首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文以Sentinel-1A数据为基础,通过永久散射体雷达干涉技术(PS-InSAR)得到无锡中心城区2018年10月至2020年10月地表形变监测数据,分析无锡中心城区地表形变情况和时空分布特征。结果表明:无锡市中心城区整体呈现“西北部抬升,南部沉降”的特点。监测时段形变速率范围为-14~20 mm/a,累积形变量达到112.5 mm。沉降较大区域主要在滨湖区高凯路-大通路附近。地面抬升主要位于惠山区玉祁镇-前洲镇所构成的片状区域,及梁溪区华源小区-五爱家园-恒隆广场-崇安寺一带。而新吴区和锡山区整体趋于稳定。对无锡市的建设规划及灾害预防具有指导意义。  相似文献   

2.
InSAR技术具有测量时间短、速度快、精度高等优点,可有效取代传统测量.SBAS-InSAR技术作为一种时序SAR技术,形变监测精度高,可达毫米级,在地面沉降中得到广泛应用.本文以德州城区为研究区域,利用2016年3月-2018年6月获取的31景Sentinel-1A影像展开研究,并且对比SAR影像滤波常用几种方法,定性分析自适应滤波、Boxcar滤波和Goldstein滤波的去噪效果;通过SBAS技术得到研究区域的时序形变、年均沉降速率以及累积沉降量等结果,发现最大累计沉降量达56 mm.本文研究表明,德州城区整体稳定,中心城区外围部分沉降,中东部略有抬升.此结论对德州市的地质灾害防治工作有一定意义.  相似文献   

3.
为长期有效监测郑州市地表沉降,本文采用SBAS-InSAR (Small baseline subset-Interferometry SAR)技术对29景覆盖郑州城区的Sentinel-1A影像数据进行处理,获得了郑州城区2015.04-2017.03地面沉降速率与累积沉降量。试验表明,郑州中心城区地表稳定,其余区域普遍存在地面沉降现象,主要沉降区为研究区西北部、北部、东部,下沉速率大部分位于0.6 mm/a-6 mm/a区间范围内,其沉降中心分别位于城区西北惠济区与城中金水区,最大下沉速率约为27.4 mm/a,最大累积下沉量约为70.4 mm,该试验结果为郑州城市规划建设提供参考。  相似文献   

4.
为研究青岛市中心城区地面沉降特点,本文以2019年至2020年期间45景Sentinel-1A和23景Sentinel-1B数据为基础,利用SBAS-InSAR技术对两组数据进行解算,获得了本文研究区的形变结果,并结合历史影像以及降水数据分析了该地区的沉降特点及影响因素。研究表明:1)该区最大形变量约为60 mm,沉降速率最大达到30 mm/a,呈现出西部沉降大于中心城区,中心城区沉降大于东部地区的特点;2)两组数据所得形变结果在空间分布上都具有较高的一致性且同名点在累积沉降量上吻合度较高;3)该地区沉降主要受工程施工影响,与降水也存在一定关系。该研究可为城市规划和未来发展提供参考依据。  相似文献   

5.
以徐州北部重要煤矿产地沛县为例,采用永久散射体时序分析技术(PS-In SAR)对2007~2011年间的18景ALOS PALSAR影像进行时序分析,反演了该地区这4 a间由于煤矿开采造成的地表形变过程。实验结果表明,(1)实验区域存在两处较大矿区形变,分别为沛城煤矿和孔庄煤矿,其沉降中心区沉降速率分别达到-38 mm/y和-18 mm/y,且与实际矿区的空间分布位置一致;(2)受孔庄煤矿开采的影响,沛县北部的省道321以及县内道路沉降也较为明显,沉降速率为-8 mm/y;(3)其他形变区域中心形变速率为-6^-16 mm/y。  相似文献   

6.
为了分析在2014—2017年期间昆明城区地面形变情况,本文利用Sentinel-1A数据,基于SBAS-In SAR技术提取了昆明城区升降轨模式下形变信息。首先,将雷达视线向(LOS)上的形变速率转换为垂向方向的沉降速率,再通过对升降轨观测数据相互验证和融合处理避免单一模式下的数据失真,反演出更加真实的城区地表沉降,并与城区历史沉降监测数据进行对比分析。结果表明:近3年期间昆明五华区沉降缓慢,相对稳定;西山区和官渡区内的滇池北岸区域呈现大面积沉降且沉降速率较快的趋势,形成多个沉降漏斗中心,最大沉降垂直速率达-54.2 mm/a。  相似文献   

7.
随着佛山市城市化进程逐步加快,地表形变引发的地质灾害日益显著,应用时序InSAR技术可以精确监测城市地表形变。文中选取广东佛山地区为研究区域,利用2015—2017年获取的41景Sentinel-1A数据,基于永久散射体差分干涉测量(PSI)技术提取该地区的时序形变、平均沉降速率等形变数据。研究结果表明,佛山市部分区域出现不均匀沉降,部分地区沉降速率甚至超过-35 mm/a,主要集中在城市重点建设区域,如地铁施工、桥梁施工等地。综合研究结果表明,利用Sentinel-1A数据的时序PSI技术可以高精度监测城市地表形变,监测数据有利于及早预防城市地质灾害发生,为城市健康精细化管理提供决策依据。  相似文献   

8.
利用ALOS-1(2007-2010)、Sentinel-1A(2017-2018)存档数据对山西交城-清徐地区的地面沉降进行监测。结合小基线和永久散射体技术优点,在增加时间采样密度的基础上利用二维线性回归分析得到研究区域的形变速率和时间序列。经同期GPS观测结果校核表明:交城-清徐地区持续发生地面沉降,但山区和平原区域形变的空间分布、量级不同,引起形变原因也不同。平原地带沉降空间分布受构造断裂控制,断裂带两侧呈现明显的差异性形变,且最大沉降速率为-200 mm/a,沉降的主要原因是地下水超采,但经治理后地面沉降灾害有所缓解,表现为沉降速率小于-30 mm/a。山区主要由于矿产资源的长期开采,沉降中心不断向南移动,最大形变速率为-462 mm/a。  相似文献   

9.
刘新  张婷慧  杨陇徽 《北京测绘》2022,(10):1434-1438
地铁沿线的稳定性关乎人民生命财产安全,对地铁沿线沉降监测,有助于聚焦异常形变区域,及时采取人工干预措施。本文基于差分干涉测量短基线集时序分析技术(SBAS-InSAR),利用20幅Sentinel-1A数据对2019—2021年间济南地铁2号线沿线1 km缓冲区进行地表沉降监测与分析。结果表明:在监测期内地表呈现不均匀的沉降,平均沉降速率为0.26 mm/a,最大沉降速率为-18.27 mm/a,最大累积沉降量为-68.51 mm。其中,腊山站至老屯站段、济泺路站至七里堡站段存在明显沉降现象。  相似文献   

10.
Sentinel-1A是欧空局"哥白尼计划"发射的首颗对地观测卫星,是目前现势性较好的SAR卫星,非常适合InSAR高精度地表形变监测。文中研究采用32景Sentinel-1A数据(2016-01—2017-11)进行时间序列SBAS处理,通过数据处理分析发现珠海市大部分地区平均沉降速率在-17.23~5.88mm/a,主城区较为稳定。部分区域存在许多明显的沉降漏斗,沉降幅度较大,最大可达-101.05mm/a,这与珠海市道路工程的修建密切相关。  相似文献   

11.
地面沉降已成为我国主要地质灾害之一,本文利用27景Envisat ASAR数据,采用点目标干涉测量(IPTA)技术,以常州市为实验地区,得到常州地区2007 ~ 2011年间地表形变沉降速率图,结果表明,常州市区存在多处严重沉降,最大沉降速率达-31 mm/a,表明IPTA技术在城市地面沉降监测中有广泛的应用前景.  相似文献   

12.
利用短基线集InSAR技术监测抚顺市地面沉降   总被引:6,自引:4,他引:2  
抚顺市是一座因煤而兴起的综合型重工业城市,矿产的大量开采导致了大范围的地面沉降。针对这一问题,为了有效监测抚顺市的地表形变,本文利用短基线集(SBAS)技术对覆盖抚顺市部分地区的12景COSMO-SkyMed高分辨率SAR数据进行了处理,获得了该研究区域的地面沉降分布和沉降速率图。试验结果表明,研究区整体呈现出沉降的趋势,沉降速率大部分在-25~-45 mm/a的范围内。其中新抚区沉降最为严重,有2个沉降严重的区域,最大沉降速率达到了-186 mm/a。该试验结果为抚顺市露天矿采矿导致的地面沉降与地质灾害监测提供了切实有利的数据参考。  相似文献   

13.
本文利用Sentinel-1A SAR影像,通过小基线集(SBAS-InSAR)技术获取了马村区2016年10月26日至2019年3月9日地面沉降的年平均形变速率。监测结果表明,由于土地整治政策、人工开采以及矿区长期排水等因素的影响,马村区内存在多个沉降中心,其中最大沉降量达到-200 mm,最大形变速率达到-88 mm/a。通过建立剖面,提取并分析了张白河村、亮马村和新村附近沉降中心的沉降现状。  相似文献   

14.
基于2018-03-22-2019-01-16覆盖个旧市的23景Sentinel-1A卫星影像,利用PS-InSAR方法进行处理,获取了该地区的地表形变结果.结果表明,该地区的地表年均形变速率为-49.89~25.52 mm/a,锡矿开采区是地表沉降较严重的地区;个旧市城区的地质条件较稳定,形变量较小.  相似文献   

15.
哨兵一号(Sentinel-1)数据是目前现势性较好的免费SAR数据,且因其6天的重访周期,非常适合In SAR地表形变监测。本文以西安市城区及周边为研究区,开展基于多期Sentinel-1数据和短基线集干涉(SBAS-In SAR)技术的时序地表沉降监测方法的探索,研究形成了详细的数据处理流程,利用已有研究资料佐证了方法的有效性。监测表明:2015—2016年,绝大部分区域地表形变速率位于[-33~30]mm/a区间内,228 d监测期内累积沉降量最大约75 mm,发生在目前西安最大沉降中心鱼化寨;相比20世纪末,沉降强度大幅减弱,沉降严重区域由西安市东郊向南郊转移,且沉降范围减小。  相似文献   

16.
贵州是典型的喀斯特地貌,地质灾害问题比较突出。传统的监测手段无法做到长时间、大范围精细监测,合成孔径雷达干涉测量(InSAR)具有全天时、全天候,监测范围广、精度高的优势,广泛应用与地质灾害监测中。利用时序InSAR技术,使用Sentinel-1A数据监测了清镇市2018-2019年的地表沉降。结果显示,清镇市整体比较稳定,在部分地区存在明显的形变,主要集中在清镇市的西部和中部区域(犁倭镇、麦格苗族布依族乡),最大的形变量达到了-44 mm·a~(-1),并结合高分辨率光学图像对可能的地质灾害隐患进行识别,分析了可能导致的形变因素。  相似文献   

17.
首先介绍了高层建筑物常规沉降观测相关要求,然后给出了南通市通州区公安局指挥中心大楼主楼沉降观测技术方案,并重点对沉降观测数据进行了研究分析,结果表明,就单个点而言,ZL08最不稳定,ZL02,ZL06和ZL07次之,ZL05最稳定,但最终所有点都稳定在0~1 mm区间内,按照主体结构封顶后一年内最后100d的沉降速率小于0.02 mm/d,可认为该高层建筑物沉降稳定该大楼在观测周期内沉降形变稳定,符合建设要求。  相似文献   

18.
近年来,由于地铁等地下工程大规模的建设产生了严重的地表沉降,从而诱发许多地质灾害,严重阻碍了中国城市化进程。因此,采用高精度雷达监测技术,对城市地质灾害监测及风险评估具有重要意义。本文利用SBAS-InSAR技术,基于24景X波段TerraSAR数据和32景C波段Sentinel-1数据,时间跨度分别为2013年7月至2015年8月、2015年7月至2018年2月,对地铁建设完成后的福州市区地表沉降进行长时间系列形变监测。监测结果表明,研究区域内的最大沉降速率为-12 mm/a,在整个观测周期内发现了8个沉降漏斗。并对这些区域进行进一步的时间序列分析,其中有3个区域呈现出地质灾害初期的特征,并且地表沉降存在进一步加剧的可能。  相似文献   

19.
长江三峡GPS处理结果和应变背景场   总被引:1,自引:0,他引:1  
采用BerneseGPSSoftware 4 .2对长江三峡工程诱发地震监测系统GPS监测网络 1998~ 2 0 0 3年的 6期观测数据进行了处理 ,结果表明 ,三峡库区与华南块体的水平相对运动在 0~ 3mm/a(± 0 .1~± 2 .0mm/a) ;蓄水导致的垂直形变区域主要集中在茅坪 香溪 巴东库段 ,近岸点垂直沉降的量级在 10~ 35mm左右 ,最大峰值区域香溪约 35mm(± 8.6mm) ,垂直形变沿远离库中心方向迅速衰减。采用贝塞尔双三次样条函数模型拟合该地区的应变率 ,推算各类水平应变场 ,结果表明 ,蓄水前各种应变背景在 10 -9/a~ 10 -10 /a量级。作为构造稳定地区 ,三峡库区近期因蓄水导致大规模形变 ,从而诱发中强地震的可能性不大  相似文献   

20.
小基线集SBAS-InSAR技术能够有效识别区域性地表形变,可以长时间序列分析地表形变特征。本研究获取了覆盖甘肃华亭市范围2017年10月—2021年4月Sentinel-1A升降轨雷达数据214期,利用SBAS-InSAR技术进行差分干涉处理,探测区域地表形变,分析形变区变化规律特征。结果表明:华亭市地表形变区主要分布在主城区北部、市域范围东南部,共计8处,以煤矿代表的地面沉降最为明显,沿视线方向最大年沉降平均速率达-404.036 mm/a。研究获取了区域地表形变区分布状况及形变速率,可为华亭市地表形变监测、地质灾害防治、地下水水资源开发利用提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号