaciation. Organic sediments previously attributed to Early and Middle Weichselian interstadial periods in Finland are argued to be redeposited and mixed older (last interglacial) material. Pollen and diatom spectra of the undisturbed materials suggest that the Eemian climatic optimum was followed by a continuously cooling climate and a regressive marine level. If only undisturbed sequences are considered, the major climatic fluctuations of the Early Weichselian, apparent in Central and Western Europe, are not apparent in the sequences from the central part of the glaciated terrain. Instead, some sequences are truncated by sediments indicating approaching ice sheets soon after the interglacial. This may imply that the ice sheet grew over Finland during the first Early Weichselian stadial. The preservation of the interglacial beds and the lack of younger non-glacial sediments support the interpretation that the area remained ice-covered until the final deglaciation. During the Early Weichselian, the Norwegian coast was probably occasionally ice free, similar to the coastal zone of Greenland today. The authors' interpretation of the Fennoscandian organic deposits of the last glaciation may also explain similar observations from the central parts of the Laurentide ice sheet.  相似文献   

19.
Results are presented from a multidisciplinary study of fossiliferous interglacial deposits on the northern side of the Thames estuary. These fill a channel cut into London Clay bedrock and overlain by the Barling Gravel, a Thames–Medway deposit equivalent to the Lynch Hill and Corbets Tey Gravels of the Middle and Lower Thames, respectively. The channel sediments yielded diverse molluscan and ostracod assemblages, both implying fully interglacial conditions and a slight brackish influence. Pollen analysis has shown that the deposits accumulated during the early part of an interglacial. Plant macrofossils, particularly the abundance of Trapa natans, reinforce the interglacial character of the palaeontological evidence. A beetle fauna, which includes four taxa unknown in Britain at present, has allowed quantification of palaeotemperature using the mutual climatic range method (Tmax 17 to 26 °C; Tmin ?11 to 13 °C). A few vertebrate remains have been recovered from the interglacial deposits, but a much larger fauna, as well as Palaeolithic artefacts, is known from the overlying Barling Gravel. The age of the interglacial deposits is inferential. The geological context suggests a late Middle Pleistocene interglacial, part of the post‐diversion Thames system and therefore clearly post‐Anglian. This conclusion is supported by amino acid ratios from the shells of freshwater molluscs. The correlation of the overlying Barling Gravel with the Lynch Hill/Corbets Tey aggradation of the Thames valley constrains the age of the Barling interglacial to marine oxygen isotope stages 11 or 9. The presence of Corbicula fluminalis and Pisidium clessini confirms a pre‐Ipswichian (marine oxygen isotope substage 5e) age and their occurrence in the early part of the interglacial cycle at Barling precludes correlation with marine oxygen isotope stage 11, as these taxa occur only later in that interglacial at sites such as Swanscombe and Clacton. Thus by process of elimination a marine oxygen isotope stage 9 age would appear probable. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Marine ash zones from the last interglacial period have been described from cores from the North Atlantic and an ash zone from the middle part of the interglacial has been observed in connection with a major cooling event. Here we present evidence for a coeval ash zone in a terrestrial site on the Faroe Islands. The investigated sediments are correlated with the upper part of oxygen isotope stage 5e and the beginning of stage 5d. The Eemian climatic optimum is represented in the lower part of the sequence close to the first occurrence of the ash zone. A tephra-based correlation suggests that the climatic optimum was synchronous with the marine record from the Norwegian Sea, but several thousand years later than in Eemian sections of west central Europe. However, many questions on the chronological relationship between the Eemian and oxygen isotope stage 5e still remain to be answered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号