首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
1971-2000年青藏高原气候变化趋势   总被引:2,自引:2,他引:0  
Trends of annual and monthly temperature, precipitation, potential evapotranspi- ration and aridity index were analyzed to understand climate change during the period 1971–2000 over the Tibetan Plateau which is one of the most special regions sensitive to global climate change. FAO56–Penmen–Monteith model was modified to calculate potential evapotranspiration which integrated many climatic elements including maximum and mini- mum temperatures, solar radiation, relative humidity and wind speed. Results indicate gen- erally warming trends of the annual averaged and monthly temperatures, increasing trends of precipitation except in April and September, decreasing trends of annual and monthly poten- tial evapotranspiration, and increasing aridity index except in September. It is not the isolated climatic elements that are important to moisture conditions, but their integrated and simulta- neous effect. Moreover, potential evapotranspiration often changes the effect of precipitation on moisture conditions. The climate trends suggest an important warm and humid tendency averaged over the southern plateau in annual period and in August. Moisture conditions would probably get drier at large area in the headwater region of the three rivers in annual average and months from April to November, and the northeast of the plateau from July to September. Complicated climatic trends over the Tibetan Plateau reveal that climatic factors have nonlinear relationships, and resulte in much uncertainty together with the scarcity of observation data. The results would enhance our understanding of the potential impact of climate change on environment in the Tibetan Plateau. Further research of the sensitivity and attribution of climate change to moisture conditions on the plateau is necessary.  相似文献   

2.
Chen  Shaodan  Zhang  Liping  Zhang  Yanjun  Guo  Mengyao  Liu  Xin 《地理学报(英文版)》2020,30(1):53-67
Drought is one of the most frequent and widespread natural disasters and has tremendous agricultural, ecological, societal, and economic impacts. Among the many drought indices, the standardized precipitation index(SPI) based on monthly precipitation data is simple to calculate and has multiscale characteristics. To evaluate the applicability of high spatiotemporal resolution satellite precipitation products for drought monitoring, based on the Tropical Rainfall Measuring Mission(TRMM) products and station-based meteorological data, the SPI values at different time scales(1, 3, 6, and 12 months) were calculated for the period of 1998–2016 in the middle and lower reaches of the Yangtze River Basin(MLRYRB). The temporal correlations show that there is a high degree of consistency between calculations at the different time scales(1, 3, 6 and 12 months) based on the two data sources and that the amplitude of fluctuations decreases with increasing time scale. In addition, the Mann-Kendall(MK) test method was applied to analyze the trends from 1998 to 2016, and the results suggest that wetting trends clearly prevailed over drying trends. Moreover, a correlation analysis of the two data sources based on 60 meteorological stations was performed with the SPI values at different time scales. The correlation coefficients at the short time scales(1, 3, and 6 months) are all greater than 0.7, and the correlation coefficient at the long time scale(12 months) is greater than 0.5. In summary, the results demonstrate that the TRMM 3 B43 precipitation product provides a new data source that can be used for reliable drought monitoring in the MLRYRB.  相似文献   

3.
A brief review of the literature on point estimators in linear calibration problems is undertaken,Supportive evidence for the relative merits of the classical and inverse regression models,drawn in generalfrom the classical inferential and Bayesian approaches,is considered and the criteria for comparison ofthe estimators are discussed with respect to their suitability for certain classes of problems.Theperformance of the estimators is assessed with respect to determining the current value of ‘x’,thepercentage concentration of administered drug levels in blood in this example.No single‘best’methodof estimation appears to hold for all values of the unknown concentration when performance is assessedby criteria based on the mean square error (MSE).However,the inverse estimator would appear to besuperior to the classical for those values of unknown X close to x.  相似文献   

4.
In this paper we establish a model that expresses the coupled relationship between grain yield and agricultural labor changes in China, and present a preliminary discussion of the coupled processes involved in changes in these factors at the county level. Thus, we develop two coefficients on the basis of county-level statistical data for grain yield and agricultural labor for the years 1991, 2000, and 2010, namely, the grain-labor elasticity coefficient(GLEC) and the agricultural labor-transfer effect coefficient(ALTEC). The results of this study show that during the transformation process of agricultural development in China, different kinds of coupled relationships between grain yield and agricultural labor changes co-existed at the same time. For example, between 1991 and 2010, counties characterized by three different coupled modes(i.e., increasing grain yield and decreasing agricultural labor, increasing grain yield and agricultural labor, and decreasing grain yield and agricultural labor) account for 48.85%, 29.11%, and 19.74% of the total across the study area, respectively. Interestingly, a coupled relationship between increasing grain yield and decreasing agricultural labor is mainly concentrated in the traditional farming areas of China, while a coupled relationship between increasing grain yield and agricultural labor is primarily concentrated in pastoral areas and agro-pastoral ecotones in underdeveloped western China. At the same time, a coupled relationship between decreasing grain yield and agricultural labor is concentrated in areas that have experienced a rapid development transition in agriculture, especially the developed southeastern coast of China. The results of this study also show that between 1991 and 2010, 1961 counties experienced a decline in the proportion of agricultural labor; of these, 1452 are also characterized by increasing grain yield, 72.38% of the total. This coupled relationship between grain yield and changes in the proportion of agricultural labor shows a stepped fluctuation and has continually strengthened over time. Data show that mean values for the GLEC and ALTEC increased from –0.25 and –2.93 between 1991 and 2000 to –0.16and –1.78 between 2000 and 2010, respectively. These changes in GLEC and ALTEC illustrate that the influence of agricultural labor changes on increasing grain yields has gradually diminished. Finally, the results of this study reveal that the ‘Hu Huanyong Line' is a significant boundary sub-dividing this coupled relationship between grain yield and changes in agricultural labor.  相似文献   

5.
The frost-free period(FFP)first frost date(FFD) and last frost date(LFD) have been regard as the important climate variables for agricultural production. Understanding the spatio-temporal variations of the FFPFFD and LFD is beneficial to reduce the harmful impacts of climate change on agricultural production and enhance the agricultural adaptation. This study examined daily minimum temperatures for 823 national-level meteorological stationscalculated the values of FFDLFD and FFP for station-specific and region-specific from 1951 to 2012estimated the gradients of linear regression for station-specific moving averages of FFDLFD and FFPand assessed station-specific time series of FFP and detected the abrupt change. The results as follows: at both the station level and the regional levelthe FFP across China decreases with the increase of latitude from south to northand with the increase of altitude from east to west generally. At the station levelthe inter-annual fluctuations of FFDLFD and FFP in south and west agricultural regions are greater than those in north and east. At the regional levelexcluding the QT regiontemporal changes of FFP are relatively small in both the low-latitude and the high-latitude regionsbut for the mid-latitude regions. According to the linear trend gradients of the moving average values of station-specific FFDLFD and FFPFFD was delayedLFD advancedand FFP extended gradually over the 80% of China. Furthermorethe change magnitudes for FFDLFD and FFP in the north and east agricultural regions are higher than that in the southern and western. Among the 659 station-specific time series of FFP examined by the Mann-Kendall test341 stationslocated mainly in the north regionhave one identifiable and significant abrupt change. And at the 341 stations with identified abrupt changesmost(57%) abrupt changes occurred during 1991–2012followed by the periods of 1981–1990(28%)1971–1980(12%)and 1951–1970(3%). The spatio-temporal variations of FFDLFD and FFP would provide important guidance to agricultural practices.  相似文献   

6.
According to the meteorological observation data of 72 stations from 1960 to 2010 in the Huanghe (Yellow) River Watershed, China, the long-term variations of potential evapotranspiration, calculated in the modified Penman-Monteith model of Food and Agriculture Organization of the United Nations, were presented, as well as the meteorological causes for the decrease of potential evapotranspiration were discussed. Since 1960, temperature has risen significantly and potential evapotranspiration a decreasing trend, which indicated the existence of "Evaporation paradox" in the Huanghe River Watershed. This phenomenon was not consistent spatially or temporally with the increase of temperature, potential evapotranspiration decreased in spring, summer and winter, mainly over most parts of Shanxi and Henan, and some parts of Gansu, Ningxia, Inner Mongolia, and Shaanxi. During the recent half century, the trends of temperature and potential evapotranspiration were negatively correlated at most of the stations, while precipitation and potential evapotranspiration exhibited a contrary trend. Calculated in multiple regressions, the contribution to potential evapotranspiration change of related meteorological factors was discussed, including mean pressure, maximum and minimum temperature, sunshine hours, relative humidity and average wind speed. The decrease of wind speed in the Huanghe River Watershed may be the dominating factor causing potential evapotranspiration decreasing.  相似文献   

7.
To reveal the characteristics of evapotranspiration and environmental control factors of typical underlying surfaces(alpine wetland and alpine meadow)on the Qinghai-Tibetan Plateau,a comprehensive study was performed via in situ observations and remote sensing data in the growing season and non-growing season.Evapotranspiration was positively correlated with precipitation,the decoupling coefficient,and the enhanced vegetation index,but was energy-limited and mainly controlled by the vapor pressure deficit and solar radiation at an annual scale and growing season scale,respectively.Compared with the non-growing season,monthly evapotranspiration,equilibrium evaporation,and decoupling coefficient were greater in the growing season due to lower vegetation resistance and considerable precipitation.However,these factors were restricted in the alpine meadow.The decoupling factor was more sensitive to changes of conductance in the alpine wetland.This study is of great significance for understanding hydro-meteorological processes on the Qinghai-Tibetan Plateau.  相似文献   

8.
Based on panel data from 1991, 2000 and 2010 at the county level in China, this study analyzed the coupling characteristics and spatio-temporal patterns of agricultural labor changes and economic development under rapid urbanization using quantitative and GIS spatial analysis methods. Three primary conclusions were obtained.(1) During 1991–2010, China's agricultural labor at the county level showed a decreasing trend, down 4.91% from 1991 to 2000 and 15.50% from 2000 to 2010. In spatial distribution, agricultural labor force has evolved by decreasing eastward and increasing westward.(2) During 1991–2010, China's agricultural economy at the county level showed a sustained growth trend, with a total increase of 140.13%, but with clear regional differences. The proportion of agricultural output in national GDP gradually decreased, characterized by decreases in eastern China and increases in western China.(3) The coupling types of economic-labor elasticity coefficient are mainly growth in northwest China, for both the agricultural economy and labor, and are intensive in southeast China, with growth of the agricultural economy and reduction of agricultural labor. Regions with lagged, fading, and declining coupling types are generally coincident with the high incidence of poverty in China. However, different coupling types had a positive developing trend for 1991–2010. Finally, based on the coupling types and spatial distribution characteristics of economic-labor elasticity coefficients, some policy suggestions are proposed to promote the integration of the primary, secondary, and tertiary industries and the vitalization of rural economies.  相似文献   

9.
1960-2007年中国地表潜在蒸散发敏感性的时空变化(英文)   总被引:2,自引:0,他引:2  
Potential evapotranspiration (E0), as an estimate of the evaporative demand of the atmosphere, has been widely studied in the fields of irrigation management, crop water demand and predictions in ungauged basins (PUBs). Analysis of the sensitivity of E0 to meteorological factors is a basic research on the impact of climate change on water resources, and also is important to the optimal allocation of agricultural water resources. This paper dealt with sensitivity of E0 over China, which was divided into ten drainage systems, including Songhua River basin, Liaohe River basin, Haihe River basin, Yellow River basin, Yangtze River basin, Pearl River basin, Huaihe River drainage system, Southeast river drainage system, Northwest river drainage system and Southwest river drainage system. In addition, the calculation method of global radiation in Penman-Monteith formula was improved by optimization, and the sensitivities of Penman-Monteith potential evapotranspiration to the daily maximum temperature (STmax), daily minimum temperature (STmin), wind speed (SU2), global radiation (SRs) and vapor pressure (SVP) were calculated and analyzed based on the long-term meteorological data from 653 meteorological stations in China during the period 1960-2007. Results show that: (1) the correlation coefficient between E0 and pan evaporation increased from 0.61 to 0.75. E0 had the decline trends in eight of ten drainage systems in China, which indicates that "pan evaporation paradox" commonly exists in China from 1960 to 2007. (2) Spatially, Tmax was the most sensitive factor in Haihe River basin, Yellow River basin, Huaihe River drainage system, Yangtze River basin, Pearl River basin and Southeast river drainage system, and VP was the most sensitive factor in Songhua River Basin, Liaohe River basin, Northwest river drainage system while Rs was the most sensitive factor in Southwest river drainage system. For the nation-wide average, the most sensitive factor was VP, followed by Tmax, Rs, U2 and Tmin. In addition, the changes in sensitivity coefficients had a certain correlation with elevation. (3) Temporally, the maximum values of STmax and SRs occurred in July, while the maximum values of STmin, SVP and SU2 occurred in January. Moreover, trend analysis indicates that STmax had decline trends, while STmin, SU2, SRs and SVP had increasing trends.  相似文献   

10.
Maintenance of steady streamflow is a critical attribute of the continental river systems for safeguarding downstream ecosystems and agricultural production.Global climate change imposes a potential risk to water supply from the headwater by changing the magnitude and frequency of precipitation and evapotranspiration in the region.To determine if and to what extent the recent climate changes affected streamflow in major river systems,we examined the pattern of temporal variations in precipitation,temperature,evapotranspiration and changes in runoff discharge during 1958–2017 in the headwater region of the Yellow River in northeastern Tibetan Plateau.We identified 1989 as the turning point for a statistically significant 14% reduction in streamflow discharge(P 0.05) for the period 1989–2017 compared with 1958–1988,approximately coinciding with changes in the monthly distribution but not the interannual variations of precipitation,and detected a mismatch between precipitation and runoff after 2000.Both annual precipitation and runoff discharge displayed fourand eight-year cyclic patterns of changes for the period 1958–1988,and a six-year cyclic pattern of changes for the period 1989–2017,with two intensified two-year cyclic patterns in the changes of precipitation and a three-year cyclic pattern in the change of runoff further detected for the later period.Our results indicate that the temporal changes in runoff are not strictly consistent with the temporal variations of precipitation in the headwater region of Yellow River during the period 1958–2017.In particular,a full recovery in annual precipitation was not reflected in a full recovery in runoff toward the end of the study period.While a review of literature yielded no apparent evidence of raised evapotranspiration in the region due to recent warming,we draw attention to increased local retention of rainwater as a possible explanation of differential changes in precipitation and runoff.  相似文献   

11.
Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29 ℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.  相似文献   

12.
Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.  相似文献   

13.
This study focuses on the Lower Yellow River(LYR), which has experienced continuous erosion since the operation of Xiaolangdi Reservoir in 1999, and its spatiotemporal variation process is complex. Based on the single-step mode of the Delayed Response Model(DRM), we proposed a calculation method for simulating the accumulated erosion and deposition volume in the LYR. The coefficient of determination R2 between the calculated and measured values from 2000 to 2020 is 0.99. Currently, th...  相似文献   

14.
Spatial and temporal change patterns of air temperature (T), precipitation (P), relative humidity (RH), lower vapor pressure (VP), potential evapotranspiration (PET) and drought situation of 690 meteorological stations for all of China were evaluated in this study to understand the effects of warming on regional drought and hydrological processes. Here, the drought extent is expressed by aridity index (AI), which is the ratio of precipitation and reference crop evapotranspiration (ET0) calculated by FAO Penman-Monteith equation, taking into account air temperature, atmospheric humidity, solar radiation, and wind. Our results indicate that there are different patterns of climate change from 1961 to 2008 and from 1981 to 2008. Little precipitation change occurred in China and ET0 decreased from 1961 to 2008. But, the warming trend has intensified and the area with significant increasing precipitation has reduced since the early 1980’s and ET0 has increased in most areas of China from 1981 to 2008 and decreased from 1961 to 2008. The areas affected by drought have shifted from North China and Northeast China to East China and South China since 1981. It is speculated that the increasing warming intensity after 1981 possibly strengthened the power of potential evapotranspiration and resulted in drought in most areas of Northeast China, North China, eastern Southwest China, and especially in East China and South China.  相似文献   

15.
We investigated how dustfall flux (DF) and dust particle size (DPS) were affected by geomorphic conditions, wind speed, and precipitation using data from 27 sites in northern China. The sites with the greatest DF and greatest median diameter of dustfall (MDD) were primarily in desert regions and had extensive mobile sands. DF and MDD were lowest in agricultural regions, which had low levels of coarse particles because of human land use and high vegetation coverage that restrained blowing sand. DF values were higher and MDD values were lower in the western agricultural region than in the eastern agricultural region because the former is closer to desert regions and contains more fine dust that has traveled far. In regions with extensive desertified lands, DF values were lower than those in desert regions, and MDD values were greater than in agricultural regions, possibly due to coarsening of soil texture by desertification processes combined with higher vegetation coverage and soil moisture than in desert regions, thereby restraining blowing sand. Although high DF and MDD always coincided spatially with strong winds and low precipitation, the strong winds and low precipitation did not always mean high DF and MDD. High DF also coincided temporally with periods of low precipitation, but low precipitation did not always mean high DF. Thus, although the spatial trends in DF and DPS were controlled mostly by geomorphic conditions, and monthly trends in DF were controlled mainly by wind speed, weak wind and high precipitation can restrain the blowing sand at certain times and locations. Seasonal changes in DPS may be controlled simultaneously by geomorphic conditions, meteorological factors, and distance from source areas, not solely by the winter monsoon.  相似文献   

16.
Evapotranspiration is one of the key components of hydrological processes. Assessing the impact of climate factors on evapotranspiration is helpful in understanding the impact of climate change on hydrological processes. In this paper, based on the daily meteorological data from 1960 to 2007 within and around the Aksu River Basin, reference evapotranspiration (RET) was estimated with the FAO Penman-Monteith method. The temporal and spatial variations of RET were analyzed by using ARCGIS and Mann-Kendall method. Multiple Regression Analysis was employed to attribute the effects of the variations of air temperature, solar radiation, relative humidity, vapour pressure and wind speed on RET. The results showed that average annual RET in the eastern plain area of the Aksu River Basin was about 1100 mm, which was nearly twice as much as that in the western mountainous area. The trend of annual RET had significant spatial variability. Annual RET was reduced significantly in the southeastern oasis area and southwestern plain area and increased slightly in the mountain areas. The amplitude of the change of RET reached the highest in summer, contributing most of the annual change of RET. Except in some high elevation areas where relative humidity predominated the change of the RET, the variations of wind velocity predominated the changes of RET almost throughout the basin. Taking Kuqa and Ulugqat stations as an example, the variations of wind velocity accounted for more than 50% of the changes of RET.  相似文献   

17.
Runoff in the source region of a river makes up most of water resources in the whole basin in arid and semi-arid areas. It is very important for water resources management to timely master the latest dynamic changes of the runoff and quantitatively reveal its main driving factors. This paper aims to discover the variation heterogeneity of runoff and the impacts of climatic factors on this runoff in the source region of the Yellow River(SRYR) in China from 1961 to 2016. We divided SRYR into four sub-regions, and analyzed changes of their contributions to total runoff in SRYR. We also revealed the impacts of precipitation, temperature and potential evapotranspiration on runoff in each sub-region by constructing the regression relationships between them at multiple temporal scales. The changes of runoff in the four sub-regions and their contributions to the total runoff were not exactly consistent. The climatic variables’ changes also have heterogeneity, and runoff was mainly affected by precipitation compared to influences of temperature or potential evapotranspiration. Their impacts on runoff have spatiotemporal heterogeneity and can be reflected by very significant-linear regression equations.It provided a simple method to predict headwater runoff for better water management in the whole basin.  相似文献   

18.
This study firstly analyzed the shrinkage of winter wheat and the changes of cropping systems in the Hebei Plain from 1998 to 2010 based on the agricultural statistic data of 11 cities and meteorological data, including daily temperature, precipitation, water vapor, wind speed and minimum relative humidity data from 22 meteorological stations, and then calculated the water deficit and irrigation water resources required by different cropping systems, as well as the irrigation water resources conserved as a result of cropping system changes, using crop coefficient method and every ten-day effective precipitation estimation method. The results are as follows. 1) The sown areas of winter wheat in the 11 cities in the Hebei Plain all shrunk during the study period. The shrinkage rate was 16.07% and the total shrinkage area amounted to 49.62×104ha. The shrinkage was most serious in the Beijing-Tianjin-Tangshan metropolitan agglomerate, with a shrinkage rate of 47.23%. 2) The precipitation fill rate of winter wheat was only 20%–30%, while those of spring maize and summer maize both exceeded 50%. The irrigation water resources demanded by the winter wheat-summer maize double cropping system ranged from 400 mm to 530 mm, while those demanded by the spring maize single cropping system ranged only from 160 mm to 210 mm. 3) The water resources conserved as a result of the winter wheat sown area shrinkage during the study period were about 15.96×108m3/a, accounting for 27.85% of those provided for Beijing, Tianjin and Hebei by the first phase of the Mid-Route of the South-to-North Water Diversion Project.  相似文献   

19.
It is of necessity to investigate the adjustment of flood discharge capacity in the Lower Yellow River(LYR) because of its profound importance in sediment transport and flood control decision-making, and additionally its magnitude is influenced by the channel and upstream boundary conditions, which have significantly varied with the ongoing implementation of soil and water conservation measures in the Loess Plateau and the operation of the Xiaolangdi Reservoir. The braided reach between two hydrometric stations of Huayuankou and Gaocun in the LYR was selected as the study area. Different parameters in the study reach during the period 1986–2015 were calculated, covering bankfull discharge(the indicator of flood discharge capacity), the pre-flood geomorphic coefficient(the indicator of channel boundary condition), and the previous five-year average fluvial erosion intensity during flood seasons(the indicator of incoming flow and sediment regime). Functional linkages at scales of section and reach were then developed respectively to quantitatively demonstrate the integrated effects of channel and upstream boundary conditions on the flood discharge capacity.Results show that:(1) the reach-scale bankfull discharge in the pre-dam stage(1986–1999)decreased rapidly by 50%, accompanied with severe channel aggradation and main-channel shrinkage. It recovered gradually as the geometry of main channel became narrower and deeper in the post-dam stage, with the geomorphic coefficient continuously reducing to less than 15 m-1/2.(2) The response of bankfull discharge to the channel and upstream boundary conditions varied at scales of section and reach, and consequently the determination coefficients differed for the comprehensive equations, with a smallest value at the Jiahetan station and a highest value(0.91) at reach scale. Generally, the verified results calculated using the comprehensive equations agreed well with the corresponding measured values in 2014–2015.(3) The effect of channel boundary condition was more prominent than that of upstream boundary condition on the adjustment of bankfull discharge at the Jiahetan station and the braided reach, which was proved by a larger improvement in determination coefficients for the comprehensive equations and a better performance of geomorphic coefficient on the increase of bankfull discharge.  相似文献   

20.
Crop water productivity (CWP) agricultural development in water scarcity is one of the important indicators for sustainable area. There is serious conflict between water sup- ply and requirement in the Haihe River Basin. CWP of winter wheat and summer maize from 2003 to 2007 in the Haihe River Basin is estimated based on large-scale evapotranspiration (ET) and crop yield obtained by remote sensing technology. Spatial and temporal distribution of CWP of winter wheat and summer maize is investigated in this study. Results show that CWP of winter wheat in most parts of the study area varies from 1.02 kg/m3 to 1.53 kg/m3, and CWP of summer maize varies from 1.31 kg/m3 to 2.03 kg/m3. Multi-year averaged CWP of winter wheat and summer maize in the study area is about 1.19 kg/m3 and 1.59 kg/m3. CWP results show certain promotion potential to alleviate the water shortage in the Haihe River Basin. Correlation analysis of CWP, crop yield and ET shows that there is great potential for crop yield promotion without the growth in irrigation water. Large-scale CWP estimated by remote sensing technology in this study shows spatial distribution features, which could be used to real-time agricultural water resource management combined with crop yield and ET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号