首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
F. Scaltriti  V. Zappalà 《Icarus》1977,31(4):498-502
Photoelectric observations of the minor planet 63 Ausonia were obtained on 12 nights during the 1976 opposition at the Astronomical Observatory of Torino. A complete lightcurve with two maxima and two minima was observed with a maximum amplitude of 0.47 mag. The synodic period of rotation, never before determined photoelectrically, was found to be 9h17m48s ± 5s. The absolute magnitude of the primary maximum, V0(1, 0) = 7.49 mag, and the phase coefficient, βv = 0.035 mag/deg, were deduced by the magnitude-phase relation. Comparison with other observations is briefly discussed and a mean radius is determined from a previous value of the geometric albedo.  相似文献   

2.
Photometric Stability of the Lunar Surface   总被引:1,自引:0,他引:1  
Hugh H. Kieffer 《Icarus》1997,130(2):323-327
The rate at which cratering events currently occur on the Moon is considered in light of their influence on the use of the Moon as a radiometric standard. The radiometric effect of small impact events is determined empirically from the study of Clementine images. Events that would change the integral brightness of the moon by 1% are expected once per 1.4 Gyr. Events that cause a 1% shift in one pixel for low Earth-orbiting instruments with a 1-km nadir field of view are expected approximately once each 43 Myr. Events discernible at 1% radiometric resolution with a 5 arc-sec telescope resolution correspond to crater diameters of approximately 210 m and are expected once every 200 years. These rates are uncertain by a factor of two. For a fixed illumination and observation geometry, the Moon can be considered photometrically stable to 1 × 10−8per annum for irradiance, and 1 × 10−7per annum for radiance at a resolution common for spacecraft imaging instruments, exceeding reasonable instrument goals by six orders of magnitude.  相似文献   

3.
Olav L. Hansen 《Icarus》1977,31(4):456-482
A new radiometric model for disk-integrated photometry of asteroids is presented. With empirical support from photometry of Mercury and the Moon, the model assumes that observed sunward beaming of the infrared emission is due to craters. In contrast to earlier theoretical studies of the lunar emission, the observable flux ratio between a cratered sphere and a smooth sphere is calculated for large ranges in wavelength, temperature, and phase angle. Revised diameters and albedos based on the crater model are given for 84 asteroids. The revised values are in good agreement with Morrison's (1977) radiometric results. It is shown that the systematic discrepancy between radiometric and polarimetric albedos (Zellner and Gradie, 1976) is probably a double-valued function of albedo. Some typical geometric albedos from this paper, Morrison (1977), and Zellner and Gradie (1976), respectively, are: Ceres (0.050 ± 0.005, 0.053 ± 0.004, 0.068), Vesta (0.235 ± 0.032, 0235 ± 0.11, 0.271), mean C type (0.031 ± 0.009, 0.035 ± 0.009, 0.061 ± 0.005), mean S type (0.117 ± 0.030, 0.136 ± 0.032, 0.181 ± 0.23), and mean M type (0.105 ± 0.037, 0.115 ± 0.033, 0.157 ± 0.079). Areas of disagreement between radiometry and polarimetry are underscored, and research to resolve them is suggested.  相似文献   

4.
On three nights in February 1976 we carried out polarimetric measurements, in V, of the short periodic eclipsing binary XY UMa, covering a complete cycle. The results are as follows:
  1. Within all phase intervals the linear polarization does not exceed 0.1%.
  2. In the phase range 0 p .95–1 p .35 the scatter of the Stokes parametersQ andU is about twice that within the phase interval 0 p .35–0 p .95.
  3. A periodogram analysis of these data revealed a period of 21000 s, which is equal to half the orbital periodP o=0d.47899 within 1.5%.
From these we derive the conclusions that no circumstellar envelope can be made responsible for the observed long-term changes of the light curve and system brightness, supporting the earlier spectroscopic finding. The different scatter of the Stokes parameters at different phase intervals and theP o/2 periodicity are in favor of the star spot model for XY UMa proposed by one of the authors (E. G.).  相似文献   

5.
We present 26 lightcurves of 16 Psyche from 1975 and 1976. The synodic period during this apparition was 4h.1958. Combining photometric data from this opposition with those from previous apparitions allowed us to derive a mean phase coefficient in V of 0.026 ± 0.002 mag/deg and to establish that Psyche's absolute V0 magnitude and rotational amplitude vary with aspect; at 90° aspect, V0(1, 0) = 6.27 ± 0.05 and the lightcurve amplitude is 0.30 mag, while at 0° or 180° aspect, V0(1, 0) = 6.02 ± 0.02 and the amplitude is ?0.03 mag. This behavior is accounted for if, to first order, Psyche's shape is that of a triaxial ellipsoid with axial ratios near 5:4:3. Colors at zero phase are U-B = 0.26 ± 0.01 and B-V = 0.71 ± 0.01. Color phase coefficients are <0.001 mag/deg in U-B and 0.0010 ± 0.0004 mag/deg in B-V.  相似文献   

6.
New data about the top clouds of Venus were obtained during the radiometric experiment on-board the Venera 9 and Venera 10 orbiters. A diurnal component of the ir thermal radiation was determined for the latitude range ?40, +50°. The brightness temperature of radiation referred to the normal was measured; it was 244°K at night and 239°K at the subsolar point for the 7- to 13-, 17- to 30-μm bands. Minimum temperatures correspond to the meridian of local time 16.00h and are 232°K. There is also a zone of lower temperatures in the region of local time 7.5h. Absolute temperatures were measured with an accuracy of ?1.9°+1.2°. Thermal radiation has no distinct latitudinal dependence but has a day-night asymmetry, with the night radiation flux exceeding that on the day side by 17%. The limb-darkening law for thermal radiation is rather complicated, depending on the time of day. There are at least two states of the radiating cloud cover: day and night. The extinction coefficient is close to 0.24 km?1. The analysis shows that the source function of the medium is close to Planck's function. During the day the flux of thermal radiation is assumed to be weakened by an aerosol medium forming by photochemical processes. Comparison of experimental and calculated data yields a particle concentration in the radiating cloud cover of about 95 cm?3. Experimental data and the results of ground-based measurements were used to determine the radiometric albedo of Venus, 0.79?0.01+0.02.  相似文献   

7.
We report observations at 0.56 and 2.2 μm of the Apollo asteroid 1976 AA made during its discovery apparition. We derive a 2.2-μm relative spectral reflectance (scaled to unity at 0.56 μm) of R(2.2 μm) = 1.5 ± 0.3. This 2.2-μm reflectance is not compatible with a carbonaceous surface composition. However, it is compatible with a wide variety of meteoritic types including ordinary chondrites, stony irons, and mesosiderites. Thus, 1976 AA may have a silicate surface similar to other Apollo-Amor objects.  相似文献   

8.
J. Veverka  J. Burt  J.L. Elliot  J. Goguen 《Icarus》1978,33(2):301-310
By considering both the orbital lightcurve of Iapetus and data obtained during the March 30, 1974, occultation of the satellite by the Moon, we obtain information about the brightness distribution on the bright face of Iapetus and derive an accurate value for the satellite's radius. From the observed orbital lightcurve we find that the trailing face of Iapetus must consist predominantly of a single bright material with an effective limb-darkening parameter of k = 0.62?0.120.10. Given this result the occultation observations imply a radius of 718?78+87 km. If the patchy albedo model proposed by Morrison et al. represents the surface of Iapetus accurately (as far as the relative albedo distribution is concerned) then the radius of Iapetus is 724 ± 60 km. Both estimates are consistent with the radiometric radius of 835 (+50, ?75) km derived by Morrison et al. Combining our results with the value of 0.60 ± 0.14 for the normal reflectance (in V) of the material at the center of the bright face derived by Elliot et al. we find that the normal reflectance of the dark side material is 0.11?0.03+0.04. These values are higher than the corresponding values of 0.35 and 0.05 quoted by Morrison et al.  相似文献   

9.
We report the detection of Comet 67P/Churyumov-Gerasimenko's dust trail and nucleus in 24 μm Spitzer Space Telescope images taken February 2004. The dust trail is not found in optical Palomar images taken June 2003. Both the optical and infrared images show a distinct neck-line tail structure, offset from the projected orbit of the comet. We compare our observations to simulated images using a Monte Carlo approach and a dynamical model for comet dust. We estimate the trail to be at least one orbit old (6.6 years) and consist of particles of size ?100 μm. The neck-line is composed of similar sized particles, but younger in age. Together, our observations and simulations suggest grains 100 μm and larger in size dominate the total mass ejected from the comet. The radiometric effective radius of the nucleus is 1.87±0.08 km, derived from the Spitzer observation. The Rosetta spacecraft is expected to arrive at and orbit this comet in 2014. Assuming the trail is comprised solely of 1 mm radius grains, we compute a low probability (∼10−3) of a trail grain impacting with Rosetta during approach and orbit insertion.  相似文献   

10.
We present differential Hα and Hβ photometry of the very bright RS CVn‐binary α Aurigae (Capella)obtained with theVienna automatic photoelectric telescope in the years 1996 through 2000. Low‐level photometric variations of up to 0m.04 are detected in Hα. A multifrequency analysis suggests two real periods of 106 ± 3 days and 8.64 ± 0.09 days, that we interpret to be the rotation periods of the cool and the hot component of the Capella binary, respectively. These periods confirm that the hotter component of Capella rotates asynchronously, while the cooler component appears to be synchronized with the binary motion. The combined Hα data possibly contains an additional period of 80.4 days that we, however, believe is either spurious and was introduced due to seasonal amplitude variations or stems from a time‐variable circumbinary mass flow. The rotational periods result in stellar radii of 14.3 ± 4.6 R and 8.5 ± 0.5 R for the cool and hot component, respectively, and are in good agreement with previously published radii based on radiometric and interferometric techniques. The long‐period eclipsing binary Aurigae served as our check star, and we detected complex light variations outside of eclipse of up to 0m.15 in H α and 0m.20 in Hβ. Our frequency analysis suggests the existence of at least three significant periods of 132, 89, and 73 days. One of our comparison stars (HD 33167, F5V) was discovered to be a very‐low amplitude variable with a period of 2.6360 ± 0.0055 days.  相似文献   

11.
This paper presents the results of polarization observations of asteroid 554 Peraga obtained with the UBVRI polarimeter using the 1.25 m telescope of the Crimean Astrophysical Observatory down to phase angles of 3.1°–16.6° from October to November 2006. The asteroid’s polarization phase curve is shown to have a negative branch with the parameters P min = −1.7% and αmin = 8.4°, which is typical of C-type asteroids. However, these data contradict the results of Zellner and Gradie (1976) obtained in March 1975 that the reflected light from the asteroid’s surface is positively polarized, ≈1% at phase angles of 8°–10°. Since the asteroid’s ecliptic longitudes differ by 160°-145° for the two observation periods, we discuss the possibility that the two sets of observations refer to the asteroid’s two hemispheres with different polarimetric properties.  相似文献   

12.
Oxygen and carbon isotope ratios in the martian CO2 are key values to study evolution of volatiles on Mars. The major problems in spectroscopic determinations of these ratios on Mars are uncertainties associated with: (1) equivalent widths of the observed absorption lines, (2) line strengths in spectroscopic databases, and (3) thermal structure of the martian atmosphere during the observation. We have made special efforts to reduce all these uncertainties. We observed Mars using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope. While the oxygen and carbon isotope ratios on Mars were byproducts in the previous observations, our observation was specifically aimed at these isotope ratios. We covered a range of 6022 to 6308 cm−1 with the highest resolving power of ν/δν=3.5×105 and a signal-to-noise ratio of 180 in the middle of the spectrum. The chosen spectral range involves 475 lines of the main isotope, 184 lines of 13CO2, 181 lines of CO18O, and 119 lines of CO17O. (Lines with strengths exceeding 10−27 cm at 218 K are considered here.) Due to the high spectral resolution, most of the lines are not blended. Uncertainties of retrieved isotope abundances are in inverse proportion to resolving power, signal-to-noise ratio, and square root of the number of lines. Laboratory studies of the CO2 isotope spectra in the range of our observation achieved an accuracy of 1% in the line strengths. Detailed observations of temperature profiles using MGS/TES and data on temperature variations with local time from two GCMs are used to simulate each absorption line at various heights in each part of the instrument field of view and then sum up the results. Thermal radiation of Mars' surface and atmosphere is negligible in the chosen spectral range, and this reduces errors associated with uncertainties in the thermal structure on Mars. Using a combination of all these factors, the highest accuracy has been achieved in measuring the CO2 isotope ratios: 13C/12C = 0.978 ± 0.020 and 18O/16O = 1.018 ± 0.018 times the terrestrial standards. Heavy isotopes in the atmosphere are enriched by nonthermal escape and sputtering, and depleted by fractionation with solid-phase reservoirs. The retrieved ratios show that isotope fractionation between CO2 and oxygen and carbon reservoirs in the solid phase is almost balanced by nonthermal escape and sputtering of O and C from Mars.  相似文献   

13.
Radar echoes from Earth co-orbital Asteroid 2002 AA29 yield a total-power radar cross section of 2.9×10−5 km2 ±25%, a circular polarization ratio of SC/OC=0.26±0.07, and an echo bandwidth of at least 1.5 Hz. Combining these results with the estimate of its visual absolute magnitude, HV=25.23±0.24, from reported Spacewatch photometry indicates an effective diameter of 25±5 m, a rotation period no longer than 33 min, and an average surface bulk density no larger than 2.0 g cm−3; the asteroid is radar dark and optically bright, and its statistically most likely spectral class is S. The HV estimate from LINEAR photometry (23.58±0.38) is not compatible with either Spacewatch's HV or our radar results. If a bias this large were generally present in LINEAR's estimates of HV for asteroids it has discovered or observed, then estimates of the current completeness of the Spaceguard Survey would have to be revised downward.  相似文献   

14.
T.Y. Kong  M.B. McElroy 《Icarus》1977,32(2):168-189
A variety of models are explored to study the photochemistry of CO2 in the Martian atmosphere with emphasis on reactions involving compounds of carbon, hydrogen, and oxygen. Acceptable models are constrained to account for measured concentrations of CO and O above 90 km, with an additional requirement that they should be in accord with observations of CO, O2, and O3 in the lower atmosphere. Dynamical mixing must be exceedingly rapid at altitudes above 90 km, with effective eddy diffusion coefficients in excess of 107 cm2 sec?1. If recombination of CO2 is to occur mainly by gas phase chemistry, catalyzed by trace quantities of H, OH, and HO2, mixing must be rapid over the altitude interval 30 to 40 km. The value implied for the diffusion coefficient in this region is a function of assumptions made regarding the rates for reaction of OH with HO2 to form H2O and of the rate for reaction of HO2 with itself to form H2O2. If rates for these reactions are taken to have values similar to rates used in current models for the Earth's stratosphere, the eddy diffusion coefficient at 40 km on Mars should be about 5 × 107 cm2 sec?1, consistent with Zurek's (1976) estimate for this parameter inferred from tidal theory. Surface chemistry could have an influence on the abundances of atmospheric CO and O2, but a major effect would imply sluggish mixing at all altitudes below 50 km and in addition would carry implications for the magnitude of the rates for reaction of OH with HO2 and HO2 with itself.  相似文献   

15.
The twin Solar Terrestrial Relations Observatory (STEREO) spacecraft reached a separation angle of 180° on 6 February 2011. This provided a unique opportunity to test the intercalibration between the Sun–Earth Connection Coronal and Heliospheric Investigation (SECCHI) telescopes on both spacecraft for areas above the limb. So long as the corona is optically thin, at 180° separation each spacecraft sees the same corona from opposite directions. Thus, the data should appear as mirror images of each other. We report here on the results of the comparison of the images taken by the inner coronagraph (COR1) on the STEREO-Ahead and -Behind spacecraft in the hours when the separation was close to 180°. We find that the intensity values seen by the two telescopes agree with each other to a high degree of accuracy. This validates both the radiometric intercalibration between the COR1 telescopes, and the method used to remove instrumental background from the images. The relative error between COR1-A and COR1-B is found to be less than 10−9 B/B over most of the field-of-view, growing to a few ×10−9 B/B for the brighter pixels near the edge of the occulter. The primary source of error is the background determination. We also report on the analysis of star observations which show that the absolute radiometric calibration of either COR1 telescope has not changed significantly since launch.  相似文献   

16.
Mars was observed near the peak of the strongest SO2 band at 1364-1373 cm−1 with resolving power of 77,000 using the Texas Echelon Cross Echelle Spectrograph on the NASA Infrared Telescope Facility. The observation covered the Tharsis volcano region which may be preferable to search for SO2. The spectrum shows absorption lines of three CO2 isotopomers and three H2O isotopomers. The water vapor abundance derived from the HDO lines assuming D/H = 5.5 times the terrestrial value is 12±1.0 pr. μm, in agreement with the simultaneous MGS/TES observations of 14 pr. μm at the latitudes (50° S to 10° N) of our observation. Summing of spectral intervals at the expected positions of sixteen SO2 lines puts a 2σ upper limit on SO2 of 1 ppb. SO2 may be emitted into the martian atmosphere by seepage and is removed by three-body reactions with OH and O. The SO2 lifetime, 2 years, is longer than the global mixing time 0.5 year, so SO2 should be rather uniformly distributed across Mars. Seepage of SO2 is less than 15,000 tons per year on Mars which is smaller than the volcanic production of SO2 on the Earth by a factor of 700. Because CH4/SO2 is typically 10−4-10−3 in volcanic gases on the Earth, our results show seepage is unlikely to be the source of the recently discovered methane on Mars and therefore strengthen its biogenic origin.  相似文献   

17.
Martian meteorites, in particular shergottites, contain darkened olivine (so‐called “brown olivine”) whose color is induced by iron nanoparticles formed in olivine during a shock event. The formation process and conditions of brown olivine have been discussed in the Northwest Africa 2737 (NWA 2737) chassignite. However, formation conditions of brown olivine in NWA 2737 cannot be applied to shergottites because NWA 2737 has a different shock history from that of shergottites. Therefore, this study observed brown olivine in the NWA 1950 shergottite and discusses the general formation process and conditions of brown olivine in shergottites. Our observation of NWA 1950 revealed that olivine is heterogeneously darkened between and within grains different from brown olivine in NWA 2737. XANES analysis showed that brown olivine contains small amounts of Fe3+ and TEM/STEM observation revealed that there is no SiO‐rich phase around iron metal nanoparticles. These observations indicate that iron nanoparticles were formed by a disproportionation reaction of olivine (3Fe2+olivine → Fe0metal + 2Fe3+olivine + Volivine, where Volivine means a vacancy in olivine). Some parts of brown olivine show lamellar textures in SEM observation and Raman peaks in addition to those expected for olivine, implying that brown olivine experienced a phase transition (to e.g., ringwoodite). In order to induce heterogeneous darkening, heterogeneous high temperature of about 1500–1700 K and shock duration of at least ~90 ms are required. This heterogeneous high temperature resulted in high postshock temperature (>900 K) inducing back‐transformation of most high‐pressure phases. Therefore, in spite of lack of high‐pressure phases, NWA 1950 (= Martian meteorites with brown olivine) experienced higher pressure and temperature compared to other highly shocked meteorite groups.  相似文献   

18.
Additional absorption features in the red wings of the resonance Mgii lines near 2800 Å are found in the observations of Algol made by Chen and Wood (1976) from theCopernicus satellite. The absorption features were clearly seen only during a part of the primary eclipse, in the phase interval 0.90–0.03.The observations are interpreted as produced by a stream of matter flowing from Algol B in the direction of Algol A. The measured Doppler shifts of the features give the value of 150 km s–1 as the characteristic velocity of matter in the stream. The mass transfer connected with the stream is estimated to be of the order of 10–13 M yr–1.  相似文献   

19.
We review and discuss a few interplanetary electron density scales which have been derived from the analysis of interplanetary solar radio bursts, and we compare them to a model derived from 1974–1980 Helios 1 and 2 in situ density observations made in the 0.3–1.0 AU range. The Helios densities were normalized to 1976 with the aid of IMP and ISEE data at 1 AU, and were then sorted into 0.1 AU bins and logarithmically averaged within each bin. The best fit to these 1976-normalized, bin averages is N(R AU) = 6.1R -2.10 cm-3. This model is in rather good agreement with the solar burst determination if the radiation is assumed to be on the second harmonic of the plasma frequency. This analysis also suggests that the radio emissions tend to be produced in regions denser than the average where the density gradient decreases faster with distance than the observed R -2.10.NAS/NRC Postdoctoral Research Associate on leave from Laboratory Associated with CNRS No. 264, Paris Observatory, France.  相似文献   

20.
The radiii of 17 classical Cepheids are determined. The linear surface brightness-colour relationS v=b(B–V)o+const is accepted. The present method permits the determination of the coefficientb for each star separately and the obtaining of the absolute magnitude of Cepheids. The coefficientb shows a slight dependence on the periodP of stars. The period-luminosity relation is approximately the same as the one obtained by van den Bergh (1976) for Cepheids in open clusters. The simultaneous radial velocity and photoelectric observation may show the phase shifts between motions of the continuum layer and of the level where the Fe I line is formed. The Cepheidl Car is outside the instability strip, and probably has a red companion as was suggested by Schmidt (1980a). Conclusions about the existence of overtone pulsators cannot probably be drawn only from the scattering in the period-radius relation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号