首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Srinivas N. Mohan 《Icarus》1979,40(2):317-330
The global distribution of existing lunar topography suffers from a lack of measurements of far-side radii because of the sparsity of data types in the nonequatorial regions. This paper presents determinations of far-side lunar radii based on the reduction of photogrammetric measurements derived from selected Apollo 16 trans-Earth phase photographs. The regions covered in this analysis lie west of Mare Moscoviense between longitudes 90 and 130°E and latitudes 10 and 60°N. The determinations are made using control points appearing on both NASA topographic orthophoto maps and the Apollo 16 photographs. The estimated lunar radii are referred to these control points and determined with a relative accuracy of 500 m. The new lunar radii are used to generate a topographic map covering the area investigated. The map shows that, with the given spatial density of surface festures measured, basin-sized features can be resolved. In particular, the far-side craters Fabry, Riemann, and Szilard comprise a topographically depressed region about 500 km in diameter centered at 120°E and 38.5°N. The floor of this basin is 2.4 to 3.4 km below the reference sphere of 1738.0 km and 4.8 to 5.8 km below the northern rim of the basin. A comparison of the depth of the unfilled basin with the depths of maria-filled front-side basins leads to the conclusion that basalt fill of the near-side maria may be 2 km deep. The topographic map shows good correlation with geologic provinces of young plains and cratered terra in the far-side highland region investigated. Lack of correlation between sampled values of the state-of-the-art 16th-order and 16th-degree harmonic gravity field model and corresponding topographical values leads to the conclusion that the far-side region investigated is isostatically compensated.  相似文献   

3.
4.
Zdenek Sekanina 《Icarus》1978,33(2):415-427
A model is proposed for single close encounters between two small masses, m1and m2, which orbit a much larger mass, M. The main new feature of the model is the assumption of conic motion of the center of mass of m1and m2 in the gravitational field of M. Comparisons of the model with the three-body equations of motion indicate that the model is a useful approximation for m1, m2 ? 10?5M. The model is therefore applicable for encounters between bodies of the order of an earth mass or smaller in the presence of the sun. Comparisons are also made of outcomes obtained by the model with outcomes of numerical integration for a large variety of close encounters. The above comparisons reveal that for many purposes the model is an adequate approximation for those encounters with ? ≥ 4, where ? is the eccentricity of the hyperbolic orbit of m1about m2.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
During the first and second Mercury flyby the MESSENGER spacecraft detected a dawn side double-current sheet inside the Hermean magnetosphere that was labeled the “double magnetopause” (Slavin, J.A. et al. [2008]. Science 321, 85). This double current sheet confines a region of decreased magnetic field that is referred to as Mercury’s “dayside boundary layer” (Anderson, M., Slavin, J., Horth, H. [2011]. Planet. Space Sci.). Up to the present day the double current sheet, the boundary layer and the key processes leading to their formation are not well understood. In order to advance the understanding of this region we have carried out self-consistent plasma simulations of the Hermean magnetosphere by means of the hybrid simulation code A.I.K.E.F. (Müller, J., Simon, S., Motschmann, U., Schüle, J., Glassmeier, K., Pringle, G.J. [2011]. Comput. Phys. Commun. 182, 946–966). Magnetic field and plasma results are in excellent agreement with the MESSENGER observations. In contrast to former speculations our results prove this double current sheet may exist in a pure solar wind hydrogen plasma, i.e. in the absence of any exospheric ions like sodium. Both currents are similar in orientation but the outer is stronger in intensity. While the outer current sheet can be considered the “classical” magnetopause, the inner current sheet between the magnetopause and Mercury’s surface reveals to be sustained by a diamagnetic current that originates from proton pressure gradients at Mercury’s inner magnetosphere. The pressure gradients in turn exist due to protons that are trapped on closed magnetic field lines and mirrored between north and south pole. Both, the dayside and nightside diamagnetic decreases that have been observed during the MESSENGER mission show to be direct consequences of this diamagnetic current that we label Mercury’s “boundary-layer-current“.  相似文献   

15.
Recently Varvoglis and Hadjidemetriou (Astrophys. Space Sci. doi:, 2012; hereafter referred to as paper VH) have raised two points concerning the model of the restricted three-body problem with variable mass presented in our paper (Zhang et al. in Astrophys. Space Sci. 337:107, 2012; hereafter referred to as paper ZZX) and made intensive investigations of this model. These points and investigations are very useful and here we provide some explanation and supplementary specification regarding the model presented in the paper ZZX.  相似文献   

16.
Abstract— We discuss possible evidence for a dilution of 14C caused by the Tunguska impact event, proposed by Rasmussen et al. (1999). The results presented in that paper and other available information do not support this hypothesis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号