首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Garnet-facies continental mantle is poorly understood because the vast majority of mantle xenoliths in continental basalts are spinel peridotite. Peridotite xenoliths from Vitim (southern Siberia) and Mongolia provide some of the best samples of garnet and garnet-spinel facies off-craton lithospheric mantle. Garnets in those fertile to moderately depleted lherzolites show a surprisingly broad range of HREE abundances, which poorly correlate with modal and major oxide compositions. Some garnets are zoned and have Lu-rich cores. We argue that these features indicate HREE redistribution after the partial melting, possibly related to spinel-garnet phase transition on isobaric cooling. Most peridotites from Vitim have depleted to ultra-depleted Hf isotope compositions (calculated from mineral analyses: εHf(0) = +17 to +45). HREE-rich garnets have the most radiogenic εHf values and plot above the mantle Hf-Nd isotope array while xenoliths with normal HREE abundances usually fall within or near the depleted end of the MORB field. Model Hf isotope ages for the normal peridotites indicate an origin by ancient partial melt extraction from primitive mantle, most likely in the Proterozoic. By contrast, an HREE-rich peridotite yields a Phanerozoic model age, possibly reflecting overprinting of the ancient partial melting record with that related to a recent enrichment in Lu. Clinopyroxene-garnet Lu-Hf isochron ages (31-84 Ma) are higher than the likely eruption age of the host volcanic rocks (∼16 Ma). Garnet-controlled HREE migration during spinel-garnet and garnet-spinel phase transitions may be one explanation for extremely radiogenic 176Hf/177Hf reported for some mantle peridotites; it may also contribute to Hf isotope variations in sub-lithospheric source regions of mantle-derived magmas.  相似文献   

2.
The role of residual garnet during melting beneath mid-oceanridges has been the subject of many recent investigations. Toaddress this issue from the perspective of melting residues,we obtained major and trace element mineral chemistry of residualabyssal peridotites from the Central Indian Ridge. Many clinopyroxeneshave ratios of middle to heavy rare earth elements (MREE/HREE)that are too low to be explained by melting in the stabilityfield of spinel peridotite alone. Several percent of meltingmust have occurred at higher pressures in the garnet peridotitestability field. Application of new trace element partitioningmodels, which predict that HREE are compatible in high-pressureclinopyroxene, cannot fully explain the fractionation of theMREE from the HREE. Further, many samples show textural andchemical evidence for refertilization, such as relative enrichmentsof highly incompatible trace elements with respect to moderatelyincompatible trace elements. Therefore, highly incompatibleelements, which are decoupled from major and moderately incompatibletrace elements, are useful to assess late-stage processes, suchas melt entrapment, melt–rock reaction and veining. Moderatelyincompatible trace elements are less affected by such late-stageprocesses and thus useful to infer the melting history of abyssalperidotites. KEY WORDS: abyssal peridotites; mantle melting; garnet  相似文献   

3.
The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle   总被引:5,自引:0,他引:5  
A detailed petrological and geochemical study of low-temperatureperidotite xenoliths from Kimberley and northern Lesotho ispresented to constrain the processes that led to the magmaphileelement depletion of the Kaapvaal cratonic lithospheric mantleand its subsequent re-enrichment in Si and incompatible traceelements. Whole-rocks and minerals have been characterized forRe–Os isotope compositions, and major and trace elementconcentrations, and garnet and clinopyroxene for Lu–Hfand Sm–Nd isotope compositions. Most samples are characterizedby Archaean Os model ages, low Al, Fe and Ca contents, highMg/Fe, low Re/Os, very low (< 0·1 x chondrite) heavyrare earth element (HREE) concentrations and a decoupling betweenNd and Hf isotope ratios. These features are most consistentwith initial melting at 3·2 Ga followed by metasomatismby hydrous fluids, which may have also caused additional meltingto produce a harzburgitic residue. The low HREE abundances ofthe peridotites require that extensive melting occurred in thespinel stability field, possibly preceded by some melting inthe presence of garnet. Fractional melting models suggest that30% melting in the spinel field or 20% melting in the garnetfield followed by 20% spinel-facies melting are required toexplain the most melt-depleted samples. Garnet Nd–Hf isotopecharacteristics indicate metasomatic trace element enrichmentduring the Archaean. We therefore suggest a model includingshallow ridge melting, followed by metasomatism of the Kaapvaalupper mantle in subduction zones surrounding cratonic nuclei,probably during amalgamation of smaller pre-existing terranesin the Late Archaean (2·9 Ga). The fluid-metasomatizedresidua have subsequently undergone localized silicate meltinfiltration that led to clinopyroxene ± garnet enrichment.Calculated equilibrium liquids for clinopyroxene and their Hf–Ndisotope compositions suggest that most diopside in the xenolithscrystallized from an infiltrating kimberlite-like melt, eitherduring Group II kimberlite magmatism at 200–110 Ma (Kimberley),or shortly prior to eruption of the host kimberlite around 90Ma (northern Lesotho). KEY WORDS: Kaapvaal craton; lithospheric mantle; metasomatism; Nd–Hf isotopes; Re–Os isotopes  相似文献   

4.
Peridotites that sample Archean mantle roots are frequentlyincompatible trace element enriched despite their refractorymajor element compositions. To constrain the trace element budgetof the lithosphere beneath the Canadian craton, trace elementand rare earth element (REE) abundances were determined fora suite of garnet peridotites and garnet pyroxenites from theNikos kimberlite pipe on Somerset Island, Canadian Arctic, theirconstituent garnet and clinopyroxene, and the host kimberlite.These refractory mantle xenoliths are depleted in fusible majorelements, but enriched in incompatible trace elements, suchas large ion lithophile elements (LILE), Th, U and light rareearth elements (LREE). Mass balance calculations based on modalabundances of clinopyroxene and garnet and their respectiveREE contents yield discrepancies between calculated and analyzedREE contents for the Nikos bulk rocks that amount to LREE deficienciesof 70–99%, suggesting the presence of small amounts ofinterstitial kimberlite liquid (0·4–2 wt %) toaccount for the excess LREE abundances. These results indicatethat the peridotites had in fact depleted or flat LREE patternsbefore contamination by their host kimberlite. LREE and Sr enrichmentin clinopyroxene and low Zr and Sr abundances in garnet in low-temperatureperidotites (800–1100°C) compared with high-temperatureperidotites (1200–1400°C) suggest that the shallowlithosphere is geochemically distinct from the deep lithospherebeneath the northern margin of the Canadian craton. The Somersetmantle root appears to be characterized by a depth zonationthat may date from the time of its stabilization in the Archean. KEY WORDS: Canada; mantle; metasomatism; peridotite; trace elements  相似文献   

5.
 Geochemical data have been interpreted as requiring that a significant fraction of the melting in MORB source regions takes place in the garnet peridotite field, an inference that places the onset of melting at ≥80 km. However, if melting begins at such great depths, most models for melting of the suboceanic mantle predict substantially more melting than that required to produce the 7±1 km thickness of crust at normal ridges. One possible resolution of this conflict is that MORBs are produced by melting of mixed garnet pyroxenite/spinel peridotite sources and that some or all of the “garnet signature” in MORB is contributed by partial melting of garnet pyroxenite layers or veins, rather than from partial melting of garnet peridotite. Pyroxenite layers or veins in peridotite will contribute disproportionately to melt production relative to their abundance, because partial melts of pyroxenite will be extracted from a larger part of the source region than peridotite partial melts (because the solidus of pyroxenite is at lower temperature than that of peridotite and is encountered along an adiabat 15–25 km deeper than the solidus of peridotite), and because melt productivity from pyroxenite during upwelling is expected to be greater than that from peridotite (pyroxenite melt productivity will be particularly high in the region before peridotite begins melting, owing to heating from the enclosing peridotite). For reasonable estimates of pyroxenite and peridotite melt productivities, 15–20% of the melt derived from a source region composed of 5% pyroxenite and 95% peridotite will come from the pyroxenite. Most significantly, garnet persists on the solidus of pyroxenite to much lower pressures than those at which it is present on the solidus of peridotite, so if pyroxenite is present in MORB source regions, it will probably contribute a garnet signature to MORB even if melting only occurs at pressures at which the peridotite is in the spinel stability field. Partial melting of a mixed spinel peridotite/garnet pyroxenite mantle containing a few to several percent pyroxenite can explain quantitatively many of the geochemical features of MORB that have been attributed to the onset of melting in the stability field of garnet lherzolite, provided that the pyroxenite compositions are similar to the average composition of mantle-derived pyroxene-rich rocks worldwide or to reasonable estimates of the composition of subducted oceanic crust. Sm/Yb ratios of average MORB from regions of typical crustal thickness are difficult to reconcile with derivation by melting of spinel peridotite only, but can be explained if MORB sources contain ∼5% garnet pyroxenite. Relative to melting of spinel peridotite alone, participation of model pyroxenite in melting lowers aggregate melt Lu/Hf without changing Sm/Nd ratios appreciably. Lu/Hf-Sm/Nd systematics of most MORB can be accounted for by melting of a spinel peridotite/garnet pyroxenite mantle provided that the source region contains 3–6% pyroxenite with ≥20% modal garnet. However, Lu/Hf-Sm/Nd systematics of some MORB appear to require more complex melting regimes and/or significant isotopic heterogeneity in the source. Another feature of the MORB garnet signature, (230Th)/(238U)>1, can also be produced under these conditions, although the magnitude of (230Th)/(238U) enrichment will depend on the rate of melt production when the pyroxenite first encounters the solidus, which is not well-constrained. Preservation of high (230Th)/(238U) in aggregated melts of mixed spinel peridotite/garnet pyroxenite MORB sources is most likely if the pyroxenites have U concentrations similar to that expected in subducted oceanic crust or to pyroxenite from alpine massifs and xenoliths. The abundances of pyroxenite in a mixed source that are required to explain MORB Sm/Yb, Lu/Hf, and (230Th)/(238U) are all similar. If pyroxenite is an important source of garnet signatures in MORB, then geochemical indicators of pyroxenite in MORB source regions, such as increased trace element and isotopic variability or more radiogenic Pb or Os, should correlate with the strength of the garnet signature. Garnet signatures originating from melts of the garnet pyroxenite components of mixed spinel peridotite/garnet pyroxenite sources would also be expected to be stronger in regions of thin crust. Received: 15 February 1995/Accepted: 7 February 1996  相似文献   

6.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   

7.
Combined Sm–Nd and Lu–Hf age and isotope data indicate that Mg- and Cr-rich ultramafic rocks at Sandvik, Western Gneiss Region (WGR), Norway, originated from depleted Archean lithospheric mantle that was chemically and physically modified in Middle Proterozoic time. The Sandvik outcrop consists of garnet peridotite and garnet-olivine pyroxenite and thin garnet pyroxenite layers. These contain two principal mineral assemblages: an earlier porphyroclastic assemblage of grt + opx + cpx ± ol (1,200–1,000°C, 40–50 kbar) and a later kelyphitic assemblage of grt + spl + am ± opx ± ol (700–750°C; 12–18 kbar). A CHUR Hf model age indicates a period of melt extraction at ca. 3.3 Ga for garnet peridotite, reflecting extremely high Lu/Hf ratios and very radiogenic present-day 176Hf/177Hf (εHf=+2,165). Lu–Hf garnet-cpx-whole rock ages of two olivine-bearing samples (garnet peridotite and garnet-olivine pyroxenite) from the outcrop are ca. 1,255 Ma, whereas two olivine-free garnet pyroxenites yield Lu–Hf ages of ca. 1,185 Ma. All Sm–Nd garnet-cpx-whole rock ages of these samples are significantly younger (ca. 1,150 Ma for garnet peridotite and ca. 1,120 Ma for garnet pyroxenite). The isotope systematics indicate that the Lu–Hf ages represent cooling from an earlier period of formation/recrystallization for garnet peridotite whereas they probably reflect formation/recrystallization ages of the garnet pyroxenite. The Sm–Nd ages and isotope systematics of the garnet peridotite samples are consistent with an episode of LREE metasomatism, perhaps facilitated by a fluid of carbonatitic composition that strongly decoupled Sm–Nd and Lu–Hf. The Sm–Nd ages of the garnet pyroxenite may represent either LREE metasomatism or cooling, and, like the peridotites, Lu–Hf ages are older than Sm–Nd ages. The age data, as well as the inferred Nd isotope composition of the fluid that affected the olivine-bearing samples, suggest that these rocks were not in contact during the LREE metasomatic event. Moreover, the pyroxenite layers cannot have been emplaced as magmas into the host peridotite. The pyroxenite layers are interpreted to be tectonically juxtaposed with the host olivine-bearing samples sometime after 1,150 Ma but before development of kelyphite.  相似文献   

8.
Geological and geophysical evidence indicates that at least100 km of Archaean to Proterozoic lithospheric mantle has beenremoved from beneath large areas of eastern and southeasternChina during late Mesozoic to Cenozoic time. Mantle-derivedxenoliths in Tertiary basalts from several localities acrossthis region have been studied by X-ray fluorescence, electronmicroprobe and laser ablation microprobe–inductively coupledplasma-mass spectrometry to characterize this thinner lithosphere.Trace element patterns of clinopyroxenes in the peridotitesfrom southeastern China can be divided into four groups: fertilegarnet lherzolites, fertile spinel (± garnet) lherzolites,and depleted and enriched peridotites. The addition of Nb, Sr,light rare earth elements, but not of Ti and Zr, suggests ametasomatizing agent containing both H2O and CO2. This studyalso demonstrates that the negative Ti anomaly commonly observedin clinopyroxene from mantle peridotites cannot be balancedby the Ti in coexisting orthopyroxene, but can be explainedby small degrees of partial melting, using appropriate distributioncoefficients. Most of the peridotites from southeastern China,whether spinel or garnet facies, are highly fertile in termsof Al2O3 and CaO contents and mg-number; many resemble commonlyused primitive mantle compositions. Modelling of trace elementpatterns in clinopyroxene indicates that most spinel and garnetperidotites from the Nushan, Mingxi and Niutoushan localitiesexperienced less than 5%, and many less than 2%, partial melting.A few depleted spinel peridotites from Nushan, and all spinelperidotites from Mingxi, require 10–25% fractional partialmelting; almost all spinel peridotites from the Qilin localityshow evidence of higher degrees (6–25%) of fractionalpartial melting. At both Nushan and Mingxi, the more depletedcompositions occur in the upper part of the lithospheric mantle,which now is  相似文献   

9.
10.
Seven alkali basalt centers in the southern Canadian Cordilleracontain mantle xenolith suites that comprise spinel Cr-diopsideperidotites, spinel augite-bearing wehrlites and orthopyroxene-poorlherzolites, and minor pyroxenites. The Cr-diopside peridotitesappear to be residues of the extraction of Mg-rich basalts byup to 15% partial melting (median 5–10%) of a pyrolite-likesource in the spinel stability field. The xenoliths are similarto other mantle xenolith suites derived from beneath convergentcontinental margins, but are less depleted, less oxidized, andhave lower spinel mg-number than peridotites found in fore-arcsettings. Their dominant high field strength element depletedcharacter, however, is typical of arc lavas, and may suggestthat fluids or melts circulating through the Canadian Cordilleralithosphere were subduction related. Modeling using MELTS isconsistent with the augite-bearing xenoliths being formed byinteraction between crystallizing alkaline melts and peridotite.Assimilation–fractional crystallization modeling suggeststhat the trace element patterns of liquids in equilibrium withthe augite xenoliths may represent the initial melts that reactedwith the peridotite. Moreover, the compositions of these meltsare similar to those of some glasses observed in the mantlexenoliths. Melt–rock interaction may thus be a viablemechanism for the formation of Si- and alkali-rich glass inperidotites. KEY WORDS: Canadian Cordillera; mantle xenolith; peridotite; wehrlite; melt–rock reaction  相似文献   

11.
This study characterizes the nature of fluid interaction andmelting processes in the lithospheric mantle beneath the Yingfenglingand Tianyang volcanoes, Leizhou Peninsula, South China, usingin situ trace-element analyses of clinopyroxene, amphibole andgarnet from a suite of mantle-derived xenoliths. Clinopyroxenesfrom discrete spinel lherzolites exhibit large compositionalvariations ranging from extremely light rare earth element (LREE)-depletedto LREE-enriched. Trace-element modelling for depleted samplesindicates that the Leizhou lherzolites are the residues of amantle peridotite source after extraction of 1–11% meltgenerated by incremental melting in the spinel lherzolite fieldwith the degree of melting increasing upwards from about 60km to 30 km. This process is consistent with gradational meltingat different depths in an upwelling asthenospheric column thatsubsequently cooled to form the current lithospheric mantlein this region. The calculated melt production rate of thiscolumn could generate mafic crust 5–6 km thick, whichwould account for most of the present-day lower crust. The formationof the lithospheric column is inferred to be related to Mesozoiclithosphere thinning. Al-augite pyroxenites occur in compositexenoliths; these are geochemically similar to HIMU-type oceanisland basalt. These pyroxenites postdate the lithospheric columnformation and belong to two episodes of magmatism. Early magmatism(forming metapyroxenites) is inferred to have occurred duringthe opening of the South China Sea Basin (32–15 Ma), whereasthe most recent magmatic episode (producing pyroxenites withigneous microstructures) occurred shortly before the eruptionof the host magmas (6–0·3 Ma). Trace-element traversesfrom the contacts of the Al-augite pyroxenite with the spinelperidotite wall-rock in composite xenoliths record gradientsin the strength and nature of metasomatic effects away fromthe contact, showing that equilibrium was not attained. Significantenrichment in highly incompatible elements close to the contacts,with only slight enrichment in Sr, LREE and Nb away from thecontact, is inferred to reflect the different diffusion ratesof specific trace elements. The observed geochemical gradientsin metasomatic zones show that Sr, La, Ce and Nb have the highestdiffusion rates, other REE are intermediate, and Zr, Hf andTi have the lowest diffusion rates. Lower diffusion rates observedfor Nb, Zr, Hf and Ti compared with REE may cause high fieldstrength element (HFSE) negative anomalies in metasomatizedperidotites. Therefore, metasomatized lherzolites with HFSEnegative anomalies do not necessarily require a carbonatiticmetasomatizing agent. KEY WORDS: China; lithosphere; mantle xenoliths; clinopyroxene trace elements; mantle partial melting; mantle metasomatism; trace-element diffusion rates  相似文献   

12.
A petrological investigation of abyssal, plagioclase-free spinel peridotite drilled during ODP cruise 153 in the North Atlantic revealed that the peridotite represent refractory, partial residual mantle material that experienced depletion of incompatible trace elements during upper mantle melting. The degree of partial melting as estimated from spinel compositions was c. 12%. Fractionated middle and heavy rare earth elements imply polybaric melting, with c. 1–4% initial melting in the garnet peridotite stability field and subsequent partial melting of ~7–10% in the spinel peridotite stability field. Geothermobarometric investigations revealed that the solid-state equilibration of the spinel peridotite occurred at some 1,100–1,150°C and c. 20–23 kbar, corresponding to an equilibration depth of c. 70?±?5 km and an unusually low thermal gradient of some 11–17°C/km. A thermal re-equilibration of the peridotite occurred at ~850–1,000°C at similar depths. Naturally, the initial mantle melting in the garnet-peridotite stability field must have commenced at depths greater than 70?±?5 km. It is likely that the residual peridotite rose rapidly through the lithospheric cap towards the ridge axis. The exhumation of the abyssal peridotite occurred, at least in parts, via extensional detachment faulting. Given the shallow to moderate dip angles of the fault surfaces, the exhumation of the peridotite from its equilibration depth would imply an overall ridge-normal horizontal displacement of c. 50–160 km if tectonic stretching and detachment faulting were the sole exhumation mechanism.  相似文献   

13.
Mineral and whole-rock chemical data for peridotite xenolithsin basaltic lavas on Spitsbergen are examined to reassess mechanismsof melt–fluid interaction with peridotites and their relativerole versus melt composition in mantle metasomatism. The enrichmentpatterns in the xenoliths on primitive mantle-normalized diagramsrange from Th–La–Ce ‘inflections’ inweakly metasomatized samples (normally without amphibole) toa continuous increase in abundances from Ho to Ce typical foramphibole-bearing xenoliths. Numerical modelling of interactionbetween depleted peridotites and enriched melts indicates thatthese patterns do not result from simple mixing of the two end-membersbut can be explained by chromatographic fractionation duringreactive porous melt flow, which produces a variety of enrichmentpatterns in a single event. Many metasomatized xenoliths havenegative high field strength element and Pb anomalies and Srspikes relative to rare earth elements of similar compatibility,and highly fractionated Nb/Ta and Zr/Hf. Although amphiboleprecipitation can produce Nb–Ta anomalies, some of thesefeatures cannot be attributed to percolation-related fractionationalone and have to be a signature of the initial melt (possiblycarbonate rich). In general, chemical and mineralogical fingerprintsof a metasomatic medium are strongest near its source (e.g.a vein) whereas element patterns farther in the metasomatic‘column’ are increasingly controlled by fractionationmechanisms. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; trace elements; theoretical modelling  相似文献   

14.
海南岛陆缘扩张带蓬莱地区新生代玄武岩中捕获大量尖晶石二辉橄榄岩和方辉橄榄岩幔源包体。激光剥蚀等离子体质谱(LA-ICP-MS)分析结果表明,蓬莱地幔橄榄岩含有三种不同地球化学特征的单斜辉石(Cpx):(1)a类单斜辉石Mg~#=92.3~93.4,来自富集Cpx的二辉橄榄岩,具有极低的LREE和不相容元素含量,HREE平坦,Th、U、La、Sr正异常,经历了7%~10%的尖晶石相部分熔融,仅受到极低程度强不相容元素(Th、U、La、Sr)初期富集交代作用;(2)b类单斜辉石Mg~#=89.9~90.3,来自较富集Cpx的二辉橄榄岩,具有中等的LREE和LILE含量,HREE平坦,微量元素蛛网图上显示Th、U正异常,Rb、Ba、Nb、Ta、Sr、Ti负异常,经历4%~5%的尖晶石相部分熔融,可能受到了含LREE和Th、U等不相容元素的硅酸盐熔体交代;(3)c类单斜辉石Mg~#=91.4~92.8,来自贫Cpx的二辉橄榄岩和方辉橄榄岩,具有富集的LREE和LILE含量,HREE弱分异,微量元素蛛网图上显示Th、U正异常及强烈的Nb、Ta、Ti负异常,经历了8%~20%的尖晶石相部分熔融,其交代熔体可能是来自源区有石榴子石残留的碳酸盐熔体。全岩主、微量元素及模拟计算结果表明,这些幔源包体的主量元素主要受部分熔融程度影响,并且方辉橄榄岩经历的部分熔融程度大于二辉橄榄岩。地幔橄榄岩的Sr-Nd同位素组成表明该区具有MORB-OIB型亏损地幔特征。此外,蓬莱部分地幔橄榄岩包体显示正斜率的HREE分异特征((Gd/Yb)_N=0.4~0.7),暗示该区地幔经历了源自石榴子石稳定区的变压熔融,总体熔融程度为18%以上,指示了较高的地幔潜能温度。综合前人对海南岛新生代玄武岩最新研究成果,我们认为海南地幔柱可能为该区软流圈地幔置换古老岩石圈地幔提供了热源,导致了区域岩石圈地幔的破坏,从而引起包括地幔柱本身、软流圈和富集岩石圈的熔融。岩石圈地幔性质的改变和不均一性可能是海南岛陆缘扩张带新生代岩石圈减薄的主要动力学机制。  相似文献   

15.
Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany   总被引:5,自引:0,他引:5  
Primitive nephelinites and basanites from the Tertiary Hocheifelarea of Germany (part of the Central European Volcanic Province;CEVP) have high Mg-number (>0·64), high Cr and Nicontents and strong light rare earth element enrichment butsystematic depletion in Rb, K and Ba relative to trace elementsof similar compatibility in anhydrous mantle. Alkali basaltsand more differentiated magmatic rocks have lower Mg-numberand lower abundances of Ni and Cr, and have undergone fractionationof mainly olivine, clinopyroxene, Fe–Ti oxide, amphiboleand plagioclase. Some nephelinites and basanites approach theSr–Nd–Pb isotope compositions inferred for the EAR(European Asthenospheric Reservoir) component. The Nd–Sr–Pbisotope composition of the differentiated rocks indicates thatassimilation of lower crustal material has modified the compositionof the primary mantle-derived magmas. Rare earth element meltingmodels can explain the petrogenesis of the most primitive maficmagmatic rocks in terms of mixing of melt fractions from anamphibole-bearing garnet peridotite source with melt fractionsfrom an amphibole-bearing spinel peridotite source, both sourcescontaining residual amphibole. It is inferred that amphibolewas precipitated in the asthenospheric mantle beneath the Hocheifel,close to the garnet peridotite–spinel peridotite boundary,by metasomatic fluids or melts from a rising mantle diapir orplume. Melt generation with amphibole present suggests relativelylow mantle potential temperatures (<1200°C); thus themantle plume is not thermally anomalous. A comparison of recentlypublished Ar/Ar ages for Hocheifel basanites with the geochemicaland isotopic composition of samples from this study collectedat the same sample sites indicates that eruption of earlierlavas with an EM signature was followed by the eruption of laterlavas derived from a source with EAR or HIMU characteristics,suggesting a contribution from the advancing plume. Thus, theHocheifel area represents an analogue for magmatism during continentalrift initiation, during which interaction of a mantle plumewith the overlying lithosphere may have led to the generationof partial melts from both the lower lithosphere and the asthenosphere. KEY WORDS: alkali basalts; continental volcanism; crustal contamination; partial melting; Eifel, Germany  相似文献   

16.
Melting processes beneath the Mid-Atlantic Ridge were studiedin residual mantle peridotites sampled from a lithospheric sectionexposed near the Vema Fracture Zone at 11°N along the Mid-AtlanticRidge. Fractional and dynamic melting models were tested basedon clinopyroxene rare earth element and high field strengthelement data. Pure fractional melting (non-modal) cannot accountfor the observed trends, whereas dynamic melting with criticalmass porosity <0·01 fits better the measured values.Observed microtextures suggest weak refertilization with 0·1–1%quasi-instantaneous or partially aggregated melts trapped duringpercolation. The composition of the melts is evaluated, togetherwith their provenance, with respect to the garnet–spineltransition. Partial melts appear to be aggregated over shortbut variable intervals of the melting column. Deep melts (generatedwithin the garnet stability field at the base of the meltingcolumn) escape detection, being separated from the residuesby transport inside conduits or fractures. The temporal evolutionof the melting process along the exposed section shows a steadyincrease of mantle temperature from 20 Ma to present. KEY WORDS: mantle partial melting; abyssal peridotite; trace element; refertilization; Vema Fracture Zone  相似文献   

17.
The Ronda high temperature peridotite: Geochemistry and petrogenesis   总被引:2,自引:0,他引:2  
The Ronda peridotite in southern Spain is a large (~300 km2) exposure of upper mantle which provides direct information about mantle processes on a scale much larger than that provided by mantle xenoliths in basalt. Ronda peridotites range from harzburgite to lherzolite, and vary considerably in major element content, e.g., Al2O3 from 0.9 to 4.8%, and trace element abundances, e.g., Sr, Zr and La abundances vary by factors of 20 to 40. These compositional variations are systematic and correlate with (pyroxene + garnet)/olivine ratios and olivine compositions. The data are consistent with formation of residual peridotites by variable degrees of melting (~0 to 30%) of a compositionally homogeneous peridotite. None of the peridotites have geochemical characteristics of residues formed by extensive (?5%) fractional melting and the data can be explained by equilibrium (batch) melting, possibly with incomplete melt segregation in some samples. Based on compositional differences between Ronda peridotites, the segregated melts were picritic (12–22% MgO) with relative rare earth element abundances similar to mid-ocean ridge basalt (MORB). Prior to the melting event the Ronda peridotite body was a suitable source for MORB. The compositional characteristics of Ronda peridotites are consistent with diapiric rise of a fertile mantle peridotite with relatively small degrees of melting near the diapir-wall rock interface yielding residues of garnet iherzolite, and larger degrees of melting in the diapir interior yielding residues of garnet-free peridotite. Subsequently these residual rocks were recrystallized at sub-solidus conditions (Obata, 1980), and emplaced in the crust by thrusting (Lundeen, 1978).  相似文献   

18.
We present trace element and Sr–Nd–Hf–Pb isotopecompositions for clinopyroxenes from anhydrous spinel peridotiteand garnet ± spinel pyroxenite xenoliths of Pan-Africanlithospheric mantle from Jordan, including the first high-precisiondouble-spike Pb isotope measurements of mantle clinopyroxene.Clinopyroxenes from the peridotites are variably Th–U–LILE–LREEenriched and display prominent negative Nb, Zr and Ti anomalies.MREE–HREE abundances can generally be modelled as partialmelting residues of spinel lherzolite with primitive-mantle-likecomposition after extraction of 5–10% melt, whereas theenrichments in Th–U–LILE–LREE require a Pan-Africanor later metasomatic event. The large range of Nd, Sr, Pb andHf isotope ratios in both peridotites and pyroxenites (e.g.Nd 1·4–17·5; 206Pb/204Pb 17·2–20·4;Hf 0·6–164·6) encompasses compositionsmore radiogenic than mid-ocean ridge basalt (MORB), and Pb isotopescover almost the entire range of oceanic basalt values. Hf valuesare some of the highest ever recorded in mantle samples andare decoupled from Nd in the same samples. Marked correlationsbetween Sr–Nd–Pb isotopes, LILE–LREE enrichmentsand HFSE depletion suggest that the metasomatizing agent wasa carbonatitic-rich melt and isotopic data suggest that metasomatismmay have been related to Pan-African subduction. The metasomaticmelt permeated depleted upper mantle (<16 kbar) during Pan-Africansubduction at 600–900 Ma, and the variably metasomatizedmaterial was then incorporated into the Arabian lithosphericmantle. There is no evidence for recent metasomatism (<30Ma) related to the Afar plume like that postulated to have affectedsouthern Arabian lithospheric mantle. Hf isotopes in the mantleclinopyroxenes are unaffected by metasomatism, and even somestrongly overprinted lithologies record ancient (>1·2Ga) pre-metasomatic Lu–Hf signatures of the depleted uppermantle that was the protolith of the Arabian lithospheric mantle.The ‘resistance’ of the Lu–Hf isotopic systemto later metasomatic events resulted in the development of extremelyheterogeneous Hf isotopic signatures over time that are decoupledfrom other isotopic systems. No mantle sample in this studyexactly matches the chemical and isotopic signature of the sourceof Jordanian intraplate basalts. However, the xenolith compositionsare broadly similar to those of the source of Arabian intraplatebasalts, suggesting that the numerous Cenozoic intraplate volcanicfields throughout Arabia may be the product of melting uppermantle wedge material fertilized during Pan-African subductionand incorporated into the Arabian lithospheric mantle. We proposea model whereby the proto-Arabian lithospheric mantle underwenta major melting event in early Proterozoic–late Archeantimes (at the earliest at 1·2 Ga). Island-arc volcanismand major crust formation occurred during the Pan-African orogeny,which liberated fluids and possibly small-degree melts thatmigrated through the mantle creating zones of enrichment forcertain elements depending upon their compatibility. Immobileelements, such as Nb, were concentrated near the base of themantle wedge providing the source of the Nb-rich Jordanian volcanicrocks. More mobile elements, such as LILE and LREE, were transportedup through the mantle and fertilized the shallow mantle sourceof the Jordanian xenoliths. Following subduction, the mantlewedge became fossilized and preserved distinct enriched anddepleted zones. Lithospheric rifting in the Miocene triggeredpartial melting of spinel-facies mantle in the lower lithosphere,which mixed with deeper asthenospheric garnet-facies melts asrifting evolved. These melts entrained segments of variablycarbonatite-metasomatized shallow lithospheric mantle en routeto the surface. KEY WORDS: Arabian lithospheric mantle; Jordan; mantle xenoliths; Sr–Nd–Hf–Pb isotopes  相似文献   

19.
Layers of Ca-rich garnet–clinopyroxene rocks enclosedin a serpentinite body at Hujialin, in the Su–Lu terraneof eastern China, preserve igneous textures, relict spinel ingarnet, and exsolution lamellae of Ca-rich garnet, ilmenite/magnetite,Fe-rich spinel, and also amphibole in clinopyroxene. In termsof their major and trace element compositions, the studied samplesform a trend from arc cumulates towards Fe–Ti gabbros.Reconstructed augite compositions plot on the trend for clinopyroxenein arc cumulates. These data suggest that the rocks crystallizedfrom mantle-derived magmas differentiated to various extentsbeneath an arc. The Ca-rich garnet + diopside assemblage isinferred to have formed by compressing Ca-rich augite, whereasthe relatively Mg-rich cores of garnet porphyroblasts may haveformed at the expense of spinel. The protolith cumulates weresubducted from near the crust–mantle boundary (c. 1 GPa)deep into the upper mantle (4·8 ± 0·6 GPaand 750 ± 50°C). Negatively sloped P–T pathsfor the garnet–clinopyroxene rocks and the corollary ofcorner flow induced subduction of mantle wedge peridotite arenot supported by the available data. Cooling with, or without,decompression of the cumulates after the igneous stage probablyoccurred prior to deep subduction. KEY WORDS: arc cumulates; Ca-rich garnet; garnet–clinopyroxene rocks; Su–Lu terrane; UHP metamorphism  相似文献   

20.
为完整了解华北克拉通的破坏程度和机制,加深对其西部陆块岩石圈地幔的研究十分重要,而位于华北克拉通西部集宁新生代碱性玄武岩中的地幔橄榄岩包体,为研究人员认识该地区的岩石圈地幔的性质和演化起到指示作用.运用LA-ICP-MS和LA-MC-ICP-MS对集宁地区橄榄岩矿物进行原位微区测试,获得其主量、微量元素和Sr同位素成分的数据.根据矿物组成,可以将集宁地区的橄榄岩分为两类:第一类为贫单斜辉石橄榄岩 (单斜辉石体积分数小于8%),它们经历了高程度的部分熔融,可能是古老难熔岩石圈地幔的残留;第二类为二辉橄榄岩 (单斜辉石体积分数大于13%),其熔融程度低,代表了新生饱满的岩石圈地幔.第一类橄榄岩中单斜辉石REE含量整体偏低且轻微富集LREE,第二类橄榄岩中单斜辉石具有LREE富集和轻微亏损两种配分模式,大部分样品的核边有一定的强不相容元素及Sr同位素组成变化.这些微量元素和同位素特征都表明集宁橄榄岩包体经历过交代作用.(La/Yb)N和Ti/Eu比值特征表明它们经历过多阶段的交代作用,交代介质有硅酸盐、碳酸盐熔/流体,这些交代介质可能为来源于古亚洲洋板块俯冲时释放的熔/流体.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号