共查询到18条相似文献,搜索用时 78 毫秒
1.
070703天长超级单体龙卷的多普勒雷达典型特征 总被引:9,自引:1,他引:9
主要使用南京多普勒天气雷达资料,分析了2007年7月3日发生在安徽天长和江苏高邮的龙卷风天气,着重分析了中气旋和龙卷涡旋特征(TVS)等产品的典型特征.龙卷发生在飑线回波带的北端强烈发展的超级风暴单体中,回波带前沿存在强烈的水平风切变,使得回波带上不断有中气旋生成.对产生龙卷的超级风暴单体,龙卷发生30min前,雷达给出了中气旋(M)产品,该中气旋持续了7个体扫的时间(42min),在中气旋出现后第5个体扫,雷达给出龙卷涡旋特征(TVS)产品,龙卷涡旋特征持续了3个体扫,综合切变产品也给出了显著的提醒.实地调查结果,龙卷风和第2个TVS同时发生,龙卷风位置与TVS位置对应,但位于TVS的南侧,位于中气旋最大风速圈的南缘.虽然CINRAD/SA雷达的TVS产品有虚警的情况,但结合反射率因子、平均径向速度、中气旋、综合切变等产品的分析,对于龙卷监测和预警会很有帮助的. 相似文献
2.
安徽一次强烈龙卷的多普勒天气雷达分析 总被引:49,自引:20,他引:49
利用多普勒天气雷达资料,对2003年7月8日夜间发生在安徽无为县的强烈龙卷过程进行了详细的分析。该龙卷发生前的主要天气背景是江淮梅雨期暴雨的天气形势:一个东移的高空槽、强烈的对流不稳定和低空的西南风急流。低层垂直风切变很大并且抬升凝结高度较低,有利于强龙卷的产生。产生该强龙卷的对流系统最初是一条位于大片层状云降水区中的长对流雨带。在随后的演变中,对流雨带的南段逐渐消散,北段逐渐变宽,最终成为一个团状的对流系统,而龙卷产生自该系统南端的一个超级单体。最初的中层中气旋形成于7月8日22:49(北京时,下同),相应对流单体的反射率因子尚没有呈现出超级单体的特征。随后中气旋迅速加强,在22:55,反射率因子形态呈现出经典超级单体的特征:明显的低层入流缺口和其左侧的阵风锋,入流缺口位于超级单体移动方向(东北方向)的右后侧,低层的弱回波区和中高层的回波悬垂结构,最大反射率因子超过55 dBz。在龙卷产生前8min,即23:12中气旋达到强中气旋标准,相应的垂直涡度值达到2.3×10-2/s。在龙卷产生前几分钟和龙卷进行过程中,中气旋保持很强,但相应的反射率因子强度减弱,低层入流缺口渐渐消失。在龙卷进行过程中的23:29,雷达速度图像呈现出一个强烈中气旋包裹着一个更小尺度的龙卷式涡旋特征TVS,与TVS对应的垂直涡度值达5.0×10-2/s。上述导致龙卷的中层中气旋局限于4 km以下的低层大气,前后共持续了1 h 49 min,相应超级单体的高反射率因子区局限在6 km以下,属于低质心的对流系统,产生的天气是强烈龙卷,伴随有暴雨,但没有冰雹。文中还对此次龙卷的生成机制进行了探讨。 相似文献
3.
利用高空、地面常规观测资料、分钟级加密自动气象站资料和榆林多普勒雷达资料,对 2013 年8月4日傍晚发生在榆林市的一次超级强对流风暴天气进行中尺度分析。结果表明:(1)此次过程疑似一次超级单体龙卷天气过程;(2)从环流背景来看,榆林市上空中层强干冷平流配合低层切变线、西南急流,高层干冷、低层暖湿特征明显;从环境条件来看,强风暴发生前和发生期间能量、抬升凝结高度、风切变满足龙卷发生所需的热力不稳定、垂直风切变条件;(3)雷达钩状回波结构清晰,并伴有强中气旋,大于60 dBZ的回波和正负速度对已接地,呈现龙卷发生时的回波特征;(4)强风暴发生前后,由北向南经过榆林地区有多个龙卷涡旋TVS产品被识别;(5)气象要素场变化剧烈,地面气压明显降低,风速出现极值增强,风向发生突变,与龙卷发生期间风场观测特征基本一致,表明该区域出现龙卷的可能性较大。 相似文献
4.
5.
6.
利用蚌埠S波段双偏振多普勒雷达资料,对安徽省宿州市2020年7月22日的龙卷天气进行了分析.结果表明:在梅雨期暴雨天气形势下,较低的抬升凝结高度、较强的中低层垂直风切变为龙卷提供了有利的环境背景.龙卷发生在梅雨锋南端的超级单体风暴中,底层的右后方出现钩状回波.风暴参数、中气旋、龙卷涡旋(TVS)特征参数在龙卷过程中的急... 相似文献
7.
2018年8月19日受台风“温比亚”影响,山东省临沂市遭受龙卷袭击。通过实地灾情调查,给出了该龙卷的影响范围、灾害分布和强度评估等,综合考虑不同标识物和致灾过程,评估本次龙卷强度为EF3级。分析龙卷发生的环境和天气雷达特征,结果表明:龙卷发生在低抬升凝结高度(≤300 m)、强低层垂直风切变(≥18×10-3s-1)、强相对风暴螺旋度(≥350 m2/s2)和较低对流有效位能(≤400 J/kg)的有利环境条件下;龙卷超级单体嵌于台风右侧螺旋雨带内,龙卷发生在中气旋与风暴后侧下沉气流区相接一侧,与龙卷涡旋特征位置对应;龙卷及地时中气旋向下延伸加强,同时风暴顶及单体质心迅速下降;若探测到低层中等强度中气旋时应发布龙卷预警,则此次过程的龙卷预警时间提前量为15~20 min。 相似文献
8.
安徽龙卷发生的环境条件和临近预警 总被引:7,自引:0,他引:7
利用1960—2009年气象观测资料,对安徽省128次龙卷的气候特征和环流背景进行了分析,结果表明,龙卷多发于4-9月平原丘陵地带的江淮东部,而山区极少,20世纪80年代以后龙卷明显减少;建立了安徽出现龙卷的4种概念模型。同时,利用日本JMA 20km×20km高分辨率数值预报再分析产品对比分析了龙卷、冰雹及雷雨大风的环境场,发现龙卷与冰雹、雷雨大风在4个方面存在明显差异,即中低层比湿、中低层垂直风切变、风暴相对螺旋度和0℃层以下的对流有效位能与整层对流有效位能比值,前3个均是龙卷最大,龙卷是冰雹和雷雨大风的2倍~3倍,对流有效位能主要集中在0℃层以下,而冰雹和雷雨大风主要集中在0℃层以上。基于龙卷临近预警和安徽6次龙卷的雷达特征显示,龙卷涡旋TVS的底部达到雷达最低仰角探测高度的中气旋及其后龙卷涡旋特征是识别龙卷的主要依据,龙卷触地前中气旋的最大速度差增强,其强度与龙卷强度呈正相关。而雷达距离的选取也直接影响龙卷的临近预警,距离龙卷20~100km处的雷达较为理想,200km以外的雷达资料对龙卷预警几乎没有意义。 相似文献
9.
10.
江淮地区龙卷超级单体风暴及其环境参数分析 总被引:3,自引:1,他引:3
利用多普勒雷达探测资料和NCEP再分析资料,对2003—2010年发生在江淮地区的6个龙卷超级单体风暴及其环境参数进行了分析。研究表明:(1)龙卷超级单体风暴HBASE平均为1.7 km,HTOP平均为9.1 km;H多在风暴的下部,近于下部的1/4处。HBASE平均值比江淮地区各种超级单体的平均值低得多,HTOP则略低。(2)龙卷超级单体IVIL平均为25.6 kg/m2,ZMX平均为54.8 dBz。和江淮地区超级单体相比,龙卷IVIL要小得多,而龙卷ZMX略低。(3)龙卷超级单体的中气旋MBASE、MTOP和MSHR平均值分别为1.2 km、3.9 km和14.4×10-3s-1,和江淮地区超级单体相比,龙卷MBASE、MTOP明显低,而MSHR略高。(4)TVS参数最强时的VAD在12—45 m/s,VLLD多大于30 m/s,VMXD多超过30 m/s,VMXD的高度不低于0.8 km,TDPT在2.4—6.4 km,TBASE在0.7—1.5 km,TTOP在2.3—6.4 km,TMXSHR超过22×10-3s-1。TVS参数最强时间与龙卷实际时间基本吻合,平均相差4.2 min;平均而言,TVS出现后6 min有龙卷发生。(5)雷达推算的龙卷超级单体的0—6 km风垂直切变比江淮地区超级单体的风垂直切变平均值高15.2%;龙卷发生前ICAPE平均为1752 J/kg,IK为38℃,850 hPa到地面风切变平均超过12 m/s,850—500 hPa温差平均为23.7℃。龙卷发生前能量处在中等到强的状态,大气不稳定性较强,风垂直切变大。 相似文献
11.
为了研究2009年7月20日发生在河北省承德市龙卷过程的多普勒天气雷达特征,利用承德CINRAD/CB多普勒天气雷达结合天气图、风廓线雷达、自动气象站等实况观测资料,对该次龙卷过程进行了详细的分析。结果表明:龙卷出现前低层大气相对暖湿,受高空冷涡影响,在对流层中层有较强的干冷空气下传,中高层有较强的垂直风切变。龙卷风出现过程中,在多普勒天气雷达径向速度产品上自低层到6.8 km都存在强烈的气旋性涡旋,风暴单体顶高、最大反射率因子高度、风暴质心高度等位置较高。垂直积分液态含水量产品显示在龙卷风出现前VIL数值产生了跃增,但40kg·m~(-2)以上维持时间短。定位分析表明,受风暴运动和结构影响,雷达龙卷涡旋特征位置位于实际龙卷风的东南侧。 相似文献
12.
2013年7月7日苏皖龙卷环境场与雷达特征分析 总被引:3,自引:0,他引:3
以雷达探测资料为主,结合探空资料、天气图和地面灾情,对2013年7月7日苏皖2省交界处的龙卷进行了分析。结果表明:⑴龙卷是在低层有明显的风切变的有利形势下产生的,环境场具有较强的对流不稳定性、大的低层垂直风切变和较低的对流凝结高度。⑵反射率因子在60 dBZ左右;速度图上有正负速度对,低仰角的转动速度〉13 m·s-1;近地面相邻像素间速度差〉11 m·s-1,满足TVS速度差的最低阈值要求;天长龙卷和高邮龙卷都是发生在风暴发展极为旺盛后的1~2个体扫内,也发生在VIL比较大而下降到40~45 kg·m-2左右之时;天长龙卷发生在连续多个TVS之后,高邮龙卷发生在中气旋下降和TVS出现之时。风暴参数和TVS参数表征的指标越强越有利于龙卷的发生,影响范围也越大。⑶这次龙卷验证了出现龙卷的各项雷达识别指标:最强回波在6 km以下;有气旋性辐合,低仰角旋转速度〉13 m·s-1;既探测到中气旋也探测到TVS。⑷对经典龙卷概念模型进行简化,建立的简易模型证实了传统的龙卷风暴概念模型,给出了龙卷发生在TVS靠近上升气流一侧的解释。 相似文献
13.
超级单体引发的龙卷天气过程分析 总被引:2,自引:1,他引:2
利用营口市多普勒天气雷达资料,对2005年8月10日16时10-20分左右营口市东南部六个乡出现的龙卷天气过程进行了简要分析,该龙卷发生前的主要天气形势是:一个东移的东北低涡引导高空槽,沿高空等高线冷干气流与低空的暖湿气流产生对流不稳定层结,超低空南支急流与低空西南风急流以及高空西北风产生的较大垂直风切变,有利于龙卷天气的产生.产生该龙卷的对流系统是由渤海湾生成的片状层状云和积状云混合降水回波.自东向偏北方向移动,15:50以后低层反射率因子的强降水回波移入大连北部与营口南部临近区域,在层状云降水中含有一些零散的和有组织的对流降水回波,主体为一个近似团状的对流系统,而龙卷产生自该系统南端的一个超级单体.最初的中气旋形成于8月10日15:56,相应对流单体的反射率因子还没有呈现出超级单体的特征,随后中气旋迅速发展加强,在16:02-16:08反射率因子形态呈现出经典超级单体的特征:明显的低层入流缺口,入流缺口位于超级单体移动方向(偏东南方向)的右侧,低层的弱回波区和中高层的回波悬垂结构,最大反射率因子超过56 dRz.在龙卷产生前几分钟和龙卷进行过程中,中气旋保持较强,而后迅速减弱,低层入流缺口渐渐消失.在龙卷进行过程中,相应45 dBz超级单体的反射率因子区局限在6 km以下,此系统为低质心的对流系统,产生的天气是龙卷,伴随有大风短时强降水,与冰雹的高质心对流系统有明显区别.同时也初步探讨了引发此次龙卷的生成机制. 相似文献
14.
利用X波段双极化相控阵雷达等多源观测资料,分析了2022年6月19日早晨广东佛山超级单体龙卷的环境条件和对流风暴的结构及演变特征。龙卷母体风暴是在强西南季风天气背景下的一条东北-西南向飑线南端发展起来的。环境条件具备较大对流有效位能、低抬升凝结高度和强垂直风切变等有利于超级单体龙卷发生发展的热力和动力条件;低空风暴相对螺旋度、超级单体复合指数和强龙卷指数的显著增强对超级单体龙卷的发生有较好指示意义。具有高时空分辨率的佛山南海X波段双极化相控阵雷达探测到了龙卷母体微型超级单体的发展过程和龙卷涡旋的演变特征:对流单体在前侧低层入流的加强下逐渐形成钩状回波和反射率弱回波空洞;中气旋首先在2.5km附近高度形成后向低层伸展,随着后侧下沉气流的加强,低层涡旋旋转增强,当低层中气旋旋转速度超过22m·s-1(强中气旋)且直径紧缩至1.5km以内时,龙卷即将触地,龙卷涡旋特征(TVS)和龙卷碎片特征(TDS)出现是龙卷触地的主要特征,龙卷发生在反射率弱回波空洞、TVS和TDS附近。 相似文献
15.
2007年7月皖苏北部龙卷风初步分析 总被引:5,自引:4,他引:5
2007年7月3日0840-1000(UTC)先后在安徽天长-江苏高邮和江苏兴化等局部地区发生了多个龙卷风,成为本年度的极端天气事件之一.利用高频次的FY-2C、2D等静止气象卫星资料、南京站多普勒天气雷达资料和常规天气资料对这次龙卷风天气系统的活动与演变进行了分析,得到以下认识:叠加在梅雨锋切变线上的高空短波槽线,及槽后强干冷空气平流与低空暖湿平流在垂直方向迭合,并与200hPa青藏高压东西向脊线北侧的辐散场重合,为强对流天气系统的发展提供了动力和热力条件;0400(UTC)之后,在鄂豫皖苏交界区形成了两条中尺度对流云带.一条是与梅雨锋切变线相对应的弱对流云带,另一条是位于其南面的在上述干冷空气前沿迅速发展的飑线云带.切变线弱对流云带整体缓慢向南移动,构成云带的对流云块沿着云带缓慢向东移动.强对流飑线云带则由西北西向东南东方向移动,构成飑线云带的强对流云团则沿着云带由西南西向东北东方向移动.龙卷风就发生在上述两条中尺度对流云带的云团相交合并处. 相似文献
16.
一次龙卷过程的多普勒天气雷达和闪电定位资料分析 总被引:6,自引:4,他引:6
利用WSR-98D多普勒天气雷达和闪电定位资料分析了2003年7月8日发生在安徽省无为县境内的一次龙卷过程。此次龙卷产生于低空急流左侧,动力、热力条件均为较有利的大尺度环境,多普勒雷达回波分析发现,龙卷起源于中高层向低层发展的中-γ尺度气旋中。闪电定位资料分析表明,龙卷发生前10min闪电活动开始频繁。龙卷出现后负地闪明显加大,且龙卷闪电存在于雷暴的发展后期、成熟和消亡阶段。此次龙卷的一些基本特征与通常结论有所不同,(1)雷达反射率因子小于通常结论;(2)龙卷风暴发展高度不是很高,回波顶高仅6~9km,类似于普通雷暴;(3)闪电活动中以负地闪为主,正地闪较少,并未出现正地闪一度占主导地位的现象。 相似文献
17.
利用常规观测、NCEP/NCAR再分析、多普勒天气雷达及自动气象站资料等,对2013年3月20日发生在东莞的一次罕见龙卷、冰雹等致灾性强对流天气过程进行分析。结果表明: 1) 龙卷过境时的单站气压、温度、风向风速与雷雨大风过境时明显不同,前者具有较典型的龙卷特征。2) 华南地区高低空强的风随高度增大的垂直变化、上干下湿的位势不稳定层结以及低层高湿、增温为对流天气发展提供了有利的环境条件,冷空气南压和近地面边界层中小尺度辐合系统为其提供了触发机制。3) 中等强度的对流有效位能(CAPE)、强的0—6 km深层垂直风切变以及较强的0—1 km低层垂直风切变为龙卷产生提供了可能性。4) 龙卷、冰雹强对流风暴的发展加强与近地面边界层中小尺度辐合系统加强有密切关系。5) 同时出现冰雹、大风、龙卷时,最强回波为72 dBz;龙卷出现在超级单体的钩状回波附近,更靠近后侧V形缺口;多时次观测到三体散射(TBSS)回波,与降雹对应;反射率垂直剖面图上可见明显的低层弱回波区、中高层回波悬垂,有界弱回波区(BWER)先于龙卷20多分钟出现。径向速度图上,龙卷出现时超级单体风暴同时具有龙卷涡旋特征(TVS)和中气旋特征。 相似文献
18.
2013年3月20日广东东莞罕见龙卷冰雹特征及成因分析 总被引:1,自引:0,他引:1
利用常规观测、NCEP/NCAR再分析、多普勒天气雷达及自动气象站资料等,对2013年3月20日发生在东莞的一次罕见龙卷、冰雹等致灾性强对流天气过程进行分析。结果表明:1)龙卷过境时的单站气压、温度、风向风速与雷雨大风过境时明显不同,前者具有较典型的龙卷特征。2)华南地区高低空强的风随高度增大的垂直变化、上干下湿的位势不稳定层结以及低层高湿、增温为对流天气发展提供了有利的环境条件,冷空气南压和近地面边界层中小尺度辐合系统为其提供了触发机制。3)中等强度的对流有效位能(CAPE)、强的0-6 km深层垂直风切变以及较强的0-1 km低层垂直风切变为龙卷产生提供了可能性。4)龙卷、冰雹强对流风暴的发展加强与近地面边界层中小尺度辐合系统加强有密切关系。5)同时出现冰雹、大风、龙卷时,最强回波为72 dBz;龙卷出现在超级单体的钩状回波附近,更靠近后侧V形缺口;多时次观测到三体散射(TBSS)回波,与降雹对应;反射率垂直剖面图上可见明显的低层弱回波区、中高层回波悬垂,有界弱回波区(BWER)先于龙卷20多分钟出现。径向速度图上,龙卷出现时超级单体风暴同时具有龙卷涡旋特征(TVS)和中气旋特征。 相似文献