首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vegetation restoration is identified as an effective approach to control soil erosion and affects soil detachment and resistance to concentrated flow on the Loess Plateau. However, the effects of vegetation restoration at gully heads in loess-tableland remains unclear. This study was performed to investigate the effects of nine vegetation restoration types at gully heads on soil detachment rate (Dr) and soil resistance to concentrated flow (i.e. soil erodibility, Kr and critical shear stress, τc). Undisturbed soil samples were collected from nine vegetation-restored lands and one slope cropland (as the control) and were subjected to a hydraulic flume to obtain Dr values of gully heads under six inflow discharges (0.5–3.5 L s-1). The results showed that the Dr values of nine revegetated gully heads were 77.11% to 95.81% less than that of slope cropland, and the grassland dominated by Cleistogenes caespitosa and the shrubland dominated by Hippophae rhamnoides had a relatively greater decrease in Dr than those of other seven restoration types. The Dr value of nine revegetated gully heads could be better simulated by stream power than by flow velocity and shear stress and was also significantly affected by soil disintegration rate (positively), soil bulk density, saturated hydraulic conductivity, organic matter content, and water-stable aggregate stability (negatively). Additionally, roots with diameters of 0 to 0.5 mm showed a greater effect on Dr than those with larger diameters. Compared to cropland, the nine restored types reduced Kr by 76.26% to 94.26% and improved τc by 1.51 to 4.68 times. The decrease in Kr and the increase in τc were significantly affected by organic matter content, water-stable aggregate, mean weight diameter of aggregate and root mass density. The combination of grass species (Cleistogenes caespitosa) and shrub (Hippophae rhamnoides) could be considered the best vegetation restoration types for improving soil resistance of gully heads to concentrated flow. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
The Southern U.S. Piedmont ranging from Virginia to Georgia underwent severe gully erosion over a century of farming mainly for cotton (1800s–1930s). Although tree succession blanketed much of this region by the middle 20th century, gully erosion still occurs, especially during wet seasons. While many studies on gully erosion have focused on soil loss, soil carbon exchange, and stormwater response, the impacts on soil moisture, groundwater, and transpiration remain under-studied. Using a newly developed 2D hydrologic model, this study analyzes the impacts of gully erosion on hillslope hydrologic states and fluxes. Results indicate that increases in gully incision lead to reduction in groundwater table, root zone soil moisture, and transpiration. These reductions show seasonal variations, but the season when the reduction is maximum differs among the hydrologic variables. Spatially, the impacts are generally the greatest near the toe of the hillslope and reduce further away from it, although the reductions are sometimes non-monotonic. Overall, the impacts are larger for shallow gully depths and diminish as the incision goes deeper. Lastly, the extent of impacts on a heterogeneous hillslope is found to be very different with respect to a homogeneous surrogate made of dominant soil properties. These results show that through gully erosion, the landscape not only loses soil but also a large amount of water from the subsurface. The magnitude of water loss is, however, dependent on hydrogeologic and topographic configuration of the hillslope. The results will facilitate (a) mapping of relative susceptibility of landscapes to gullying, (b) understanding of the impacts of stream manipulations such as due to dredging on hillslope eco-hydrology, (c) prioritization of mitigation measures to prevent gullying, and (d) design of observation campaigns to assess the impacts of gullying on hydrologic response.  相似文献   

3.
Soil moisture is essential for vegetation restoration in arid and semi-arid regions. Ascertaining the vertical distribution and transportation of soil moisture under different vegetation types has a profound effect on the ecological construction. In this study, the soil moisture at a depth of 500 cm for four typical vegetation types, including Robinia pseudoacacia, Caragana korshinskii, Stipa bungeana, and corn, were investigated and compared in the Zhifanggou watershed of the Loess plateau. Additionally, hydrogen and oxygen stable isotopes were detected to identify the transport mechanism of soil moisture. The results showed vertical distribution and transportation of soil moisture were different under different vegetation types. Depth-averaged soil moisture under S. bungeana and corn generally increased along the profile, while C. korshinskii and R. pseudoacacia showed weakly increasing and relatively stable after an obvious decreasing trend (0–40 cm). The soil moisture under R. pseudoacacia was lower than that under other vegetation types, especially in deep layer. However, the effect of R. pseudoacacia on soil moisture in the topsoil (< 30 cm) could be positive. For R. pseudoacacia (160–500 cm), C. korshinskii (0–500 cm), and S. bungeana (0–100 cm), the soil moisture declined with increased in vegetation age. Planting arbor species such as R. pseudoacacia intensified the decline of soil moisture on the Loess Plateau. The capacity of evaporation fractionation of soil moisture followed the sequence: corn > S. bungeana > R. pseudoacacia > C. korshinskii. The δ18O values in soil water fluctuated across the profile. The δ18O values changed sharply in upper layer and generally remained stable in deep layer. However, in middle layer, the vertical distribution characteristics of the δ18O values were different under different vegetation types. We estimated that piston flow was the main mode of precipitation infiltration, and the occurrence of preferential flow was related to vegetation types. These results were helpful to improve the understanding of the response of deep soil moisture to vegetation restoration and inform practices for sustainable water management.  相似文献   

4.
Pikes Peak Highway is a partially paved road between Cascade, Colorado and the summit of Pikes Peak. Significant gully erosion is occurring on the hillslopes due to the concentration of surface runoff, the rearrangement of drainage pathways along the road surface and adjacent drainage ditches, and the high erodibility of weathered Pikes Peak granite that underlies the area. As a result, large quantities of sediment are transported to surrounding valley networks causing significant damage to water quality and aquatic, wetland, and riparian ecosystems. This study establishes the slope/drainage area threshold for gullying along Pikes Peak Highway and a cesium‐137 based sediment budget highlighting rates of gully erosion and subsequent valley deposition for a small headwater basin. The threshold for gullying along the road is Scr = 0 · 21A–0·45 and the road surface reduces the critical slope requirement for gullying compared to natural drainages in the area. Total gully volume for the 20 gullies along the road is estimated at 5974 m3, with an erosion rate of 64 m3 yr–1 to 101 m3 yr–1. Net valley deposition is estimated at 162 m3 yr–1 with 120 m3 yr–1 unaccounted for by gullying. The hillslope–channel interface is decoupled with minimal downstream sediment transport which results in significant local gully‐derived sedimentation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Serious soil erosion on the Loess Plateau has be-come the focus of world attention.As early as the1950s China has started soil and water conservation work on the Loess Plateau in order to improve the lo-cal eco-environment and mitigate the threat of the coarse sediment in the middle Yellow River to the river channel at downstream.Facts proved that the best alternative is the integrated management of hill slopes and gullies in combination with biological and engineering measures.Biological m…  相似文献   

6.
Headcut erosion is associated with major hydraulic changes induced by the gully head of concentrated flow. However, the variation in the hydraulic characteristics of the headcut erosion process is still not clear in the gully region of the Loess Plateau. A series of rainfall combined scouring experiments (flow discharges ranging from 3.6 to 7.2 m3 hr−1, with 0.8 mm min−1 rainfall intensity) were conducted on experimental plots to clarify the variation in the hydraulic parameters induced by gully head and erosion processes under different flow discharges. The results showed that concentrated flows in the catchment area and gully bed were turbulent (Reynolds number ranging from 1,876 to 6,693) and transformed between supercritical and subcritical (Froude number ranging from 0.96 to 3.73). The hydraulic parameters, such as the flow velocity, Reynolds number, shear stress, stream power, Darcy–Weisbach friction factor, and unit stream power in the catchment area were 0.45–0.59 m s−1, 2086–6693, 1.96–5.33 Pa, 0.89–2.86 W m−2, 0.08–0.16, and 0.023–0.031 m s−1, respectively. When the concentrated flows dropped from the gully head, the hydraulic parameters in the gully bed decreased by 3.39–26.07%, 1.49–29.99%, 65.19–67.14%, 67.25–74.96%, 28.53–61.31%, and 67.82–77.14%, respectively, which contributed to the flow energy consumption at the gully head. As flow discharge increased, Reynolds number, shear stress, and stream power increased, while flow velocity, Froude number, unit stream power, and Darcy–Weisbach friction factor did not. The flow energy consumption at the gully head was 9.66–10.13, 13.25–13.74, 15.68–16.41, and 19.28–20.25 J s−1, respectively, under different flow discharges and accounted for 60.58–68.50% of the flow energy consumption of the experimental plots. Generally, the sediment discharges increased rapidly at the initial stage, then increased slowly, and finally reached a steady state condition, which showed a significant declining logarithmic trend with experimental duration (P<.01) and increased with increasing flow discharge. Accordingly, the flow energy consumption was significantly correlated with the sediment yield. These findings could improve our understanding of the hydraulic properties and flow energy characteristics of headcut erosion.  相似文献   

7.
Gully erosion is an environmental problem recognized as one of the worst land degradation processes worldwide. Insight into regional gully perturbations is required to combat the serious on- and off-site impacts of gullying on a catchment management scale. In response, we intersect different perspectives on gully erosion-specific views in South Africa (SA), a country that exhibits various physiographic properties and spans 1.22 million km2. While the debate surrounding gully origin continues, there is consensus that anthropogenic activities are a major contemporary driver. The anthropogenic impact caused gullying to transcend climatic, geomorphic, and land-use boundaries, although it becomes more prominent in central to eastern SA. Soil erodibility plays a crucial role in what extent of gully erosion severity is attained from human impact, contributing to the east–west imbalance of erosion in SA. Soil erosion rates from gullying and badlands are limited but suggest that it ranges between 30 and 123 t ha−1 yr−1 in the more prominent areas. These soil loss rates are comparable to global rates where gullying is concerned; moreover, they are up to four orders of magnitude higher than the estimated baseline erosion rate. On a national scale, the complexity of gullying is evident from the different temporal timings of (re)activation or stabilizing and different evolution rates. Continued efforts are required to understand the intricate interplay of human activities, climate, and preconditions determining soil erodibility. In SA, more medium- to long-term studies are required to understand better how changing control factors affect gully evolution. More research is needed to implement and appraise mitigation measures, especially using indigenous knowledge. Establishing (semi)-automated mapping procedures would aid in gully monitoring and assessing the effectiveness of implemented mitigation measures. More urgently, the expected changes in climate and land-use necessitate further research on how environmental change affects short-term gully erosion dynamics.  相似文献   

8.
Gully rehabilitation can contribute to catchment management by stabilizing erosion and reducing downstream sediment yields, yet the globally observed responses are variable. Developing the technical basis for gully rehabilitation and establishing guidelines for application requires studies that evaluate individual rehabilitation measures in specific environments. An eight-year field experiment was undertaken to evaluate sediment yield and vegetation responses to several gully rehabilitation measures. The rehabilitation measures aimed to reduce surface runoff into gully head cuts, trap sediment on gully floors and increase vegetation cover on gully walls and floors. The study occurred in a savanna rangeland in northeast Australia. Two gullies were subject to treatments while four gullies were monitored as untreated controls. A runoff diversion structure reduced headcut erosion from 4.3 to 1.2 m2 yr−1. Small porous check dams and cattle exclusion reduced gully total sediment yields by more than 80%, equivalent to a reduction of 0.3 to 2.4 t ha−1 yr−1, but only at catchment areas less than 10 ha. Fine sediment yields (silt and clay) were reduced by 7 and 19% from the two treated gullies, respectively. The porous check dam deposits contained a lower percentage of the fine fraction than the parent soil. Significant regeneration of gully floor vegetation occurred, associated with trapping of organic litter and fine sediment. Increases in vegetation cover and biomass were comprised of native perennial grasses, trees and shrubs. In variable climates, long-term gully rehabilitation will progress during wetter periods, and regress during droughts. Understanding linkages between rehabilitation measures, their hydrologic, hydraulic and vegetation effects and gully sediment yields is important to defining the conditions for their success.  相似文献   

9.
Vegetation restoration has significant effects on soil properties and vegetation cover and thus affects soil detachment by overland flow. Few studies have been conducted to evaluate this effect in the Loess Plateau where a Great Green Project was implemented in the past decade. This study was carried out to quantify the effects of age of abandoned farmland under natural vegetation restoration on soil detachment by overland flow and soil resistance to erosion as reflected by soil erodibility and critical shear stress. The undisturbed soil samples were collected from five abandoned farmlands with natural restoration age varying from 3 to 37 years. The samples were subjected to flow scouring in a 4.0 m long by 0.35 m wide hydraulic flume under six different shear stresses ranging from 5.60 to 18.15 Pa. The results showed that the measured soil detachment capacities in currently cultivated farmland were 24.1 to 35.4 times greater than those of the abandoned farmlands. For the abandoned farmlands, soil detachment capacities fluctuated greatly due to the complex effects of root density and biological crust thickness, and could be simulated well by flow shear stress and biological crust thickness with a power function (NSE = 0.851). Soil erodibility of abandoned farmlands decreased gradually with restoration age and reached a steady stage when restoration age was greater than 28 years. The critical shear stress of the natural abandoned farmlands declined when restoration age was less than 18 years and then increased due to the episodic influences of vegetation recovery and biological crust development. More studies in the Loess Plateau are necessary to quantify the relationship between soil detachment capacity and biological crust thickness for better understanding the mechanism of soil detachment under natural vegetation restoration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Soil erosion hinders the recovery and development of ecosystems in semiarid regions. Rainstorms, coupled with the absence of vegetation and improper land management, are important causes of soil erosion in such areas. Greater effort should be made to quantify the initial erosion processes and try to find better solutions for soil and water conservation. In this research, 54 rainfall simulations were performed to assess the impacts of vegetation patterns on soil erosion in a semiarid area of the Loess Plateau, China. Three rainfall intensities (15 mm h‐1, 30 mm h‐1 and 60 mm h‐1) and six vegetation patterns (arbors‐shrubs‐grass ‐A‐S‐G‐, arbors‐grass‐shrubs ‐A‐G‐S‐, shrubs‐arbors‐grass ‐S‐A‐G‐, shrubs‐grass‐arbors ‐S‐G‐A‐, grass‐shrubs‐arbors ‐G‐S‐A‐ and grass‐arbors‐shrubs ‐G‐A‐S‐) were examined at different slope positions (summits, backslopes and footslopes) in the plots (33.3%, 33.3%, 33.3%), respectively. Results showed that the response of soil erosion to rainfall intensity differed under different vegetation patterns. On average, increasing rainfall intensity by 2 to 4 times induced increases of 3.1 to 12.5 times in total runoff and 6.9 to 46.4 times in total sediment yield, respectively. Moreover, if total biomass was held constant across the slope, the patterns of A‐G‐S and A‐S‐G (planting arbor at the summit position) had the highest runoff (18.34 L m‐2 h‐1) and soil losses (197.98 g m‐2 h‐1), while S‐A‐G had the lowest runoff (5.51 L m‐2 h‐1) and soil loss (21.77 g m‐2 h‐1). As indicated by redundancy analysis (RDA) and Pearson correlation results, a greater volume of vegetation located on the back‐ and footslopes acted as effective buffers to prevent runoff generation and sediment yield. Our findings indicated that adjusting vegetation position along slopes can be a crucial tool to control water erosion and benefit ecosystem restoration on the Loess Plateau and other similar regions of the world. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

11.
On the Chinese Loess Plateau, serious slope and gully erosion have caused a decrease in soil water capacity and fertility, which has resulted in vegetation degradation and a reduction in agricultural productivity. Great efforts have been made to restore vegetation to control soil erosion, but the efficiency of artificial revegetation is not satisfactory. Natural revegetation is an alternative. However, while soil seed banks are an essential source for natural revegetation, their composition and distribution on eroded slopes remains unknown. In addition, whether or not seed loss during soil erosion limits vegetation colonization is also unknown. In this work, soil seed bank composition and distribution were studied in three situations. Specifically, three main microsites were selected as sampling plots: fish‐scale pits, as artificial deposited micro‐topography; under tussocks, as trap microsites; and open areas, as eroded areas. Soil samples were collected at depths of 0–2 cm, 2–5 cm and 5–10 cm. The soil seed bank was identified using germination experiments, and a total of 34 species were identified. The dominant species in the soil seed bank were annual/biennial herbs with an average proportion more than 90% and density reaching 19,000 seeds m‐2. The pioneer species Artemisia scoparia was especially abundant. The dominant later successional species, such as Lespedeza davurica, Artemisia giraldii, Artemisia gmelinii, Stipa bungeana and Bothriochloa ischcemum, were present in the soil at a density that ranged from 38 to 1355 seeds m‐2. Compared with the eroded open areas, the fish‐scale pits retained a higher density of seeds, and the tussocks retained a larger number of species. However, there was no serious reduction of the soil seed bank in the erosion areas. The present study indicates that, on these eroded slopes, the soil seed bank is not the key factor limiting the colonization of natural vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Although obvious in the field, the impact of road building on hydrology and gullying in Ethiopia has rarely been analysed. This study investigates how road building in the Ethiopian Highlands affects the gully erosion risk. The road between Makalle and Adwa in the highlands of Tigray (northern Ethiopia), built in 1993–1994, caused gullying at most of the culverts and other road drains. While damage by runoff to the road itself remains limited, off‐site effects are very important. Since the building of the road, nine new gullies were created immediately downslope of the studied road segment (6·5 km long) and seven other gullies at a distance between 100 and 500 m more downslope. The road induces a concentration of surface runoff, a diversion of concentrated runoff to other catchments, and an increase in catchment size, which are the main causes for gully development after road building. Topographic thresholds for gully formation are determined in terms of slope gradient of the soil surface at the gully head and catchment area. The influence of road building on both the variation of these thresholds and the modification of the drainage pattern is analysed. The slope gradient of the soil surface at the gully heads which were induced by the road varies between 0·06 and 0·42 m m?1 (average 0·15 m m?1), whereas gully heads without influence of the road have slope gradients between 0·09 and 0·52 m m?1 (average 0·25 m m?1). Road building disturbed the equilibrium in the study area but the lowering of topographic threshold values for gullying is not statistically significant. Increased gully erosion after road building has caused the loss of fertile soil and crop yield, a decrease of land holding size, and the creation of obstacles for tillage operations. Hence roads should be designed in a way that keeps runoff interception, concentration and deviation minimal. Techniques must be used to spread concentrated runoff in space and time and to increase its infiltration instead of directing it straight onto unprotected slopes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Based on data from 148 hydrometric stations in the Yellow River Basin, an analysis of regional scale relationship, or the relationship between specific sediment yield and drainage basin area, has been undertaken in the study area of the Loess Plateau. For different regions, scale relationship in log-log ordinate can be fitted by two types of lines: straight and parabola, and for each line, a function was fitted using regression analysis. The different scale relationships have been explained in terms of the difference in surface material distribution and landforms. To offset the scale-induced influence, calcu-lation has been done based on the fitted functions, in order to adjust the data of specific sediment yield to a common standard area. Based on the scaled data, a map of specific sediment yield was con-structed using Kriging interpolation. For comparison, a map based on the un-scaled data of specific sediment yield was also constructed using the same method. The two maps show that the basic pattern of specific sediment yield was basically the same. The severely eroded areas (Ys >10000 t km-2a-1) were at the same locations from Hekouzhen to Longmen in the middle Yellow River Basin. However, after the adjustment to a common standard area, the very severely eroded area (Ys >20000 t km-2a-1) became much enlarged because after the adjustment, all the values of Ys in the lower river basin in those regions became much larger than before.  相似文献   

14.
While it is well recognized that vegetation can affect erosion, sediment yield and, over longer timescales, landform evolution, the nature of this interaction and how it should be modeled is not obvious and may depend on the study site. In order to develop quantitative insight into the magnitude and nature of the influence of vegetation on catchment erosion, we build a landscape evolution model to simulate erosion in badlands, then calibrate and evaluate it against sediment yield data for two catchments with contrasting vegetation cover. The model couples hillslope gravitational transport and stream alluvium transport. Results indicate that hillslope transport processes depend strongly on the vegetation cover, whereas stream transport processes do not seem to be affected by the presence of vegetation. The model performance in prediction is found to be higher for the denuded catchment than for the reforested one. Moreover, we find that vegetation acts on erosion mostly by reducing soil erodibility rather than by reducing surface runoff. Finally, the methodology we propose can be a useful tool to evaluate the efficiency of previous revegetation operations and to provide guidance for future restoration work. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
A general trend of decreasing soil loss rates with increasing vegetation cover fraction is widely accepted. Field observations and experimental work, however, show that the form of the cover‐erosion function can vary considerably, in particular for low cover conditions that prevail on arid and semiarid hillslopes. In this paper the structured spatial distribution of the vegetation cover and associated soil attributes is proposed as one of the possible causes of variation in cover–erosion relationships, in particular in dryland environments where patchy vegetation covers are common. A simulation approach was used to test the hypothesis that hillslope discharge and soil loss could be affected by variation in the spatial correlation structure of coupled vegetation cover and soil patterns alone. The Limburg Soil Erosion Model (LISEM) was parameterized and verified for a small catchment with discontinuous vegetation cover at Rambla Honda, SE Spain. Using the same parameter sets LISEM was subsequently used to simulate water and sediment fluxes on 1 ha hypothetical hillslopes with simulated spatial distributions of vegetation and soil parameters. Storms of constant rainfall intensity in the range of 30–70 mm h?1 and 10–30 min duration were applied. To quantify the effect of the spatial correlation structure of the vegetation and soil patterns, predicted discharge and soil loss rates from hillslopes with spatially structured distributions of vegetation and soil parameters were compared with those from hillslopes with spatially uniform distributions. The results showed that the spatial organization of bare and vegetated surfaces alone can have a substantial impact on predicted storm discharge and erosion. In general, water and sediment yields from hillslopes with spatially structured distributions of vegetation and soil parameters were greater than from identical hillslopes with spatially uniform distributions. Within a storm the effect of spatially structured vegetation and soil patterns was observed to be highly dynamic, and to depend on rainfall intensity and slope gradient. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
While it has been demonstrated in numerous studies that the aboveground characteristics of the vegetation are of particular importance with respect to soil erosion control, this study argues the importance of separating the influence of vegetation on soil erosion rates into two parts: the impact of leaves and stems (aboveground biomass) and the influence of roots (belowground biomass). Although both plant parameters form inseparable constituents of the total plant organism, most studies attribute the impact of vegetation on soil erosion rates mainly to the characteristics of the aboveground biomass. This triggers the question whether the belowground biomass is of no or negligible importance with respect to soil erosion by concentrated flow. This study tried to answer this question by comparing cross‐sectional areas of concentrated flow channels (rills and ephemeral gullies) in the Belgian Loess Belt for different cereal and grass plant densities. The results of these measurements highlighted the fact that both an increase in shoot density as well as an increase in root density resulted in an exponential decrease of concentrated flow erosion rates. Since protection of the soil surface in the early plant growth stages is crucial with respect to the reduction of water erosion rates, increasing the plant root density in the topsoil could be a viable erosion control strategy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The cover and size distributions of surface rock fragment in hillslopes were investigated by using digital photographing and treating technique in a small catchment in wind-water erosion crisscross region of the Loess Plateau. The results indicated that the maximal cover of rock fragment was pre-sented at mid-position in steep hillslope. Rock fragment presented a general decreasing-trend along the hillslope in gentle hillslope. Rock fragment cover was positively related to gradient, rock fragment size decreased generally along the hillslope, and the size reduced with the gradient. The mean size of rock fragment was at a range of 6―20 mm in the steep hillslope, rock fragment size > 50 mm was rarely presented. The covers of rock fragment at different positions were markedly related to the quantities of rock fragment < 40 mm. The area of rock fragment of 2―50 mm accounted for 60% or more of the total area, dominating the distribution of rock fragment in the hillslopes.  相似文献   

18.
Near soil surface characteristics change significantly with vegetation restoration, and thus, restoration strategies likely affect soil erodibility. However, few studies have been conducted to quantify the effects of vegetation restoration strategies on soil erodibility in regions experiencing rapid vegetation restoration. This study was conducted to evaluate the effects of vegetation restoration strategies on soil erodibility, reflected by soil cohesion (Coh), penetration resistance (PR), saturated conductivity (Ks), number of drop impacts (NDI), mean weight diameter of soil aggregates (MWD), and soil erodibility K factor on the Loess Plateau. One slope farmland and five 25-year-restored lands covered by old world bluestem, korshinsk peashrub, shrub sophora, sea-buckthorn, and black locust were selected as test sites. The old world bluestem was restored via natural succession, while the other four lands were restored by artificial planting. A comprehensive soil erodibility index (CSEI) was produced by a weighted summation method to quantify the effects of vegetation restoration strategies on soil erodibility completely. The results showed that Coh, Ks, NDI, and MWD of the five restored lands were greater than those of the slope farmland. However, the PR and K of the five restored lands were less than those of the slope farmland. CSEI varied greatly under different restoration strategies, from 1 to 0.214. Compared with the control, these indices decreased on average by 68.2%, 78.6%, 72.7%, 75.8%, and 62.8% for old world bluestem, korshinsk peashrub, shrub sophora, sea-buckthorn, and black locust, respectively. The variation in soil erodibility was significantly influenced by biological crust thickness, bulk density, organic matter content, plant litter density, and root mass density. Shrub-lands via artificial planting, especially korshinsk peashrub, were considered the most effective restoration strategies to reduce soil erodibility on the Loess Plateau. The results are helpful for selecting vegetation restoration strategies and asking their benefits in controlling soil erosion. © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
To quantify the changes in flow energy, sediment yield and surface landform impacted by headcut height during bank gully erosion, five experimental platforms were constructed with different headcut heights ranging from 25 to 125 cm within an in situ active bank gully head. A series of scouring experiments were conducted under concentrated flow and the changes in flow energy, sediment yield and surface landform were observed. The results showed that great energy consumption occurred at gully head compared to the upstream area and gully bed. The flow energy consumption at gully heads and their contribution rates increased significantly with headcut height. Gully headcuts also contributed more sediment yield than the upstream area. The mean sediment concentrations at the outlet of plots were 2.3 to 7.3 times greater than those at the end of upstream area. Soil loss volume at gully heads and their contribution rates also increased with headcut height significantly. Furthermore, as headcut height increased, the retreat distance of gully heads increased, which was 1.7 to 8.9 times and 1.1 to 3.2 times greater than the incision depth of upstream area and gully beds. Positive correlations were found between energy consumption and soil loss, indicating that energy consumption could be used to estimate soil loss of headcut erosion. Headcut height had a significant impact on flow energy consumption, and thus influenced the changes in sediment yield and landform during the process of gully headcut erosion. Headcut height was one of the important factors for gully erosion control in this region. Further studies are needed to identify the role of headcut height under a wide condition. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Erosion and sediment yield from large and small watersheds exhibit different laws. Variations in surface runoff and sediment yield because of landuse change in four watersheds of different scales from 1 km2 to 73 km2 were analyzed. Due to reforestation and farmland terracing, surface runoff and sediment yield reduced by 20-100% and 10-100% respectively. Reductions in surface runoff were differed significantly under different precipitation regimes. For the large watershed (73 km2) landuse change had similar effects on surface runoff regardless of changing of precipitation. For the small watershed (1 km2) landuse change had fewer effects on surface runoff under high precipitation. The relative changes of sediment yield in the four watersheds under reforestation and farmland terracing decreased as precipitation increased from 350 mm to 650 mm, then increased as precipitation increased from 650 mm to 870 mm. Where initial forest coverage rate was below 45%, sediment yield decreased dramatically as forest coverage rate increased. Watershed management with aiming at reducing both surface runoff and sediment yield should be conducted both on sloping surfaces and in channels in large watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号