首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
An analysis of the bandlike Jovian decametric emission is presented. A model for the active region that accounts for the observed radiation characteristics is described using the measured parameters of the bandlike emission and a model of the Jovian magnetic field. The active region is characterized not only by the fact that an upward-flowing electron stream is caused to radiate in this region, but the stream itself is broken into radiating electron bunches within the active region. Observed undulations of the emission band on the time-frequency plane are interpreted as motions of the active region along a flux tube. The instantaneous location of the active region along the flux tube shows a dependence on the density of the stream entering the active region. The mechanism responsible for density modulation of the stream appears to be common to both the bandlike and simple-S-burst emission types.  相似文献   

2.
The spatial fine structure of the solar corona as observed in the EUV line Fexv is compared with the occurrence of major type I metric noise storms. In all cases, strong changes in the loop structure of the corona are observed. On the disk, these coronal changes are correlated to the emergence of new magnetic flux in the vicinity of existing large active regions. The reverse is demonstrated: during noise storm free periods no coronal changes can be observed. Noise storms at the limb seem to originate in open field configurations over active regions. In all cases, reconnection of coronal magnetic fields over large distances are the cause of noise storms rather than changes of magnetic fields within an active region. Noise storms disappear or are weak at the limb because of foreground absorption in chains of active regions. The observed intensities of active region loops at the limb show that a density of 1.3 × 109 cm?3 which corresponds to a plasma frequency of 100 MHz can occur over a wide variety of altitudes because active region loops are not in hydrostatic equilibrium.  相似文献   

3.
The characteristics of the basic framework of structure and development of solar active regions are interpreted as good indicators of the magnetohydrodynamical structure of the convection zone, the magnetic field lines of which are twisted and are made wave-like by the action of the very large scale non-axisymmetric convection, called here the global convection. The characteristics discussed in this paper are: (i) the preponderance of preceding spots of bipolar sunspot groups in strength and life time relative to the following spots of the groups, (ii) the tilt of bipolar axes of the sunspot groups to the local parallels of latitude, (iii) the forward inclination of normal axes of sunspots inferred from the east-west asymmetry of the appearance and total area of sunspots, (iv) the faster rotation of sunspots than the averaged fluid rotation, and (v) the association of the characteristics of an active region with the presence of an older active region in its vicinity and with the relative disposition of the two active regions.  相似文献   

4.
We assume that the physical conditions above an active solar region vary continuously from the centers of sunspots to the adjacent quiet region and try to take into account the influence of the magnetic field. Thus we calculate the three-dimensional distribution of the electron temperature and density based on the radio spectrum of active region No. 75 obtained from the solar eclipse observation of 16 February, 1980. If we assume a potential field, we calculated the magnetic field above the active region in terms of the solar photospheric magnetic field.Using the electron temperature, density, and the magnetic field as described above, and assuming the slowly varying radiation mechanism to consist of bremsstrahlung and gyro-resonance radiation, we obtained the flux density spectrum and the brightness temperature spectrum. The calculated results are essentially consistent with the observations.  相似文献   

5.
Based on the observational data of sunspots, the relation between the amplitude of solar cycle and the total area of all active regions occurred in a solar cycle has been investigated. The result shows that the amplitude of solar cycle has a good correlation with the total area of all active regions occurred in the solar cycle. The relation between the amplitude of solar cycle and the area of the largest active region during a solar cycle has also been investigated. The result shows that the amplitude of solar cycle has a poor correlation with the area of the largest active region during a solar cycle, and there is no fixed relation between the peak time of a solar cycle and the time when the largest active region occurred in the solar cycle.  相似文献   

6.
The electric current exists because of the non-potential magnetic field in solar active regions. We present the evolution of net current in the solar active region NOAA 10930 as the sum of shear current and twist current by using 27 high-resolution vector magnetograms obtained with Hinode/SOT-SP during 9?–?15 December 2006. This active region was highly eruptive and produced a large number of flares ranging from B to X class. We derived local distribution of shear and twist current densities in this active region and studied the evolution of net shear current (NSC) and net twist current (NTC) in the N-polarity and S-polarity regions separately. We found the following: i) The twist current density was dominant in the umbrae. ii) The footpoint of the emerging flux rope showed a dominant twist current. iii) The shear current density and twist current density appeared in alternate bands around the umbrae. iv) On the scale of the active region, NTC was always larger than NSC. v) Both NTC and NSC decreased after the onset of an X3.4 class flare that occurred on 13 December 2006.  相似文献   

7.
Ermakova  L.V. 《Solar physics》2000,191(1):161-169
In this paper the magnetic flux distribution of bipolar active regions at the sunspot development stage is analyzed. It is shown that the ratio of the total sunspot area in an active region to the maximum one can be used as a characteristic of the development phase. Such a procedure allows combining the data attributed to different active regions for studying evolutionary changes. The expressions describing the evolution of magnetic flux distribution of bipolar active region were obtained and their interpretation with rise and descent of loop like magnetic flux tube leading to active region formation was justified.  相似文献   

8.
Observational data and theoretical arguments suggest that the heating source for an active region is the quasi-steady dissipation of magnetic field in current sheets. Effects in the solar atmosphere which are due to the presence of current sheets are considered. The most important of them is the heating of the chromosphere by the strong ultraviolet radiation of the current sheet. This can give rise to the brightening of an active region in optical emission. The energy flux from the current sheet in different ranges of the ultraviolet spectrum and the depths (column densities) into the chromosphere where this energy is absorbed are estimated.  相似文献   

9.
The evolution of the photospheric magnetic field during the declining phase and minimum of cycle 23 and the recent rise of cycle 24 are compared with the behavior during previous cycles. We used longitudinal full-disk magnetograms from the NSO??s three magnetographs at Kitt Peak, the Synoptic Optical Long-term Investigations of the Sun (SOLIS) vector spectro-magnetograph (VSM), the spectro-magnetograph and the 512-channel magnetograph instruments, and longitudinal full-disk magnetograms from the Mt. Wilson 150-foot tower. We analyzed 37 years of observations from these two observatories that have been observing daily, weather permitting, since 1974, offering an opportunity to study the evolving relationship between the active region and polar fields in some detail over several solar cycles. It is found that the annual averages of a proxy for the active region poloidal magnetic field strength, the magnetic field strength of the high-latitude poleward streams, and the time derivative of the polar field strength are all well correlated in each hemisphere. The active region net poloidal fields effectively disappeared in both hemispheres around 2004 and the polar fields have not become significantly stronger since this time. These results are based on statistically significant cyclical patterns in the active region fields and are consistent with the Babcock?CLeighton phenomenological model for the solar activity cycle. There was more hemispheric asymmetry in the total and maximum active region flux during late cycle 23 (after around 2004), when the southern hemisphere was more active, and the rise of cycle?24, when the northern hemisphere was more active, than at any other time since 1974. We see evidence that the process of cycle 24 field reversal has begun at both poles.  相似文献   

10.
Multiple wavelength observations of sunspot umbrae can only be expalined by an inhomogeneous, two-component model for the structure of the umbral transition region and lower corona. The ‘Wroclaw-Ondrejov sunspot model’ was a first step in this direction. This working model has now been improved using analytic expressions for the atmospheric structure in each component and fitting the free parameters to recent sunspot observations, particularly in EUV lines. The main component has a shallow transition region and a deep-set corona. The second, ‘active’ component has a vast transition region in relatively cool fine structure elements embedded in the coronal main component. The spatial filling factor of this active component amounts to 5–10% in sunspots with bright EUV plumes, but is is more than ten times smaller in sunspot without such plumes. Observations with high spatial and temporal resolutions are necessary to understand in more detail the basic physical processes.  相似文献   

11.
Numerical three-dimensional MHD simulations demonstrated that a current sheet (CS) was formed over active region AR 0365 before the flare of May 27, 2003, and the energy was accumulated in its magnetic field. Maps of the photospheric magnetic field in its preflare state were used in the simulations to define the boundary conditions instead of the usually applied approximation of the field in an active region by dipoles or magnetic charges. The CS was formed in the vicinity of a singular line as a result of focusing the magnetic field disturbances observed before the flare. The calculated CS position corresponded to the maximum brightness temperature of the flare detected by the Siberian Solar Radio Telescope SSRT (Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Siberian Branch, Irkutsk). This testifies that the flare could result from the dissipation of energy accumulated in the field of the CS, which arose over the active region.  相似文献   

12.
Thermal bremsstrahlung from the X-ray observed plasma accounts for most of the observed 9.1 cm emission from McMath 12336, an old, spotless active region, on June 2, 1973. This implies that only a small fraction of the emission measure within the active region is in the range around 106 K and below.  相似文献   

13.
Relationship between the geoefficiency of the solar flares as well as of the active regions passing the central meridian of the Sun and the configuration of the large scale solar magnetic field is studied.It is shown that if the tangential component of the large scale magnetic field at the active region or at the flare region is directed southwards, that region and that flare produce geomagnetic storm. In case when the tangential magnetic field is directed northward, the active region and the flares occurring at that region do not cause any geomagnetic disturbance.An index of the geoefficiency of the solar flares and of the active regions is proposed.  相似文献   

14.
The use of rotating modulation collimators in high resolution solar X-ray spectroscopy is discussed with reference to the recent flight of a sounding rocket payload. This rocket carried an experiment which combined a modulation collimator and a Bragg crystal spectrometer to make moderately high resolution spectral and spatial measurements simultaneously. The response of the instrument to extended sources is described. It is shown that the technique is particularly suited to long term observations of active region emission, but that useful measurements can be made even during a short rocket flight.Our observations were made in 1972 October 26 between 0432 UT and 0436 UT. During the flight a scan of the solar X-ray spectrum was made which covered the wavelength range 1.45–1.71 nm. A small flare commenced at about 0432 UT in McMath calcium plage region 12094; the emission from this provided the major contribution to the observed spectrum. X-ray emission from a group of active regions in the SW and the small McMath region 12090 has also been detected.Spectral and spatial observations have been combined to investigate the conditions in both active region and flare plasmas.  相似文献   

15.
With the SDO/AIA instrument, continuous and intermittent plasma outflows are observed on the boundaries of an active region along two distinct open coronal loops. By investigating the temporal sequence magnetograms obtained from HMI/SDO, it is found that a small-scale magnetic reconnection probably plays an important role in the generation of the plasma outflows in the coronal loops. It is found that the origin of the plasma outflows coincides with the locations of the small-scale magnetic fields with mixed polarities, which suggests that the plasma outflows along coronal loops probably results from the magnetic reconnection between the small-scale closed emerging loops and the large-scale open active region coronal loops.  相似文献   

16.
The role of the electric currents distributed over the volume of an active region on the Sun is considered from the standpoint of solar flare physics. We suggest including the electric currents in a topological model of the magnetic field in an active region. Typical values of the mutual inductance and the interaction energy of the coronal electric currents flowing along magnetic loops have been estimated for the M7/1N flare on April 27, 2006. We show that if these currents actually make a significant contribution to the flare energetics, then they must manifest themselves in the photosphericmagnetic fields. Depending on their orientation, the distributed currents can both help and hinder reconnection in the current layer at the separator during the flare. Asymmetric reconnection of the currents is accompanied by their interruption and an inductive change in energy. The reconnection of currents in flares differs significantly from the ordinary coalescence instability of magnetic islands in current layers. Highly accurate measurements of the magnetic fields in active regions are needed for a quantitative analysis of the role of distributed currents in solar flares.  相似文献   

17.
Flows in the photosphere of solar active regions are turbulent in nature. Because magnetic fields are frozen into the plasma on the solar surface, magnetograms can be used to investigate the processes responsible for structuring active regions. Here, a continuous wavelet technique is developed, analyzed, and used to investigate the multiscale structure of an evolving active region using magnetograms obtained by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). The multiscale structure was measured using a 2D continuous wavelet technique to extract the energy spectrum of the region over the time scale of 13 days. Preliminary evidence of an inverse cascade in active region NOAA 10488 is presented as well as a potential relationship between energy scaling and flare productivity.  相似文献   

18.
本文按常α无力场模型计算了1980年10月23日Boulder 2744活动区前导黑子的纵向磁场随高度的变化,并与用CIV 1548谱线观测得到的色球一日冕过渡区的磁场资料相结合,求得CIV 1548发射区的有效高度。这些结果与文献[4]中对同一黑子用势场模型推求的结果有很大差别。从而表明,势场和无力场在某些方面导致的结果是极不相同的。鉴于观测已表明活动区上空存在电流的事实,在活动区磁场的模拟中,特别是在强扭曲活动区磁场的计算中,应当避免采用势场,而尽可能采用无力场模型。  相似文献   

19.
A continuous relationship is proposed between the basic elements of the dark fine structure of the quiet and active chromosphere. A progression from chromospheric bushes to fibrils, then to chromospheric threads and active region filaments, and finally to diffuse quiescent filaments, is described. It is shown that the horizontal component of the field on opposite sides of an active region quiescent filament can be in the same direction and closely parallel to the filament axis. Consequently, it is unnecessary to postulate twisted or otherwise complex field configurations to reconcile the support mechanism of filaments with the observed motion along their axis.  相似文献   

20.
In this paper, we reconstruct the finite energy force-free magnetic field of the active region NOAA 8100 on 4 November 1997 above the photosphere. In particular, the 3-D magnetic field structures before and after a 2B/X2 flare at 05:58 UT in this region are analyzed. The magnetic field lines were extrapolated in close coincidence with the Yohkoh soft X-ray (SXR) loops accordingly. It is found that the active region is composed of an emerging flux loop, a complex loop system with differential magnetic field shear, and large-scale, or open field lines. Similar magnetic connectivity has been obtained for both instants but apparent changes of the twisting situations of the calculated magnetic field lines can be observed that properly align with the corresponding SXR coronal loops. We conclude that this flare was triggered by the interaction of an emerging flux loop and a large loop system with differential magnetic field shear, as well as large-scale, or open field lines. The onset of the flare was at the common footpoints of several interacting magnetic loops and confined near the footpoints of the emerging flux loop. The sheared configuration remained even after the energetic flare, as demonstrated by calculated values of the twist for the loop system, which means that the active region was relaxed to a lower energy state but not completely to the minimum energy state (two days later another X-class flare occurred in this region).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号