首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
Most methods of homogenization of climate data are applied to time series of a single variable, such as daily maximum temperature(Tmax) or daily minimum temperature(Tmin). Consequently, the physical relationship among different variables, e.g., TmaxTmin, may be distorted after homogenization of climate series of individual variables. The authors develop a solution to improve consistency among diurnal temperature records, while using the Multiple Analysis of Series for Homogenization(MASH) method to homogenize the observation series of daily mean temperature(Tm), Tmin, and Tmax at 545 stations in China for the period 1960–2011, called CHTM2.0. In the previous version of this homogenized dataset based on MASH(CHTM1.0) for the period 1960–2008, there are a few records(0.039% of the total) that are physically inconsistent. For developing CHTM2.0, the authors apply additional adjustments for each day with inconsistent temperature records, in order to hold TmaxTmTmin. Although the additional adjustments are barely influential for estimating long-term climate trends in China as a whole(because very few records are additionally adjusted), the newly introduced solution improves the physical consistency throughout the dataset. It is also helpful for developing more reasonable homogenized climate datasets with regard to physical consistency among multiple variables. Based on CHTM2.0, the annual Tmax/Tm/Tmin series averaged over China for the period 1960–2011 show significant warming trends of about 0.19/0.25/0.34°C per decade, respectively. Large warming trends of up to 0.425/0.596/ 0.704°C per decade occur in northeastern and northwestern China.  相似文献   

2.
A set of homogenized monthly mean surface air temperature(SAT) series at 32 stations in China back to the 19 th century had previously been developed based on the RHtest method by Cao et al.,but some inhomogeneities remained in the dataset.The present study produces a further-adjusted and updated dataset based on the Multiple Analysis of Series for Homogenization(MASH) method.The MASH procedure detects 33 monthly temperature records as erroneous outliers and152 meaningful break points in the monthly SAT series since 1924 at 28 stations.The inhomogeneous parts are then adjusted relative to the latest homogeneous part of the series.The new data show significant warming trends during 1924–2016 at all the stations,ranging from 0.48 to 3.57?C(100 yr)~(-1),with a regional mean trend of 1.65?C(100 yr)~(-1);whereas,the previous results ranged from a slight cooling at two stations to considerable warming,up to 4.5?C(100 yr)~(-1).It is suggested that the further-adjusted data are a better representation of the large-scale pattern of climate change in the region for the past century.  相似文献   

3.
In this paper we report an analysis of sampling error uncertainties in mean maximum and minimum temperatures (Tmax and Tmin) carried out on monthly,seasonal and annual scales,including an examination of homogenized and original data collected at 731 meteorological stations across China for the period 1951-2004.Uncertainties of the gridded data and national average,linear trends and their uncertainties,as well as the homogenization effect on uncertainties are assessed.It is shown that the sampling error variances of homogenized Tmax and Tmin,which are larger in winter than in summer,have a marked northwest-southeast gradient distribution,while the sampling error variances of the original data are found to be larger and irregular.Tmax and Tmin increase in all months of the year in the study period 1951-2004,with the largest warming and uncertainties being 0.400℃ (10 yr)-1 + 0.269℃ (10 yr)-1 and 0.578℃ (10 yr)-1 + 0.211℃ (10 yr)-1 in February,and the least being 0.022℃ (10 yr)-1 + 0.085℃ (10 yr)-1 and 0.104℃ (10 yr)-1 +0.070℃ (10 yr)-1 in August.Homogenization can remove large uncertainties in the original records resulting from various non-natural changes in China.  相似文献   

4.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

5.
Based on an in-homogeneity adjusted dataset of the monthly mean temperature, minimum and maximum temperature, this paper analyzes the temporal characteristics of Urban Heat Island (UHI) intensity at Wuhan Station, and its impact on the long-term trend of surface air temperature change recorded during 1961–2015 by using an urban-rural method. Results show that UHI effect is obvious near Wuhan Station in the past 55 years, especially for minimum temperature. The strongest UHI intensity occurs in summer and the weakest in winter. For the period 1961–2004, UHI intensity undergoes a significant increase near the urban station, with the increase especially large for the period 1988–2004, but the last 10 years witness a significant decrease, with the decrease in minimum temperature being more significant than that of maximum temperature. The annual mean urban warming and its contribution to overall warming are 0.18?C/10yr and 48.8% respectively for the period 1961–2015, with a more significant and larger urbanization effect seen in Tmin than Tmax. Thus, a large proportion warming, about half of the overall increase in annual mean temperature, as observed at the urban station, can be attributed to the rapid urbanization in the past half a century.  相似文献   

6.
Daily precipitation for 1960–2011 and maximum/minimum temperature extremes for 1960–2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyzed with a main focus on the trends and variabilities of daily extreme occurrences.Results show significant increases in daily extreme warm temperatures and decreases in daily extreme cold temperatures,defined as the number of days in which daily maximum temperature(Tmax)and daily minimum temperature(Tmin)are greater than the 90th percentile and less than the10th percentile,respectively.Generally,the trend magnitudes are larger in indices derived from Tmin than those from Tmax.Trends of percentile-based precipitation indices show distinct spatial patterns with increases in heavy precipitation events,defined as the top 95th percentile of daily precipitation,in western and northeastern China and in the low reaches of the Yangtze River basin region,and slight decreases in other areas.Light precipitation,defined as the tail of the5th percentile of daily precipitation,however,decreases in most areas.The annual maximum consecutive dry days(CDD)show an increasing trend in southern China and the middle-low reach of the Yellow River basin,while the annual maximum consecutive wet days(CWD)displays a downtrend over most regions except western China.These indices vary significantly with regions and seasons.Overall,occurrences of extreme events in China are more frequent,particularly the night time extreme temperature,and landmasses in China become warmer and wetter.  相似文献   

7.
Surface air temperatures recorded over the past three decades at the weather stations located in Lahore (anindustrialized and densely populated city) and Mianwali (a small and sparsely populated city) were analyzed in order tostudy their climatic trend.Lahore,where meteorological data are recorded at two weather stations (city station and air-port station) indicates a cooling trend,of about 0.5℃ per record period of 1953—1992,for the airport station (31°31′N,74°24′E) and a slight warming trend,of about 0.2℃,for the city station (31°33′N,74°20′E) for the record period of 1950—1992.The Mianwali weather station (32°33′N,71°31′E) also shows a slight cooling trend,of about 0.4℃ per recordperiod of 1959—1992.The climatic variability at these stations was studied by computing seasonal and annual tempera-ture anomalies.The results are explained in terms of the local environmental conditions.  相似文献   

8.
Reconciling upper-air temperature trends derived from radiosonde and satellite observations is a necessary step to confidently determine the global warming rate. This study examines the raw and homogenized radiosonde observations over China and compares them with layer-mean atmospheric temperatures derived from satellite microwave observations for the lower-troposphere(TLT), mid-troposphere(TMT), upper-troposphere(TUT), and lower-stratosphere(TLS) by three research groups. Comparisons are for averages over China, excluding the Tibetan Plateau, and at individual stations where metadata contain information on radiosonde instrument changes. It is found that major differences between the satellite and radiosonde observations are related to artificial systematic changes. The radiosonde system updates in the early 2000 s over China caused significant discontinuities and led the radiosonde temperature trends to exhibit less warming in the middle and upper troposphere and more cooling in the lower stratosphere than satellite temperatures. Homogenized radiosonde data have been further adjusted by using the shift-point adjustment approaches to match with satellite products for China averages. The obtained trends during 1979–2015 from the re-adjusted radiosonde observation are respectively 0.203 ± 0.066, 0.128 ± 0.044, 0.034 ± 0.039, and –0.329 ± 0.135 K decade–1 for TLT, TMT, TUT, and TLS equivalents. Compared to satellite trends, the re-adjusted radiosonde trends are within 0.01 K decade–1 for TMT and TUT, 0.054 K decade–1 warmer for TLT, and 0.051 K decade–1 cooler for TLS. The results suggest that the use of satellite data as a reference is helpful in identifying and removing inhomogeneities of radiosonde temperatures over China and reconciling their trends to satellite microwave observations. Future efforts are to homogenize radiosonde temperatures at individual stations over China by using similar approaches.  相似文献   

9.
Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensemble Empirical Mode Decomposition. The study was based on a homogenized daily surface air temperature (SAT) dataset for the period 1955–2003. The annual cycle here is referred to as a refined modulated annual cycle (MAC). The results show that spring at Beijing has arrived significantly earlier by about 2.98 d (10 yr)-1, of which about 1.85 d (10 yr)-1 is due to changes in the annual cycle and 1.13 d (10 yr)-1 due to the long-term warming trend. Variations in the MAC component explain about 92.5% of the total variance in the Beijing daily SAT series and could cause as much as a 20-day shift in the onset of spring from one year to another. The onset of spring has been advancing all over northern China, but more significant in the east than in the west part of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40%–60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55°–80°N, 50°–110°E), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China.  相似文献   

10.
Monthly mean surface air temperatures and precipitation at 20 meteorological stations in the Jinsha River Valley(JRV) of southwest China were analyzed for temporal-spatial variation patterns during the period 1961-2010.The magnitude of a trend was estimated using Sen's Nonparametric Estimator of Slope approach.The statistical significance of a trend was assessed by the MK test.The results showed that mean annual air temperature has been increasing by 0.08℃/decade during the past 50 years as a whole.The climate change trend in air temperature was more significant in the winter(0.13℃/decade) than in the summer(0.03℃/decade).Annual precipitation tended to increase slightly thereafter and the increasing was mainly during the crop-growing season.Both the greatest variation of the annual mean temperature and annual precipitation were observed at the dry-hot valley area of middle reaches.Significant warming rates were found in the upper reaches whereas the dry-hot basins of middle reaches experienced a cooling trend during the past decades.Despite of the overall increasing in precipitation,more obvious upward-trends were found in the dry-hot basins of middle reaches whereas the upper reaches had a drought trend during the past decades.  相似文献   

11.
Two homogenized datasets of daily maximum temperature (Tmax), mean temperature (Tm), and minimum temperature (Tmin) series in China have recently been developed. One is CHTM3.0, based on the Multiple Analysis of Series for Homogenization (MASH) method, and includes 753 stations for the period 1960–2013. The other is CHHTD1.0, based on the Relative Homogenization test (RHtest), and includes 2419 stations over the period 1951–2011. The daily Tmax/Tm/Tmin series at 751 stations, which are in both datasets, are chosen and compared against the raw dataset, with regard to the number of breakpoints, long-term climate trends, and their geographical patterns. The results indicate that some robust break points associated with relocations can be detected, the inhomogeneities are removed by both the MASH and RHtest method, and the data quality is improved in both homogenized datasets. However, the differences between CHTM3.0 and CHHTD1.0 are notable. By and large, in CHHTD1.0, the break points detected are fewer, but the adjustments for inhomogeneities and the resultant changes of linear trend estimates are larger. In contrast, CHTM3.0 provides more reasonable geographical patterns of long-term climate trends over the region. The reasons for the differences between the datasets include: (1) different algorithms for creating reference series for adjusting the candidate series—more neighboring stations used in MASH and hence larger-scale regional signals retained; (2) different algorithms for calculating the adjustments—larger adjustments in RHtest in general, partly due to the individual local reference information used; and (3) different rules for judging inhomogeneity—all detected break points are adjusted in CHTM3.0, based on MASH, while a number of break points detected via RHtest but without supporting metadata are overlooked in CHHTD1.0. The present results suggest that CHTM3.0 is more suitable for analyses of large-scale climate change in China, while CHHTD1.0 contains more original information regarding station temperature records.  相似文献   

12.
Daily minimum temperature (Tmin) and maximum temperature (Tmax) data of Huairou station in Beijing from 1960 to 2008 are examined and adjusted for inhomogeneities by applying the data of two nearby reference stations. Urban effects on the linear trends of the original and adjusted temperature series are estimated and compared. Results show that relocations of station cause obvious discontinuities in the data series, and one of the discontinuities for Tmin are highly significant when the station was moved from downtown to suburb in 1996. The daily Tmin and Tmax data are adjusted for the inhomogeneities. The mean annual Tmin and Tmax at Huairou station drop by 1.377°C and 0.271°C respectively after homogenization. The adjustments for Tmin are larger than those for Tmax, especially in winter, and the seasonal differences of the adjustments are generally more obvious for Tmin than for Tmax. Urban effects on annual mean Tmin and Tmax trends are ?0.004°C/10 year and ?0.035°C/10 year respectively for the original data, but they increase to 0.388°C/10 year and 0.096°C/10 year respectively for the adjusted data. The increase is more significant for the annual mean Tmin series. Urban contributions to the overall trends of annual mean Tmin and Tmax reach 100% and 28.8% respectively for the adjusted data. Our analysis shows that data homogenization for the stations moved from downtowns to suburbs can lead to a significant overestimate of rising trends of surface air temperature, and this necessitates a careful evaluation and adjustment for urban biases before the data are applied in analyses of local and regional climate change.  相似文献   

13.
Characterizing the response of temperature variables to agricultural irrigation is expected to be an important challenge for understanding the full impact of water management on regional climate change. In this paper, the trend analysis and abrupt change test were applied to detect the global warming effect. Then, the quantitative irrigation-induced cooling effects on temperature variables between April and August from 1970 to 2010 in the Lhasa River basin were estimated using historical time series of gridded meteorological records and a map of the area equipped for irrigation. Trends in the maximum temperature (Tmax) were statistically positive, and a significant increasing trend for the minimum temperature (Tmin) was detected at the 0.01 and 0.05 confidence levels. No abrupt changing point of warming was detected in the time series for Tmax. The abrupt changes in Tmin in the irrigation concentration period took place in 1995, 5 years later than the corresponding change in April. Affected by global warming, the increase in temperature was the largest in July and August, when the irrigation-induced cooling effect was also the most significant. The irrigation-induced cooling effect for Tmax and Tmin in April–August (except for June) ranged from − 0.017 to − 0.009 °C/decade and from − 0.011 to − 0.001 °C/decade, respectively, and the cooling effect for diurnal temperature range (DTR) ranged from − 0.011 to 0 °C/decade. The cooling effect on temperature reached above 0.01 °C in July and August, but for the growing seasons, the effect was weak, only 0.001 °C. The Tmax and Tmin trends during the whole growing seasons decreased by both 0.002 °C/decade, respectively, with a 10% increase in irrigation land proportion. Even in July and August, the trends were expected to decrease by about 0.005 °C/decade with a 10% increase in irrigation land proportion. The irrigation-induced cooling effect could partially slow global warming.  相似文献   

14.
Regional changes in California surface temperatures over the last 80 years are analyzed using station data from the US Historical Climate Network and the National Weather Service Cooperative Network. Statistical analyses using annual and seasonal temperature data over the last 80 years show distinctly different spatial and temporal patterns in trends of maximum temperature (Tmax) compared to trends of minimum temperature (Tmin). For trends computed between 1918 and 2006, the rate of warming in Tmin is greater than that of Tmax. Trends computed since 1970 show an amplified warming rate compared to trends computed from 1918, and the rate of warming is comparable between Tmin and Tmax. This is especially true in the southern deserts, where warming trends during spring (March?CMay) are exceptionally large. While observations show coherent statewide positive trends in Tmin, trends in Tmax vary on finer spatial and temporal scales. Accompanying the observed statewide warming from 1970 to 2006, regional cooling trends in Tmax are observed during winter and summer. These signatures of regional temperature change suggest that a collection of different forcing mechanisms or feedback processes must be present to produce these responses.  相似文献   

15.
Changes in daily climate extremes in the arid area of northwestern China   总被引:3,自引:0,他引:3  
There has been a paucity of information on trends in daily climate and climate extremes, especially for the arid region. We analyzed the changes in the indices of climate extremes, on the basis of daily maximum and minimum air temperature and precipitation at 59 meteorological stations in the arid region of northwest China over the period 1960–2003. Twelve indices of extreme temperature and six indices of extreme precipitation are examined. Temperature extremes show a warming trend with a large proportion of stations having statistically significant trends for all temperature indices. The regional occurrence of extreme cool days and nights has decreased by ?0.93 and ?2.36 days/decade, respectively. Over the same period, the occurrence of extreme warm days and nights has increased by 1.25 and 2.10 days/decade, respectively. The number of frost days and ice days shows a statistically significant decrease at the rate of ?3.24 and ?2.75 days/decade, respectively. The extreme temperature indices also show the increasing trend, with larger values for the index describing variations in the lowest minimum temperature. The trends of Min Tmin (Tmax) and Max Tmin (Tmax) are 0.85 (0.61) and 0.32 (0.17)?°C/decade. Most precipitation indices exhibit increasing trends across the region. On average, regional maximum 1-day precipitation, annual total wet-day precipitation, and number of heavy precipitation days and very wet days show insignificant increases. Insignificant decreasing trends are also found for consecutive dry days. The rank-sum statistic value of most temperature indices exhibits consistent or statistically significant trends across the region. The regional medians after 1986 of Min Tmin (Tmax), Max Tmin (Tmax), warm days (nights), and warm spell duration indicator show statistically more larger than medians before 1986, but the frost days, ice days, cool days (nights), and diurnal temperature range reversed. The medians of precipitation indices show insignificant change except for consecutive dry days before and after 1986.  相似文献   

16.
Changes in climatic variables at the sub-basins scale (having different features of land cover) are crucial for planning, development and designing of water resources infrastructure in the context of climate change. Accordingly, to explore the features of climate changes in sub-basins of the Source Region of Yellow River (SRYR), absolute changes and trends of temperature variables, maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tavg) and diurnal temperature range (DTR), were analyzed annually and seasonally by using daily observed air temperature dataset from 1965 to 2014. Results showed that annual Tmax, Tmin and Tavg for the SRYR were experiencing warming trends respectively at the rate of 0.28, 0.36 and 0.31°C (10 yr)?1. In comparison with the 1st period (1965-1989), more absolute changes and trends towards increasing were observed during the 2nd period (1990-2014). Apart from Tangnaihai (a low altitude sub-basin), these increasing trends and changes seemed more significant in other basins with highest magnitude during winter. Among sub-basins the increasing trends were more dominant in Huangheyan compared to other sub-basins. The largest increase magnitude of Tmin, 1.24 and 1.18°C (10 yr)?1, occurred in high altitude sub-basins Jimai and Huangheyan, respectively, while the smallest increase magnitude of 0.23°C (10 yr)?1 occurred in a low altitude sub-basin Tangnaihai. The high elevation difference in Tangnaihai probably was the main reason for the less increase in the magnitude of Tmin. In the last decade, smaller magnitude of trend for all temperature variables signified the signal of cooling in the region. Overall, changes of temperature variables had significant spatial and seasonal variations. It implies that seasonal variations of runoff might be greater or different for each sub-basin.  相似文献   

17.
利用中国691个无缺测站点的经均一化处理及质量控制的逐日最高、最低气温资料,基于冷昼日数、冷夜日数、霜冻日数、冰冻日数、月最低气温极大值以及月最低气温极小值等6个由世界气象组织定义的极端气温指数,分析了1961~2014年中国冬季的极端低温变化特征。结果表明:冷昼日数、冷夜日数、霜冻日数以及冰冻日数在全国大部分地区均呈现下降的趋势,下降趋势较为明显的区域集中在东北南部、华北、西北东部、华东、华中、西南及高原地区,全国整体上下降幅度分别为-0.9 d/10 a、-1.7 d/10 a、-1.5 d/10a和-1.4 d/10 a。最低气温极大值和最低气温极小值在全国范围内则主要呈现上升的趋势,全国整体上分别为0.4℃/10 a和0.6℃/10 a;极端低温天数在20世纪60年代至70年代中后期呈现波动状,随后自20世纪70年代末80年代初至21世纪初呈明显下降趋势,从2006年左右以后其下降趋势较之前有所减缓,是对全球变暖减缓背景下的气候响应;与其他时间段相比,20世纪60年代至70年代为冬季极端低温事件较为频发的时间段,这可能与该时段陆地冷高压频繁活动有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号