首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Particulate heavy metals (Cu, Pb, Cd) were measured following intensive sampling in June and October 1994 at 70 stations in the Changjiang Estuary and Hangzhou Bay, China. In the study area, particulate Cu and Pb have a similar level that is higher than the concentration of particulate Cd. Cu, Pb and Cd concentrations in suspended sediments are higher than those in bed load. In the middle of Hangzhou Bay, heavy metal concentrations in suspended sediments and bed load are similar. This may be the result of the frequent exchange between them, which is due to the strong dynamic condition. A negative relationship was observed between concentrations of heavy metals in bed load and bulk density. Fine-grained sediments were the main carriers of heavy metals. Sedimentary dynamics dominate the fate of heavy metals in these sites. The distributions of metals (especially Cu) in suspended sediments can indicate the transfer of sediments in this area.  相似文献   

2.
Metal concentrations (Cd, Cr, Cu, Fe, Mn, Pb and Zn) were determined in the 0.5 HCl extractable fraction of surface sediments collected in Rhodes Harbour, Rhodes Island, Greece. The metals related to human activities (Cu, Pb and Zn) were found in relatively higher concentrations in the harbour sediments and in some cases showed important enrichment compared to the nonpolluted coastal sediments. The highest metal enhancement was found in the fine sediments of the Mandraki Harbour, which is located in the vicinity of the main sewage outfall of a densely populated area.  相似文献   

3.
The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.  相似文献   

4.
Gao X  Li P 《Marine pollution bulletin》2012,64(8):1529-1536
Surface sediments from intertidal Bohai Bay were sampled for the geochemical and environmental assessment of six trace metals (Cd, Cr, Cu, Ni, Pb and Zn). Results indicate that sediment grain size plays an important role in controlling the distribution and fractionation of them. Metal concentrations in clayey silt sediments are all clearly higher than in sand and silty sand ones. Cd and Pb in clayey silt sediments are more mobile than in sand and silty sand ones. Two sediment quality guidelines and two geochemical normalization methods (index of geoaccumulation and enrichment factor) were used to judge the potential risk and accumulation of metals. According to the mean probable effects level quotient, the combination of studied metals may have a 21% probability of being toxic. The sediments with high fraction of clay and silt have been contaminated by trace metals to various degrees, among which Cr contributes the most to contamination.  相似文献   

5.
Surface sediment samples collected from the inner shelf region of the Bay of Bengal, were analysed for the major elements and total and acetic acid available trace elements (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Si, Zn) to evaluate geochemical processes influencing their distribution. Major elemental analysis showed that the sediments had high concentrations of Si and relatively low concentrations of Al and Fe. Both major elemental and trace metal concentrations indicated that the sediments represent weathered products of granite and charnockite. Normalization of metals to Al indicated relatively high enrichment factors for Pb, Cd, Zn and Cr. The higher proportions of nondetrital Pb (66%), Cd (41%) and Co (28%) reveal metal contamination due to anthropogenic inputs. Factor analysis (FA) identified six possible types of sedimentological and geochemical associations. The dominant factor accounting for 26.9% of the total variance identifies an anthropogenic input and accumulation of nondetrital Cd, Co, Cr, Ni and Pb. Association of these metals with CaCO3 reveals that shell fragments in the surface sediments are likely act as a carrier phase for nondetrital metals. The results are discussed in the context of the sources and pathways of elements in the Bay of Bengal.  相似文献   

6.
《Marine pollution bulletin》2013,77(1-2):383-388
Metals and biogenic elements were analyzed from surface sediments collected from Zhelin Bay in the South China Sea in December 2008. The high concentrations of TOC, TN and BSi indicate the high nutrient level and diatom productivity in Zhelin Bay. The concentrations of metals were generally far lower than the effects-range-low (ERL) values that define pollutant levels. Enrichment factors (EF) and geoaccumulation indices (Igeo) suggest there are pollution levels of Cd, Cu and Zn at some stations. As, Cu, and Pb are potentially biotoxic in some stations. Correlation and principal component analyses indicate that most of the metals primarily originate from natural sources, and from maricultural activities as well. Mariculture contributes considerable Cd and Cu contamination. As and Pb comes primarily from combustion of gasoline and diesel fuel by ships.  相似文献   

7.
The distribution of trace metals in Florida Bay sediments   总被引:1,自引:0,他引:1  
The distribution of trace metals based on surface sediments collected at 40 stations across Florida Bay was done in June, November and February 2000-2001. Concentrations of Sc, V, Ba, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn, Al and Mg were determined by ICP-MS, and the total Fe was determined by spectrophotometry. Organic carbon (OC), nitrogen (N), and calcium carbonate (CaCO3) were also measured. Eleven of 13 metals showed a similar distribution pattern for the various months studied. Maximum concentrations of metals were lower than those found in most estuarine systems and were concentrated in the north-central and western zones of the Bay. The Mn and Fe concentrations, unlike the other metals, gradually decreased from north (Everglades) to south (Florida Keys). Some metals (Ni, Zn, Cu, Cr, Pb and Ba) associated with petroleum use showed high concentrations at stations near the Tavernier marina. Florida Bay sediments are predominately CaCO3 (65.9-92.5%). The greatest value for OC (5.5%) and the lowest value of CaCO3 (65.9%) were found in the western zone. Trace metal distribution patterns are similar to the OC and N in the sediments. There was a strong correlation between most metals (V>Cu>Ni>Cr>Al>Co>Ba>Zn>Pb>Mg) and the percentage of OC. The maximum C/N values (9-12) were observed at the stations with the highest OC, where dense colonies of seagrass are found and most of the metals are concentrated. All metals except Mg, Mn and Co showed a strong correlation with Al and the fine fraction of the sediments (aluminosilicates) associated with continental input and river runoff.  相似文献   

8.
Surface sediments in the Xiaoqinghe estuary, southwestern coastal Laizhou Bay, were examined to assess the bio-toxic risk of heavy metals (Cd, Cu, Ni, Pb and Zn) with the effects range-low and effects range-median guidelines (ERL–ERMs) and the concentration ratio of simultaneously extractable metals to acid volatile sulfides ([SEM]/[AVS]). Based on the ERL–ERM guidelines, bio-toxic effect caused by Cu, Ni, Pb and Zn could be expected in the riverine surface sediments of the Xiaoqinghe estuary; and the surface sediments in the marine area were in good quality and only Ni might cause bio-toxic effect occasionally. The AVS–SEM guidelines revealed that no bio-toxic effect could be caused by any of the studied metals in both the riverine and marine sediments, since there were excess sulfides in surface sediments which could form water-insoluble substances with free metal ions and reduce the bioavailability of heavy metals.  相似文献   

9.
The concentration and areal distribution of selected trace metals (Cu, Zn, Pb, Cd, Mo, Ni, Mn and Hg) in surficial sediments of Saint John Harbour, New Brunswick, Canada, were studied to determine the extent of anthropogenic input and to estimate the effects of dumping dredged material in the outer harbour. Hg and Cd are of especial concern, since the disposal of dredge material containing these two elements is regulated under the Ocean Dumping Control Act.The concentrations of all metals are low: Cu 16, Zn 53, Pb 24, Cd 0.16, Mo 3, Ni 16, Mn 296 and Hg 0.04 μg g?1. Hg and Cd levels in sediments are well below the permissible limits of 0.75 and 0.6 μg g?1, respectively, set by the Ocean Dumping Control Act.The mean concentrations of trace elements are similar to the low mean values in the unpolluted Bay of Fundy. There is an overall decline in concentrations of metals in the sediments from the inner to the outer harbour. Comparison of the metal levels in the sediments from different areas within the harbour indicate that there is a detectable anthropogenic input in the Courtenay Bay area. Trace metal levels at the dumpsite are significantly lower than in the Courtenay Bay area, where the bulk of the dredged material originates.  相似文献   

10.
分析了阳宗海柱状及表层沉积物中Al、Fe、Mn、Zn、Cr、Co、Ni、Cu、As、Cd、Pb等金属元素的含量,结合沉积年代学,研究了沉积物重金属污染的时空变化和潜在生态风险特征.结果表明,表层沉积物中重金属含量具有一定的空间差异性,As、Cd、Cu、Pb和Zn在中东部湖区含量较高,而Cr、Co、Ni含量高值位于南、北湖区的近岸区域;柱状沉积物中,1990s之前As、Cd、Cu、Pb和Zn含量较为稳定,1990s中后期以来,其含量逐渐增加,并在2009-2010年前后达到最大值,此后逐渐下降;而柱状沉积物中Cr、Co、Ni含量变化趋势与Al、Fe相似,总体上由下向上逐渐降低,这主要与沉积物质地(粒度)逐渐变粗有关.重金属富集系数表明,阳宗海沉积物中主要污染元素为As、Cd、Cu、Pb和Zn,1990s中后期污染程度快速增加,2009-2010年前后达到峰值,此后污染程度逐渐降低;表层沉积物中Cu为未污染至"弱"污染水平;Zn、Pb为"弱-中等"污染水平,As为"中等-强"污染水平,Cd为"弱-强"污染水平,中东部湖区污染程度高于其他湖区,这可能与该湖区缺少入湖径流、自然碎屑物质沉积速率较低以及砷污染事件等人为源的重金属贡献影响更为显著有关.生态风险评价结果表明,在2002-2010年前后沉积物重金属达到"中等-强"潜在生态危害,主要贡献因子是Cd和As,近年来其生态风险等级逐渐降低;表层沉积物中重金属在中东部湖区具有"中等"程度潜在生态危害,而其他湖区表层沉积物重金属具有较低程度的潜在生态风险.  相似文献   

11.
An assessment of metal contamination in surface sediments of the Jiaozhou Bay, Qingdao, one of the rapidly developing coastal economic zones in China, is provided. Sediments were collected from 10 stations and a total of 15 heavy metals were analyzed. Concentrations of metals show significant variability and range from 210 to 620 ppm for Ti, 2.7 to 23 ppm for Ni, 4.2 to 28 ppm for Cu, 5.2 to 18 ppm for Pb, 12 to 58 ppm for Zn, 0.03 to 0.11 ppm for Cd, 5 to 51 ppm for Cr, 1.5 to 9.9 ppm for Co, 5.3 to 19 ppm for As, 12 to 32 ppm for Se, and 19 to 97 ppm for Sr. Based on concentration relationships and enrichment factor (EF) analyses, the results indicate that sediment grain size and organic matter played important roles in controlling the distribution of the heavy metals in surface sediments of the Jiaozhou Bay. The study shows that the sediment of the Jiaozhou Bay has been contaminated by heavy metals to various degrees, with prominent arsenic contributing the most to the contamination. The analysis suggests that the major sources of metal contamination in the Jiaozhou Bay are land‐based anthropogenic ones, such as discharge of industrial waste water and municipal sewage and run‐off. Notably, the elevated heavy metal concentrations of the Jiaozhou Bay sediments could have a significant impact on the bay's ecosystem. With the rapid economic development and urbanization around the Jiaozhou Bay, coastal management and pollution control should focus on these contaminant sources, as well as provide ongoing monitoring studies of heavy metal contamination within the bay.  相似文献   

12.
太湖流域滆湖底泥重金属赋存特征及其生物有效性   总被引:1,自引:0,他引:1  
包先明  晁建颖  尹洪斌 《湖泊科学》2016,28(5):1010-1017
为了探讨太湖流域滆湖底泥重金属(Cd、Cr、Cu、Zn、Ni和Pb)的赋存特征及其生物有效性,对底泥重金属总量、形态以及生物富集量进行了分析.结果表明,6种重金属含量的空间分布表现为北部湖区最高,其次为南部湖区,中部湖区最低,重金属Ni、Cu、Zn和Pb含量显著高于沉积物背景值,分别是背景值的4.77、3.89、2.96和2.76倍,重金属总量与沉积物中的黏土成分含量具有显著相关性.采用三级四部提取法对重金属形态进行分析表明,6种重金属的生物有效态(弱酸结合态、可还原态和可氧化态之和)含量顺序为CdCuZnPbNiCr,其中Cd、Cu、Zn和Pb的生物有效态含量分别占总量的84.15%、78.47%、76.50%和64.29%.Cu和Zn在铜锈环棱螺中富集含量要显著高于其他金属元素.相关性分析表明,6种重金属中仅Cr和Pb的生物富集量与有效态含量具有显著相关性,这表明,重金属在生物体内的富集不仅与有效态含量有关,还与底泥重金属总量有关.因此,评价滆湖重金属的生态风险时需要综合考虑重金属的总量及生物有效态含量.  相似文献   

13.
Concentrations of Cd, Cr, Cu, Ni and Pb were determined in filtered water, suspended particulate matter, and bottom sediments from a 2000 km section of the Ob and Irtysh Rivers. Dissolved Cd, Cr, Cu and Ni concentrations are similar to, or higher than, results from other Russian Arctic and large world river-estuaries. Concentrations of Cd, Cr, Cu, Ni and Pb in suspended particulate matter are generally comparable to results from other Russian Arctic and large world rivers and estuaries. Comparison of trace metal ratios in crustal material and suspended particulate matter and bottom sediment suggests that the source of Cr, Cu and Ni is continental weathering. Particulate Cd and Pb are elevated relative to their crustal abundance, suggesting a source of these metals to the Ob-Irtysh in addition to continental weathering.  相似文献   

14.
Concentrations of selected heavy metals (Cu, Pb, Zn, Cd, Cr, Ni and Fe) in surface sediments from nine sites in western Xiamen Bay and its vicinity were studied in order to understand current metal contamination due to urbanization and economic development in Xiamen, China. The sediment samples were collected in December 2004 and July 2005 respectively in order to examine temporal variations. In this study, we found that heavy metal concentrations in surface sediments sampled in the western Xiamen Bay and adjacent Maluan Bay and Yuandang Lagoon varied from 19 to 97mg kg(-1) for Cu, 45 to 60mg kg(-1) for Pb, 65 to 223mg kg(-1) for Zn, 0.11 to 1.01mg kg(-1) for Cd, 37 to 134mg kg(-1) for Cr, 25 to 65mg kg(-1) for Ni and 3.08 to 4.81% for Fe. Although all metal concentrations in sediments meets Chinese National Standard Criteria for Marine Sediment Quality, both metal enrichment factors (EF) and geoaccumulation index (I(geo)) show that Pb contamination exists in the entire study area and contamination of other metals are also present in some locations depending on the sources, of which sewage outlets and commercial ports are the main sources of contaminants to the area. This study shows that using the sediment quality standard criteria only to assess sediments cannot properly reflect sediment contamination. A multiple approaches should be applied for the sediment quality assessment.  相似文献   

15.
The trace metal distribution in the sediments of Laucala Bay, a coastal lagoon with a barrier reef and significant freshwater input, adjacent to Suva, the capital of Fiji (150,000 people), was studied from the point of view of assessing the significance of anthropogenic sources relative to natural ones. Surface sediments from 25 sites in the Bay were analysed for particle size distribution, organic carbon and major (Si, Al, Fe, Ca, Mg) and trace metal (Mn, Zn, Cu, Pb, Cd, Hg) contents. Suspended sediments from one site and shellfish samples from five sites were also analysed. The sediments were found to be mostly of terrigenous origin. Particle size distribution, organic carbon and major elemental composition of the sediments were generally related to location within the Bay. A significant natural source of trace metals in the sediments is the suspended solids transported into the Bay by rivers. The spatial distribution of trace metals could not be fully explained by the particle size distribution and mineral composition of the sediments. Contributions from anthropogenic sources were also suspected, but the degree of enrichment from such sources is not great at the present time.  相似文献   

16.
The potential association of acid-volatile sulfides (AVS) and reactive (HCl soluble) Fe with the distribution of reactive trace metals (Cu, Cd, Ni, Pb and Zn) was investigated in sediment cores collected in the Igua?u river estuarine system (Guanabara bay, Brazil), within the river (core R) and the bay (core B) areas. Moderate to extremely high AVS concentrations (33-314 micromol g(-1)) were found in the rapidly-accumulated sediments of this eutrophicated estuary. AVS showed significant correlations with Fe, Ni and Pb in core B, whereas no correlation between AVS and metals was observed in core R. Results suggest that the AVS:Fe molar ratio may often reflect the diagenetic conditions controlling the distribution of Cd and Cu in core B better than AVS and Fe levels themselves. A shift in the biogeochemical controls of metal distribution from the river to the open bay sediments is suggested, with a greater association of most metals with AVS and Fe in bay sediments.  相似文献   

17.
Water Resources - Data on the concentrations of Cd, Cu, Pb, and Zn in bottom sediments of Amur Bay are given. The pollution of bottom sediments is especially heavy near the central part of...  相似文献   

18.
太湖近代沉积物中重金属元素的累积   总被引:23,自引:3,他引:20  
利用210Pb、137Cs定年技术,对来自太湖不同生态和沉积特征的三个湖区的沉积物柱状样品进行了定年,用ICP—AES分析了沉积物中重金属等元素的含量,分析了太湖沉积物中重金属的累积特征及其成因.污染较重、蓝藻水华暴发频繁的梅梁湾沉积物中的重金属含量在近25年来逐年增加;太湖上游风浪较大的夹浦湖区表层10cm沉积速率大、粒度粗,除表层1cm外,1—10cm沉积物中各种重金属含量都较低,且层间变化剧烈;下游湖区正逐渐草型化的胥口湾除表层3cm外,沉积物中重金属的含量自底层向表层大致呈不断下降的趋势.研究表明,不同年代的太湖沉积物中重金属含量差异很大,明显大于不同湖区间沉积物重金属平均含量间的差异.水动力作用引起的沉积物粒度分异很可能是影响沉积物中重金属积累的一个重要因素.总体上太湖沉积物中重金属的污染比较轻微,但已经有一定程度的Cd污染,梅梁湾沉积物中自上世纪70年代开始明显积累Cd,其他重金属元素的积累也逐渐增加,值得关注.  相似文献   

19.
In this paper, the vertical variations of heavy metal elements (including Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the sediments of Songhua Lake are analyzed using sediment cores. A 70‐year evolutionary history of these heavy metal elements in Songhua Lake is described and the sources of the heavy metals in the sediments are investigated by evaluating the pollution characteristics of the metals in terms of their enrichment coefficients and geoaccumulation indexes. The results indicate that Cr, Cu, Mn, Ni, Pb, and Zn in the sediments originated mainly from basin erosion and were transported to the lake by rivers. Cd and Hg in the sediments also originated from basin erosion that occurred prior to the mid‐1990s, and these sediments have since been overlaid by artificial pollution. The distribution of heavy metals in the sediments of Songhua Lake is influenced by many factors, including sediment composition, the relative importance of fluvial input, and artificial pollution.  相似文献   

20.
In order to investigate the pollution levels, sources and ecological risks of arsenic (As) and heavy metals (Cr, Ni, Cu, Zn, Pb and Cd) in inshore sediments of the Yellow River estuary, the surface sediment in areas of inshore coastal waters were sampled in October 2014 as the flow-sediment regulation project (FSRP) was implemented for 13 years. Results showed that the concentrations of As and heavy metals in inshore sediments of the Yellow River estuary were in the order of Zn?>?Cr?>?Cu?>?Ni?>?Pb?>?As?>?Cd. Higher levels of As, Cr, Ni, Cu, Zn and Pb generally occurred in fine-grained sediments of the Yellow River estuary and the southeast region, which was consistent with the spatial distribution of clay. In contrast, higher concentrations of Cd were generally observed in northwest area of the Yellow River estuary and near the Qingshuigou estuary, which showed similarly spatial distribution with that of sand. The sediment quality guidelines (SQGS) and geoaccumulation indices (Igeo) indicated that the inshore sediments were polluted by Cu, Cd, As, Pb and Zn, and, among them, Cd pollution was more serious. Ecological risk indices (E r i ) demonstrated low risks for Cr, Ni, Cu, Zn, Pb and As, and high potential toxicity by Cd. The integrated ecological risk index implied that 6.8% of stations presented moderate risk, 4.5% of stations exhibited disastrous risk, and 88.7% of stations demonstrated considerable risk. Principal component analysis indicated that Ni, Cu, Zn, Pb and As might originate from common pollution sources, while Cr and Cd might share another similar sources. With the continuous implementation of FSRP, As and heavy metal levels in inshore sediments of the Yellow River estuary could be classified as stage I (2002–2010) and stage II (2010–2014). In the stage I, As, Cr, Ni, Cu, Zn and Pb levels fluctuated but decreased significantly, whereas Cd concentrations showed little variation. In the stage II, As and heavy metal levels significantly increased although some little fluctuations occurred. The continuous accumulation of As and heavy metals (especially for Cd) in inshore sediments of the Yellow River estuary would occur again as the FSRP was implemented for 9 years (since 2010). The ecotoxicological risk of Cd, As, Ni and Cu in inshore sediments might be more serious since the accumulation of the four elements would be continuously occurred in future years. Next step, there will be long-term potential consequences for marine organism if effective measures are not taken to control the loadings of metal pollutants into estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号