首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Only fine-grained rocks are present in the Luna 20 samples, and coarser grained rocks are represented by fragments of single crystals. A petrologic study has been made of 47 fine-grained crystalline rocks, microbreccias, and glassy aggregates. In addition, a total of 33 single crystals of pyroxene, plagioclase, olivine and spinel, in the size range 125 to 500 μ, have been examined using electron microprobe and single crystal X-ray diffraction techniques.The most abundant fine-grained crystalline rocks in the samples we have examined are recrystallized anorthositic norite and anorthositic troctolite. Gabbroic rocks, anorthosite, and KREEP basalt are present but not common. Most of the single crystals of pyroxene and plagioclase could have been derived from coarser grained noritic, troctolitic and anorthositic rocks. However, three of the 14 pyroxene crystals, and 2 of the 5 olivine crystals have Fe(Fe + Mg) contents greater than 0.45 and are believed to have been derived from mare basalts or related rocks. Two relatively sodic crystals of plagioclase were found. One is a crystal zoned at least over the range An85 to An63, and the second is a homogeneous crystal of albite (~An3).  相似文献   

2.
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.  相似文献   

3.
Late Quaternary, porphyritic basalts erupted in the Kaikohe-Bay of Islands area, New Zealand, provide an opportunity to explore the crystallization and ascent history of small volume magmas in an intra-continental monogenetic volcano field. The plagioclase phenocrysts represent a diverse crystal cargo. Most of the crystals have a rim growth that is compositionally similar to groundmass plagioclase (~?An65) and is in equilibrium with the host basalt rock. The rims surround a resorbed core that is either less calcic (~?An20–45) or more calcic (>?An70), having crystallized in more differentiated or more primitive melts, respectively. The relic cores, particularly those that are less calcic (<?~?An45), have 87Sr/86Sr ratios that are either mantle-like (~?0.7030) or crustal-like (~?0.7040 to 0.7060), indicating some are antecrysts formed in melts fractionated from plutonic basaltic forerunners, while others are true xenocrysts from greywacke basement and/or Miocene arc volcanics. It is envisaged that intrusive basaltic forerunners produced a zone where various degrees of crustal assimilation and fractional crystallization occurred. The erupted basalts represent mafic recharge of this system, as indicated by the final crystal rim growths around the entrained antecrystic and xenocrystic cargo. The recharge also entrained cognate gabbros that occur as inclusions, and produced mingled groundmasses. Multi-stage magmatic ascent and interaction is indicated, and is consistent with the presence of a partial melt body in the lower crust detected by geophysical methods. This crystallization history contrasts with traditional concepts of low-flux basaltic systems where rapid ascent from the mantle is inferred. From a hazards perspective, the magmatic system inferred here increases the likelihood of detecting eruption precursor phenomena such as seismicity, degassing and surface deformation.  相似文献   

4.
Basaltic glasses from the three alkalic areas of Iceland (Snaefellsnes Volcanic Zone, Sudurland Volcanic Zone and Vestmannaeyjar Volcanic Area) contain plagioclase, olivine, clinopyroxene, chromian spinel and titanomagnetite as phenocryst phases. The glasses are hypersthene to nepheline normative alkali basaltic with FeO/ MgO ratios between 1.4–4.7. Olivine ranges in composition from Fo90 to Fo55, plagioclase from An90 to An50 and clinopyroxene from En45Fs10Wo45 to En40Fs17Wo43. Clinopyroxene reveals systematic Ti:Al metastable crystallization trends related to the composition of the enclosing glass. Two types of phenocryst are present in most glasses and show a bimodality in size and composition. Microphenocryst phases are those most likely to have crystallized from the enclosing glass, while macrophenocrysts may have crystallized from a liquid of slightly less evolved composition. The glasses show complex phenocryst-glass relations which can be related to a polybaric effect. The normative glass compositions are related to 2-phase cotectic surfaces in the basalt tetrahedron and define the position of the 3-phase cotectic line. In general with increasing FeO/MgO in the glass the phenocryst assemblages vary from clinopyroxene, olivine and plagioclase along a clinopyroxene-olivine surface to olivine and plagioclase along an olivine-plagioclase surface. The normative glass compositions show a deflection from clinopyroxene-bearing to clinopyroxene-free glasses. The appearance of plagioclase together with clinopyroxene and olivine can be explained in the light of experimental investigations of the effect of pressure on phase relations. The major element variation of the glasses is interpreted as representing mantle derived magma batches of primary liquids, modified to some degree by high (6 kbar) and intermediate to low pressure (below 3 kbar) crystal fractionation towards equilibrium phase relations during ascent and residence in crustal magma chambers. The observed deflection in normative compositions of the glasses marks the position of the high pressure 3-phase cotectic line. The bimodality in size and composition of plagioclase and olivine phenocrysts can be related to high pressure crystal fractionation in the melt. The Fe-Ti basalt glasses from Sudurland are believed to be quenched high pressure compositions.  相似文献   

5.
Phase relations of natural aphyric high-alumina basalts and their intrusive equivalents were determined through rock-melting experiments at 2 kb, H2O-saturated with fO2 buffered at NNO. Experimental liquids are low-MgO high-alumina basalt or basaltic andesite, and most are saturated with olivine, calcic plagioclase, and either high-calcium pyroxene or hornblende (±magnetite). Cr-spinel or magnetite appear near the liquidus of wet high-alumina basalts because H2O lowers the appearance temperature of crystalline silicates but has a lesser effect on spinel. As a consequence, experimental liquids follow calcalkaline differentiation trends. Hornblende stability is sensitive to the Na2O content of the bulk composition as well as to H2O content, with the result that hornblende can form as a near liquidus mineral in wet sodic basalts, but does not appear until liquids reach andesitic compositions in moderate Na2O basalts. Therefore, the absence of hornblende in basalts with low-to-moderate Na2O contents is not evidence that those basalts are nearly dry. Very calcic plagioclase (>An90) forms from basaltic melts with high H2O contents but cannot form from dry melts with normal are Na2O and CaO abundances. The presence of anorthite-rich plagioclase in high-alumina basalts indicates high magmatic H2O contents. In sum, moderate pressure H2O-saturated phase relations show that magmatic H2O leads to the early crystallization of spinel, produces calcic plagioclase, and reduces the total proportion of plagioclase in the crystallizing assemblage, thereby promoting the development of the calc-alkaline differentiation trend.  相似文献   

6.
The eucritic meteorites are basaltic rocks that originate from the upper part of the crust of some small bodies as exemplified possibly by asteroid 4-Vesta. A few eucrites appear to have been modified by different degrees of a late stage alteration process that caused significant variations in mineralogy. Three distinct alteration stages are identified: (1) Fe-enrichment along the cracks that cross cut the pyroxene crystals (“Fe-metasomatism”); secondary olivine and minute amounts of troilite are found only occasionally in cracks at this stage; (2) deposits of Fe-rich olivine (Fa64-86) and minor amounts of troilite are frequent inside the cracks; sporadic secondary Ca-rich plagioclase (An97-98) is associated with the fayalitic olivine; (3) at this stage, the Fe-enrichment of the pyroxene is accompanied by a marked Al-depletion; moreover, secondary Ca-rich plagioclase is more frequent and partly fills some cracks or rims of the primary plagioclase crystals. The composition of the secondary phases on one hand, the lack of incompatible trace element enrichment in the metasomatized pyroxenes on the other hand, rule out a silicate melt as the metasomatic agent. Although no hydrous phase has been yet identified in the studied samples, aqueous fluids are plausible candidates for explaining the deposits of ferroan olivine and anorthitic plagioclase inside the fractures of the studied unequilibrated eucrites.  相似文献   

7.
The textures and kinetics of reaction between plagioclase and melts have been investigated experimentally, and origin of dusty plagioclase in andesites has been discussed. In the experiments plagioclase of different compositions (An96, An61, An54, An23, and An22) surrounded by glasses of six different compositions in the system diopside-albite-anorthite was heated at temperatures ranging from 1,200 to 1,410° C for 30 min to 88 h. Textures were closely related to temperature and chemical compositions. A crystal became smaller and rounded above the plagioclase liquidus temperature of the starting melt (glass) and remained its original euhedral shape below the liquidus. Whatever the temperature, the crystal-melt interface became rough and often more complicated (sieve-like texture composed of plagioclase-melt mixture in the scale of a few m was developed from the surface of the crystal inward; formation of mantled plagioclase) if the crystal is less calcic than the plagioclase in equilibrium with the surrounding melt, and the interface remained smooth if the crystal is more calcic than the equilibrium plagioclase. From these results the following two types of dissolution have been recognized; (1) a crystal simply dissolves in the melt which is undersaturated with respect to the phase (simple dissolution), and a crystal is partially dissolved to form mantled plagioclase by reaction between sodic plagioclase and calcic melt (partial dissolution). The amount of a crystal dissolved and reacted increased proportional to the square root of time. This suggests that these processes are controlled by diffusion, probably in the crystal.Mantled plagioclase produced in the experiments were very similar both texturally and chemically to some of the so-called resorbed plagioclase in igneous rocks. Chemical compositions and textures of plagioclase phenocrysts in island-arc andesites of magma mixing origin have been examined. Cores of clear and dusty plagioclase were clacic (about An90) and sodic (about An50), respectively. This result indicates that dusty plagioclases were formed by the partial melting due to reaction between sodic plagioclase already precipitated in a dacitic magma and a melt of intermediate composition in a mixed magma during the magma mixing.  相似文献   

8.
We carried out an experimental study to characterize the kinetics of Ostwald ripening in the forsterite-basalt system and in the plagioclase (An65)-andesite system. Eight experiments were done in each system to monitor the evolution of mean grain size and crystal size distribution (CSD) with time t; the experiments were performed in a 1-atmosphere quench furnace, at 1,250°C for plagioclase and 1,300°C for olivine. Very contrasted coarsening kinetics were observed in the two series. In the plagioclase series, the mean grain size increased as log(t), from ≈3 μm to only 8.7 μm in 336 h. The kinetic law in log(t) means that Ostwald ripening was rate-limited by surface nucleation at plagioclase-liquid interfaces. In the olivine series, the mean grain size increased as t 1/3, from ≈3 μm to 23.2 μm in 496 h. A kinetic law in t 1/3 is expected when Ostwald ripening is rate-limited either by diffusion in the liquid or by grain growth/dissolution controlled by a screw dislocation mechanism. The shape of olivine CSDs, in particular their positive skewness, indicates that grain coarsening in the olivine experiments was controlled by a screw dislocation mechanism, not by diffusion. As the degrees of undercooling ΔT (or supersaturation) involved in Ostwald ripening are essentially <1°C, the mechanisms of crystal growth identified in our experiments are expected to be those prevailing during the slow crystallisation of large magma chambers. We extrapolated our experimental data to geological time scales to estimate the effect of Ostwald ripening on the size of crystals in magmas. In the case of plagioclase, Ostwald ripening is only efficient for mean grain sizes of a few microns to 20 μm, even for a time scale of 105 years. It can, however, result in a significant decrease of the number of small crystals per unit volume, and contribute to the development of convex upwards CSDs. For olivine, the mean grain size increases from 2–3 μm to ≈70 μm in 1 year and 700 μm in 103 years; a mean grain size of 3 mm is reached in 105 years. Accordingly, the rate of grain size-dependent processes, such as compaction of olivine-rich cumulates or melt extraction from partially molten peridotites, may significantly be enhanced by textural coarsening.  相似文献   

9.
St. Kitts lies in the northern Lesser Antilles, a subduction-related intraoceanic volcanic arc known for its magmatic diversity and unusually abundant cognate xenoliths. We combine the geochemistry of xenoliths, melt inclusions and lavas with high pressure–temperature experiments to explore magma differentiation processes beneath St. Kitts. Lavas range from basalt to rhyolite, with predominant andesites and basaltic andesites. Xenoliths, dominated by calcic plagioclase and amphibole, typically in reaction relationship with pyroxenes and olivine, can be divided into plutonic and cumulate varieties based on mineral textures and compositions. Cumulate varieties, formed primarily by the accumulation of liquidus phases, comprise ensembles that represent instantaneous solid compositions from one or more magma batches; plutonic varieties have mineralogy and textures consistent with protracted solidification of magmatic mush. Mineral chemistry in lavas and xenoliths is subtly different. For example, plagioclase with unusually high anorthite content (An≤100) occurs in some plutonic xenoliths, whereas the most calcic plagioclase in cumulate xenoliths and lavas are An97 and An95, respectively. Fluid-saturated, equilibrium crystallisation experiments were performed on a St. Kitts basaltic andesite, with three different fluid compositions (XH2O = 1.0, 0.66 and 0.33) at 2.4 kbar, 950–1025 °C, and fO2 = NNO ? 0.6 to NNO + 1.2 log units. Experiments reproduce lava liquid lines of descent and many xenolith assemblages, but fail to match xenolith and lava phenocryst mineral compositions, notably the very An-rich plagioclase. The strong positive correlation between experimentally determined plagioclase-melt KdCa–Na and dissolved H2O in the melt, together with the occurrence of Al-rich mafic lavas, suggests that parental magmas were water-rich (> 9 wt% H2O) basaltic andesites that crystallised over a wide pressure range (1.5–6 kbar). Comparison of experimental and natural (lava, xenolith) mafic mineral composition reveals that whereas olivine in lavas is predominantly primocrysts precipitated at low-pressure, pyroxenes and spinel are predominantly xenocrysts formed by disaggregation of plutonic mushes. Overall, St. Kitts xenoliths and lavas testify to mid-crustal differentiation of low-MgO basalt and basaltic andesite magmas within a trans-crustal, magmatic mush system. Lower crustal ultramafic cumulates that relate parental low-MgO basalts to primary, mantle -derived melts are absent on St. Kitts.  相似文献   

10.
Rare-earth-element, radiogenic and oxygen isotope, and mineral chemical data are presented for tholeiitic and alkaline Quaternary volcanism from Karasu Valley (Hatay, southeastern Turkey). Karasu Valley is the northern segment of the Dead Sea transform fault and is filled with flood-basalt type volcanics of Quaternary age. This valley is an active fault zone that is known as “Karasu fault,” extending in a NE-SW direction. The Karasu Valley basaltic volcanics (KVBV) are subaphyric to porphyritic, with variable amounts of olivine, clinopyroxene, and plagioclase phenocrysts. Alkali basalts are generally characterized by high contents of olivine, clinopyroxene, and plagioclase phenocrysts. Their groundmass contains olivine, clinopyroxene, plagioclase, and Fe-Ti oxides. Tholeiitic basalts are subaphyric to porphyritic (high contents of olivine, clinopyroxene, and plagioclase). Their groundmass is similar to that of alkali basalts. The range of olivine phenocryst and microlite compositions for all analyzed samples is Fo81 to Fo43. Plagioclase compositions in both tholeiitic and alkali basalts range from andesine, An38 to bytownite, An72. Clinopyroxene compositions range from diopside to calcic augite. Most of the olivine, plagioclase, and clinopyroxene phenocrysts are normally zoned and/or unzoned. Fe-Ti oxides in both series are titanomagnetite and ilmenite.

Based on normative and geochemical data, the Karasu Valley basaltic volcanics are mostly olivine and quartz-tholeiites, and relatively lesser amount of alkali olivine-basalts. KVBV have low K2O/Na2O ratios, typically between 0.25 and 0.45. Olivine- and quartz-tholeiites are older than alkali olivine-basalts. Olivine tholeiites have Zr/Nb and Y/Nb ratios similar to alkaline rocks, but their Ba/Nb, Ba/La, and La/Nb ratios are slightly higher than alkali olivine-basalts. In contrast, quartz-tholeiites have the highest Ba/Nb, Ba/La, Zr/Nb, and Y/Nb and the lowest Nb/La ratios among the KVBV. Alkali basalts have 87Sr/86Sr and 143Nd/144Nd ratios ranging from 0.703353 to 0.704410 and 0.512860 to 0.512910, respectively. In contrast, quartz-tholeiites have higher 87Sr/86Sr and lower 143Nd/144Nd ratios, which vary from 0.704410 to 0.705490 and 0.512628 to 0.512640, respectively. Olivine tholeiites have intermediate isotopic compositions ranging from 0.703490 to 0.704780 and 0.512699 to 0.512780, respectively. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb isotopic ratios of KVBV range from 18.817 to 19.325, 15.640 to 15.718, and 39.054 to 39.223, respectively. The range of O isotope values is between +5.84 and +7.97‰. The higher O and Sr isotopes in olivine- and quartz-tholeiites relative to alkali olivine-basalts can be explained by contamination of magmas by crustal materials.

The KVBV have intraplate chemistry similar to that of other tholeiitic and alkaline basalts in other within-plate environments, and isotopes range from isotopically depleted mantle to enriched isotope compositions similar to some enriched ocean islands. Trace-element and isotope data indicate that the KVBV are derived from a common OIB-like asthenospheric mantle source, but they have experienced different degrees of crustal contamination during their ascent to the surface, contemporaneous with little fractional crystallization. Although quartz-tholeiites display significant effects of crustal contamination, alkali olivine-basalts appear to have negligible or no crustal contamination in their geesis.  相似文献   

11.
Miocene volcanism of the Oglakci region (Sivrihisar, Eskisehir) in northwestern Central Anatolia, Turkey, is represented by basaltic and trachytic groups of rocks. Samples of both groups have been investigated using mineral-chemical data together with whole-rock major-, trace-element, and radiogenic Sr-Nd isotopic data. The basaltic volcanic rocks consist of mugearites and shoshonites, whereas the trachytic rocks include trachytes, latite, and rhyolite. Both groups are of alkaline character. The basaltic rocks contain plagioclase (An29-63), alkali feldspar (Or12-74), olivine, orthopyroxene (En64-67), clinopyroxene (Wo43-48), biotite (Mg#82-88), and Fe-Ti oxide phenocrysts, whereas the trachytic rocks contain plagioclase (An21-64), alkali feldspar (Or10-53), clinopyroxene (Wo41-49), amphibole (Mg#64-83), biotite (Mg#79-85), Fe-Ti oxide, titanite, apatite, and quartz phenocrysts. The measured 87Sr/86Sr ratios of basaltic samples range from 0.7045 to 0.7048, and those of trachytic samples from 0.7054 to 0.7056. The basaltic samples have 143Nd/144Nd ratios ranging from 0.512753 to 0.512737, and those of trachytic samples are 0.512713 to 0.512674. Isotopic, major-, and trace-element data suggest that the Oglakci volcanic rocks are products of postcollisional magmatism and originated from a complex interplay of crustal assimilation, magma mixing, and fractional crystallization processes following the demise of Neotethys. Trace-element characters also are consistent with an OIB-like mantle source. These volcanic rocks probably were associated with extensional tectonics, which occurred within the Anatolian plate as a result of collision of the Eurasian and Afro-Arabian plates during the neotectonic evolution of Turkey.  相似文献   

12.
The products of the 1974 eruption of Fuego, a subduction zone volcano in Guatemala, have been investigated through study of silicate melt inclusions in olivine. The melt inclusions sampled liquids in regions where olivine, plagioclase, magnetite, and augite were precipitating. Comparisons of the erupted ash, groundmass, and melt inclusion compositions suggest that the inclusions represent samples of liquids present in a thermal boundary layer of the magma body. The concentrations of H2O and CO2 in glass inclusions were determined by a vacuum fusion manometric technique using individual olivine crystals (Fo77 to Fo71) with glass inclusion compositions that ranged from high-alumina basalt to basaltic andesite. Water, Cl, and K2O concentrations increased by a factor of two as the olivine crystals became more iron-rich (Fo77 to Fo71) and as the glass inclusions increased in SiO2 from 51 to 54 wt.% SiO2. The concentration of H2O in the melt increased from 1.6 wt.% in the least differentiated liquid to about 3.5% in a more differentiated liquid. Carbon dioxide is about an order of magnitude less abundant than H2O in these inclusions. The gas saturation pressures for pure H2O in equilibrium with the melt inclusions, which were calculated from the glass inclusion compositions using the solubility model of Burnham (1979), are given approximately by P(H2O)(Pa)=(SiO2−48.5 wt.%) × 1.45 × 107. The concentrations of water in the melt and the gas saturation pressures increased from about 1.5% to 3.5% and from 300 to 850 bars, respectively, during pre-eruption crystallization.  相似文献   

13.
The anorthite content of plagioclase grains (XAn) in 12 rocks from the layered series of the Skaergaard intrusion has been studied by electron microprobe (typically ∼30 core and ∼70 rim analyses per thin section). Mean core compositions vary continuously from An66 at the base of the layered series (LZa) to An32–30 at the top. On the other hand, crystal rims are of approximately constant composition (An50 ± 1) from the LZa to the lower Middle Zone (MZ). Above the MZ, core and rim compositions generally overlap. Profiles across individual plagioclase grains from the lower zone show that most crystals have an external zone buffered at XAn ∼50 ± 1. The simplest explanation for these features is that during postcumulus crystallization in the lower zone, interstitial liquids passed through a density maximum. This interpretation is consistent with proposed liquid lines of descent that predict silica enrichment of the liquid associated with the appearance of cumulus magnetite.  相似文献   

14.
Summary ¶Fine- to coarse-grained plutonic nodules within the Petrazza pyroclastics (Paleo-Stromboli I period) consist of gabbroic rocks with variable amounts of interstitial material. They are characterised by cumulate textures and low pressure modal mineralogy formed by plagioclase (An96–87)+clinopyroxene (Mg-v 82–94)+olivine (Fo83–74)±amphibole±opaque minerals; the interstitial material consists of newly crystallised microlites (quenching) of plagioclase (An73–55)+amphibole+clinopyroxene±olivine±biotite±opaques and highly variable amounts of residual glasses that range in composition from shoshonite and high-K basaltic andesite to high-K andesite and latite. The interstitial material has a relatively high but variable degree of vesicularity. The whole rock incompatible element abundances are lower than – but the patterns are typical of – in subduction related magmas and the incompatible trace-elements are well correlated with the amount of the interstitial material. The Sr, Pb and Nd isotopic ratios resemble those of the extrusive rocks of Stromboli older series and the mineral chemistry of the gabbros is similar to that of the HKCA Paleo-Stromboli lavas. Modal mineralogy, mineral chemistry and chemical-isotopic whole rock compositions suggest that the cumulus portions of the gabbroic nodules crystallised from basaltic magmas compositionally compatible with those erupted by Stromboli volcano. The interstitial material does not represent the residual liquid after in situ crystallisation of the gabbros; it is also distinct from the juvenile host andesite magma. Textural evidence, Fe–Mg mineral/liquid partioning and mass balance calculations indicate that the interstitial material (quench crystals and vesicular glass) derived from infiltrated hydrous basaltic liquid undercooling and vesiculation of which occurred during the eruption of the Petrazza pyroclastics.Received April 17, 2002; revised version accepted November 14, 2002 Published online June 2, 2003  相似文献   

15.
Tertiary volcanism in the İkizce region at the western edge of the eastern Pontides paleo-magmatic arc is represented by basaltic and andesitic rocks associated with sediments deposited in a shallow basin environment. The basaltic rocks contain plagioclase (An58–80), olivine (Fo82–84), clinopyroxene (Wo44–48En35–42Fs7–17), hornblende (Mg# = 0.68–0.76) phenocrysts, and magnetite microcrysts, whereas the andesitic rocks include plagioclase (An25–61), clinopyroxene (Wo46–49En38–43Fs11–13), hornblende (Mg# = 0.48–0.81), biotite (Mg# = 0.48–0.60) phenocrysts, titanomagnetite, apatite, and zircon microcrysts.Geochemical data indicate magmatic evolution from tholeiitic-alkaline transitional to calc-alkaline characteristics with medium-K contents. The geochemical variation in the rocks can be explained by fractionation of common mineral phases such as clinopyroxene, olivine, hornblende, plagioclase, magnetite, and apatite. The trace elements’ distributions of the volcanic rocks show similarities to those of E-Type MORB, have a shape that is typical of rocks from subduction-related tectonic setting with enrichment in LILE and to a lesser extent in LREE, but depletion in HFSE. The rocks evolved from a parental magma derived from an enriched source formed by subduction induced metasomatism of basaltic rocks, the latter formed through clinopyroxene ± olivine controlled fractionation in a high level magma chamber. The andesitic rocks developed through hornblende ± plagioclase controlled fractionation in shallow level magma chamber(s).  相似文献   

16.
Partial melting experiments on plagioclase (An60) and diopside have been carried out using pairs of large crystals to investigate textures and kinetics of melting. The experiments were done at one atmosphere pressure as a function of temperature (1,190–1,307° C) and time (1.5–192 h). Melting took place mainly at the plagioclase-diopside contact planes. Reaction zones composed of fine mixtures of calcic plagioclase and melt were developed from the surface of the plagioclase crystal inward. There exists a critical temperature, below which only a few % melting can occur over the duration of the experiments. This sluggish melting is caused by slow NaSi-CaAl diffusion in plagioclase, because the plagioclase crystal must change its composition to produce albite-rich cotectic melts. Diffusion in the solid also affects the chemical composition of the melts. During initial melting, potassium is preferentially extracted from plagioclase because K-Na diffusion in plagioclase is faster than that of NaSi-CaAl. This also causes a shift in the cotectic compositions. Above the critical temperature, on the other hand, melting is promoted by a metastable reaction in which the plagioclase composition does not change, and which produces melts with compositional gradients along the original An60-diopside tie line. The critical temperature is determined by the intersection of the cotectic and the An60-diopside tie line. Interdiffusion coefficients of plagioclase-diopside components in the melt are estimated from melting rates above the critical temperature by using a simplified steady-state diffusion model (e.g., 10–8 cm2/sec at 1,300° C).Many examples of reaction zones due to partial melting have been described as spongy or fingerprint-like textures in xenoliths. Metastable melting above the critical temperature is considered to take place in natural melting where there is a high degree of melting. However, we cannot exclude the possibility of disequilibrium created by sluggish melting controlled by diffusion in the minerals. If melting occurs close to the solidus, this process can be important even for partial melting in the upper mantle.  相似文献   

17.
Compositional and thermal convection in magma chambers   总被引:7,自引:1,他引:7  
Magma chambers cool and crystallize at a rate determined by the heat flux from the chamber. The heat is lost predominantly through the roof, whereas crystallization takes place mainly at the floor. Both processes provide destabilizing buoyancy fluxes which drive highly unsteady, chaotic convection in the magma. Even at the lowest cooling rates the thermal Rayleigh number Ra is found to be extremely large for both mafic and granitic magmas. Since the compositional and thermal buoyancy fluxes are directly related it can be shown that the compositional Rayleigh number Rs (and therefore a total Rayleigh number) is very much greater than Ra. In the case of basaltic melt crystallizing olivine Rs is up to 106 times greater than Ra. However compositional and thermal buoyancy fluxes are roughly equal. Therefore thermal and compositional density gradients contribute equally to convection velocities in the interior of the magma. Effects of thermal buoyancy generated by latent heat release at the floor are included.The latent heat boundary layer at the floor of a basaltic chamber is shown to be of the order of 1 m thick with very low thermal gradients whereas the compositional boundary layer is about 1 cm thick with large compositional gradients. As a consequence, the variation in the degree of supercooling in front of the crystal-liquid interface is dominated by compositional effects. The habit and composition of the growing crystals is also controlled by the nature of the compositional boundary layer. Elongate crystals are predicted to form when the thickness of the compositional boundary layer is small compared with the crystal size (as in laboratory experiments with aqueous solutions). In contrast, equant crystals form when the boundary layer is thicker than the crystals (as in most magma chambers). Instability of the boundary layer in the latter case gives rise to zoning within crystals. Diffusion of compatible trace elements through the boundary layer can also explain an inverse correlation, observed in layered intrusions, between Ni concentration in olivine and the proportion of Ni-bearing phases in the crystallizing assemblage.  相似文献   

18.
The origin of island arc high-alumina basalts   总被引:5,自引:1,他引:5  
A detailed examination of the hypothesis that high-alumina basalts (HAB) in island arcs are primary magmas derived by 50–60% partial melting of subducted ocean crust eclogite shows that this model is unlikely to be viable. Evidence suggests that the overwhelming majority of arc HAB are porphyritic lavas, enriched in Al2O3 either by protracted prior crystallization of olivine and clinopyroxene, or by plagioclase phenocryst accumulation in magmas of basaltic andesite to dacite composition. Experimentally-determined phase relationships of such plagioclase-enriched (non-liquid) compositions have little bearing on the petrogenesis of arc magmas, and do not rule out the possibility that arc HAB can be derived by fractionation of more primitive arc lavas. Although models invoking eclogite-melting can match typical arc HAB REE patterns, calculations indicate that the Ni and Cr contents of proposed Aleutian primary HAB are many times lower than such models predict. In contrast, Ni vs Sc and Cr vs Sc trends for arc HAB are readily explained by olivine (+Cr-sp) and clinopyroxene-dominated fractionation from more primitive arc magmas. GENMIX major element modelling of several HAB compositions as partial melts of MORB eclogite, using appropriate experimentally (26–34 kb)-determined garnet and omphacite compositions yields exceptionally poor matches, especially for CaO, Na2O, MgO and Al2O3. These mismatches are easily explained if the HAB are plagioclase-accumulative. Groundmasses of arc HAB are shown to vary from basaltic andesite to dacite in composition. Crystal fractionation driving liquid compositions toward dacite involves important plagioclase separation, resulting in development of significant negative Eu anomalies in more evolved lavas. Plagioclase accumulation in such evolved liquids tends to diminish or eliminate negative Eu anomalies. Therefore, the absence of positive Eu anomaly in a plagioclase-phyric HAB does not indicate that plagioclase has not accumulated in that lava. In addition, we show that plagioclase phenocrysts in arc HAB are not in equilibrium with the liquids in which they were carried (groundmass). Exceptional volumes of picrite and olivine basalt occur in the Solomons and Vanuatu arcs; the presence in lavas from these and other arcs (Aleutian, Tonga) of olivine phenocrysts to Fo94, finds no ready explanation in the primary eclogite-derived HAB model. We suggest that most lavas in intra-oceanic arcs are derived from parental magmas with >10% MgO; fractionation of olivine (+Cr-sp) and clinopyroxene drives liquids to basalt compositions with <7% MgO, but plagioclase nucleation is delayed by their low but significant (<1%?) H2O contents. Thus evolved liquid compositions in the basaltic andesite—andesite range may achieve relatively high Al2O3 contents (<17.5%). The majority of arc basalts, however, have Al2O3 contents in excess of 18%, reflecting plagioclase accumulation. We give new experimental data to show that HAB liquids may be generated by anhydrous, low-degree (<10%) partial melting of peridotite at P<18 kb. Relative to arc HAB, these experimental melts have notably higher Mg#(69–72) and are in equilibrium with olivine Fo87–89. Only further detailed trace element modelling will show if they might be parental magmas for some arc HAB.  相似文献   

19.
Fe-rich tholeiitic liquids are preserved as chilled pillows and as the chilled base of a 27 meter thick macrorhythmic layer in the Pleasant Bay mafic-silicic layered intrusion. The compositions of olivine (Fo1) and plagioclase (An13−8) in these extremely fine grained rocks suggest that they represent nearly end stage liquids that formed by fractionation of tholeiitic basalt. Their major element compositions (∼17.5 wt% FeOT and 54 wt%SiO2) closely resemble highly evolved glasses in the Loch Ba ring dike and some recent estimates of end-stage liquids related to the Skaergaard layered intrusion, and are consistent with recent experimental studies of tholeiite fractionation. Their trace element compositions are consistent with extensive earlier fractionation of plagioclase, olivine, clinopyroxene, ilmenite, magnetite and apatite. The mineral assemblage of the chilled rocks (olivine, clinopyroxene, quartz, ilmenite and magnetite), apatite saturation temperatures, and very low Fe3+/Fe2+indicate conditions of crystallization at temperatures of about 950 °C and f O 2 about two log units below FMQ. Cumulates that lie about 3 meters above the chilled base of the macrorhythmic layer contain cumulus plagioclase, olivine, clinopyroxene, ilmenite, apatite and zircon. This mineral assemblage and the Fe-Mg ratio in clinopyroxene cores suggest that this cumulate was in equilibrium with a liquid having a composition identical to that of the chilled margin which lies directly beneath it. The high FeOT and low SiO2 concentrations of this cumulate (23.3 and 45.8 wt%, respectively) are comparable to those in late stage cumulates of the Skaergaard and Kiglapait intrusions. This association of a chilled liquid and cumulate in the Pleasant Bay intrusion suggests that late stage liquids in tholeiitic layered intrusions may have been more SiO2-rich than field-based models suggest and lends support to recent experimental studies of tholeiite fractionation at low f O2 which indicate that saturation of an Fe-Ti oxide phase should cause FeOT to decrease in the remaining liquid. Received: 17 January 1997 / Accepted: 10 June 1997  相似文献   

20.
Mid-Oceanic Ridge Basalt (MORB) samples collected from southern East Pacific Rise (SEPR) have been investigated. These highly phyric plagioclase basalts (HPPB) and moderately phyric plagioclase basalts (MOPB) show rare cumulate and vitrophyric textures with plagioclase (>10% as phenocryst) and abundant glass (>72%). Electron Probe Micro Analysis (EPMA) showed large compositional variations in the megacrysts as well as microcrysts of plagioclase (An62 to An82), olivine (Fo78 to Fo87), pyroxene (ferroaugite to augite) and iron oxides, mostly titaniferous magnetite. Olivine grains show high Mg# (>80%) and distinctly low in NiO (0.01–0.2%). Ferroan trevorite (NiO =16.22 and FeO(t) =83.06) a characteristic meteoritic mineral has been identified from the olivine megacrysts of MORB, possibly attributed to Ni-enrichment, resulted from heterogeneity of the lower mantle. Wide range of An composition in plagioclase is indicative of large pressure range of crystal nucleation under decompression at a depth of ∼70 km (An82) up to the ocean spreading centre. Absence of zoning observed in all the minerals present in the MORB samples, possibly attributed to unmixing and dominant fractionation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号