首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Planetary and Space Science》1999,47(8-9):987-995
We report Doppler-only radar observations of Icarus at Goldstone at a transmitter frequency of 8510 MHz (3.5 cm wavelength) during 8–10 June 1996, the first radar detection of the object since 1968. Optimally filtered and folded spectra achieve a maximum opposite-circular (OC) polarization signal-to-noise ratio of about 10 and help to constrain Icarus physical properties. We obtain an OC radar cross section of 0.05 km2 (with a 35% uncertainty), which is less than values estimated by Goldstein, 1969and by Pettengill et al., 1969, and a circular polarization (SC⧸OC) ratio of 0.5±0.2. We analyze the echo power spectrum with a model incorporating the echo bandwidth B and a spectral shape parameter n, yielding a coupled constraint between B and n. We adopt 25 Hz as the lower bound on B, which gives a lower bound on the maximum pole-on breadth of about 0.6 km and upper bounds on the radar and optical albedos that are consistent with Icarus tentative QS classification. The observed circular polarization ratio indicates a very rough near-surface at spatial scales of the order of the radar wavelength.  相似文献   

2.
Asteroid 4 Vesta was detected on 1979 November 6 with the Arecibo Observatory's S-band (12.6-cm-wavelength) radar. The echo power spectrum, received in the circular polarization opposite to that transmmited,, yields a radar cross section of (0.2 ± 0.1)πa2, for a = 272 km. The data are too noisy to permit derivation of Vesta's rotation period.  相似文献   

3.
We present the results of a study of meteoroid bulk densities determined from meteor head echoes observed by radar. Meteor observations were made using the Advanced Research Projects Agency Long-Range Tracking And Instrumentation Radar (ALTAIR). ALTAIR is particularly well suited to the detection of meteor head echoes, being capable of detecting upwards of 1000 meteor head echoes per hour. Data were collected for 19 beam pointings and are comprised of approximately 70 min. of VHF observations. During these observations the ALTAIR beam was directed largely at the north apex sporadic source. Densities are calculated using the classical physical theory of meteors. Meteoroid masses are determined by applying a full wave scattering theory to the observed radar cross-section. Observed meteoroids are predominantly in the 10−10 to 10−6 kg mass range. We find that the vast majority of meteoroid densities are consistent with low density, highly porous objects as would be expected from cometary sources. The median calculated bulk density was found to be 900 kg/m3. The orbital distribution of this population of meteoroids was found to be highly inclined.  相似文献   

4.
The relative radar reflectiveness of Saturn's classical ring sections were estimated from delay-Doppler observations made at 12.6-cm wavelength. The A and B rings are responsible for most, if not all, of the radar echo. The average radar reflectivity per unit projected area of the A ring is nearly (~90%) as large as that of the B ring. The outer half of the B ring contains the most reflective part of the ring system. There is no firm evidence for detection of radar backscattering from particles interior to the B ring, exterior to the A ring, or from the planet itself. The radar reflectivity of the C ring is certainly no more than one-half that of the B ring, and probably is much less. Unexpectedly large amounts of power at Doppler shifts near the center of the echo spectrum, previously reported at both λ3.5 and λ12.6 cm for ring-plane tilt angles δ ≥ 24.4°, are not apparent in λ3.5- or 12.6-cm spectra obtained at δ ≤ 21.4°.  相似文献   

5.
The intensity distribution of lunar radar echoes has been mapped for two-thirds of the earth-visible lunar surface at a wavelength of 70 cm. The depolarizing effects of the lunar surface were observed by simultaneously receiving the radar echoes in opposite polarizations. These echoes were mapped with areal resolutions of 25–100 km2. Mappings with this resolution confirmed that the young craters have enhanced returns. A few craters were found to have enhanced echoes only from their rims. Backscattering differences were also observed between various areas within a mare, between different highland areas, and between maria and adjacent highlands. These scattering differences were interpreted with a simple model, which assumed that the surface backscattered with varying amounts of quasi-specular and diffuse power. Only an increase in the diffuse power was needed to give the numerical values of the enhancements.  相似文献   

6.
Radar observations of asteroid 1 Ceres were made at a 12.6-cm wavelength from the Arecibo Observatory in March/April 1977. The measurements, made with a received circular polarization orthogonal to that transmitted, yield a radar cross section of (0.04 ± 0.01)πR2, for R = 510 km. The corresponding radar reflectivity is less than that measured for any other celestial body. Within the accuracy of measurement, no significant variation of cross section with rotational phase is apparent. The shape of the power spectrum suggests that Ceres is rougher at the scale of the observing wavelength than the Moon and inner planets, but smoother than the outer three Galilean satellites.  相似文献   

7.
The Goldstone radar system was operated at wavelengths of 3.5 and 12.6 cm to probe the Martian surface during the 1975 opposition. Regions studied in detail by range-Doppler techniques are Syrtis Major, Sinus Meridiani, and the crater Schiaparelli. Average rms slopes of 1.6° and 1.1° were measured in Syrtis Major at 3.5 and 12.6 cm, respectively, while the average reflectivity was 0.064 ± 0.02 at both wavelengths. No wavelength dependence of surface roughness was seen in Sinus Meridiani, where rms surface slopes averaged 1.8° and the reflectivity was 0.08 ± 0.02. The regions around Schiaparelli were probed at a 12.6-cm wavelength. The echo from the bottom of the crater was undetectable. Hence ρ0C < 25, where ρ0 is the reflectivity and C is the Hagfors roughness parameter. Operating at 3.5 cm during May and June of 1976, 149 continous-wave echo spectra were obtained near latitude 18°, sampling most longitudes including the early Viking landing sites A1 and A2. The average total radar cross section is 4.8% of the geometrical cross section. The diffuse component was estimated to be 1.9%, leaving 2.9% to the average quasi-specular component. The average rms slope is 4.1°. Six spectra obtained at site A1 indicate that rms slopes are 5 to 9° between latitudes 17 and 19°. Three spectra obtained at s site A2 indicate an rms slope of 3.9°.  相似文献   

8.
The radio occultation technique is developed here as a new method for the study of the physical properties of planetary ring systems. Particular reference is made to geometrical and system characteristics of the Voyager dual-wavelength (13 and 3.6 cm) experiment at Saturn. The rings are studied based on the perturbations they introduce in the spectrum of coherent sinusoidal radio signals transmitted through the rings from a spacecraft in the vicinity of the planet to Earth. Two separate signal components are identified in a perturbed spectrum: a sinusoidal component that remains coherent with the incident signal but is reduced in intensity and possibly changed in phase, and a Doppler-broadened incoherent component whose spectral shape and strength are determined by the occultation geometry and the radial variation of the near-forward radar cross section of illuminated ringlets. Both components are derived in terms of the physical ring properties starting from a conventional radar formulation of the problem of single scattering on ensembles of discrete scatterers, which is then generalized to include near-forward multiple scattering. The latter is accomplished through special solutions of the equation of transfer for particles that are larger than the wavelength. When the occultation geometry is optimized, contributions of an individual ringlet to a perturbed spectrum can be identified with radial resolution on the order of a few kilometers for the coherent component and a few hundred kilometers for the incoherent one, thus permitting high-resolution reconstruction of the radial profile of the optical depth, as well as reconstruction of the radar cross section of resolved ringlets. Simultaneous estimates of the optical depth and radar cross section of a ringlet at 3.6 cm-gl allow separation of its aerial density and particle size, if the particles are of known material and form a narrow size distibution with radii greater than several tens of centimeters. This separation is also achieved for radii ?10 cm from differential effects on the coherent signal parameters at 3.6- and 13-cm wavelengths. For the more general case of a broad size distribution modeled by a power law, the absence of differential effects on the coherent signal binds the minimum size to be ?10 cm. In this case, the radius inferred from an estimate of the radar cross section represents an equivalent radius, which is strongly controlled by the maximum size of the distribution provided that the power index is in the range 3 to 4. On the other hand, detection of differential coherent signal extinction determines an upper bound on the maximum size and a lower bound on the power index, assuming water-ice particles. These bounds, together with an inferred equivalent size, constrain the size distribution at both its small and large ends.  相似文献   

9.
Results of 13-cm-wavelength radar observations and V-filter photoelectric observations of Ra- Shalom during its 1981 Aug–Sep apparition are reported. The radar data yid detections of echoes in the same sense of circular polarization as transmitted (i.e., the SC sense) as well as in the opposite (OC) sense. The estimate of the ratio of SC to OC echo power, μc = 0.14 ± 0.02, indicates that most, but certainly not all, of the backscattering is due to single reflections from surface elements that are fairly smooth at decimeter scales. The value obtained for the OC radar cross section on Aug 26 (1.2 ± 0.3 km2) is about three times larger than those obtained on Aug 23, 24, and 25. The echo bandwidth appears to be within about 1.5 Hz of 5.0 Hz on each date. The photoelectric data suggest a value, Psyn = 19.79 hr, for the synodic rotation period, and yield a composite lightcurve with two pairs of extrema. Combining this value for Psyn with a firm lower bound (4 Hz) on the maximum echo bandwidth yields a lower bound of 1.4 km on the maximum distance between Ra-Shalom's spin axis and any point on its surface.  相似文献   

10.
Radar observations of the Galilean satellites, made in late 1976 using the 12.6-cm radar system of the Arecibo Observatory, have yielded mean geometric albedos of 0.04 ± , 0.69 ± 0.17, 0.37 ± 0.09, and 0.15 ± 0.04, for Io, Europa, Ganymede, and Callisto, respectively. The albedo for Io is about 40% smaller than that obtained approximately a year earlier, while the albedos for the outer three satellites average about 70% larger than the values previously reported for late 1975, raising the possibility of temporal variation. Very little dependence on orbital phase is noted; however, some regional scattering inhomogeneities are seen on the outer three satellites. For Europa, Ganymede, and Callisto, the ratios of the echo received in one mode of circular polarization to that received in the other were: 1.61 ± 0.20 1.48 ± 0.27, and 1.24 ± 0.19, respectively, with the dominant component having the same sence of circularity as that transmitted. This behavior has not previously been encountered in radar studies of solar system objects, whereas the corresponding observations with linear polarization are “normal.” Radii determined from the 1976 radar data for Europa and Ganymede are: 1530 ± 30 and 2670 ± 50 km, in fair agreement with the results from the 1975 radar observations and the best recent optical determinations. Doppler shifts of the radar echoes, useful for the improvement of the orbits of Jupiter and some of the Galilean satellites, are given for 12 nights in 1976 and 10 nights in 1975.  相似文献   

11.
We have calculated the radar backscattering characteristics of a variety of compositional and structural models of Saturn's rings and compared them with observations of the absolute value, wavelength dependence, and degree of depolarization of the rings' radar cross section (reflectivity). In the treatment of particles of size comparable to the wavelength of observation, allowance is made for the nonspherical shape of the particles by use of a new semiempirical theory based on laboratory experiments and simple physical principles to describe the particles' single scattering behavior. The doubling method is used to calculate reflectivities for systems that are many particles thick using optical depths derived from observations at visible wavelengths. If the rings are many particles thick, irregular centimeter- to meter-sized particles composed primarily of water ice attain sufficiently high albedos and scattering efficiencies to explain the radar observations. In that case, the wavelength independence of radar reflectivity implies the existence of a broad particle size distribution that is well characterized over the range 1 cm ? r ? m by n(r)dr = n0r?3dr. A narrower size distribution with a ~ 6 cm is also a possibility. Particles of primarily silicate composition are ruled out by the radar observations. Purely metallic particles, either in the above size range and distributed within a many-particle-thick layer or very much larger in size and restricted to a monolayer, may not be ruled out on the basis of existing radar observations. A monolayer of very large ice “particle” that exhibit multiple internal scattering may not yet be ruled out. Observations of the variation of radar reflectivity with the opening angle of the rings will permit further discrimination between ring models that are many particles thick and ring models that are one “particle” thick.  相似文献   

12.
In this paper, we use radar observations from a 50 MHz radar stationed near Salinas, Puerto Rico, to study the variability of specular as well as non-specular meteor trails in the E-region ionosphere. The observations were made from 18:00 to 08:00 h AST over various days in 1998 and 1999 during the Coqui II Campaign [Urbina et al., 2000, Geophys. Rev. Lett. 27, 2853–2856]. The radar system had two sub-arrays, both produced beams pointed to the north in the magnetic meridian plane, perpendicular to the magnetic field, at an elevation angle of approximately 41 degrees. The Coqui II radar is sensitive to at least two types of echoes from meteor trails: (1) Specular reflections from trails oriented perpendicular to the radar beam, and (2) scattering, or, non-specular reflections, from trails deposited with arbitrary orientations. We examine and compare the diurnal and seasonal variability of echoes from specular and non-specular returns observed with the Coqui II radar. We also compare these results with meteor head echo observations made with the Arecibo 430 MHz radar. We use common region observations of these three types of meteor echoes to show that the diurnal and seasonal variability of specular trails, non-specular trails, and head echoes are not equivalent. The implications of these results on global meteor mass flux estimates obtained from specular meteor observations remains to be examined.  相似文献   

13.
G.H. Pettengill  T. Hagfors 《Icarus》1974,21(2):188-190
Transparent particle scattering is proposed to explain the unexpectedly large radar cross section recently observed for Saturn's rings. According to this theory, only 10% of the optically observed material in the A, B, and C rings need consist of smooth ice fragments larger than 8 cm in radius to yield the radar results.  相似文献   

14.
Multiaperture K photometry and 2.0- to 2.5-μm spectrophotometry of Uranus and its ring system are presented. The photometric results are used, together with a previously published measurement, to set limits on the geometric albedos of Uranus and the rings at ~2.2 μm: (0.74 ± 0.02) × 10(su?4) ≤ pK (Uranus) ≤ (1.5 ± 0.3) × 10?4, and (2.7 ± 0.6) × 10?2pK (rings) ≤ (3.4 ± 0.1) × 10?2. Reflectance spectra of Uranus and Uranus plus rings show features in the planet's spectrum which are attributed to gaseous CH4 absorption, and a 2.20-μm feature in the combined spectrum which may be due to the rings. This feature is tentatively identified with either the 2.26-μm absorption feature of NH3 frost, or the 2.2-μm OH band exhibited by certain silicate minerals. The results of JHK photometry of Uranus' satellite, Ariel (U1), indicate that the infrared colors of this object are very similar to those of the satellites U2, U3, and U4.  相似文献   

15.
The spectrum of Saturn was measured from 80 to 350 cm?1 (29 to 125 μm) with ≈6-cm?1 resolution using a Michelson interferometer aboard NASA's Kuiper Airborne Observatory. These observations are of the full disk, with little contribution from the rings. For frequencies below 300 cm?1, Saturn's brightness temperature rises slowly, reaching ≈111°K at 100 cm?1. The effective temperature is 96.8 ± 2.5°K, implying that Saturn emits 3.0 ± 0.5 times as much energy as it receives from the Sun. The rotation-inversion manifolds of NH3 that are prominent in the far-infrared spectrum of Jupiter are not observed on Saturn. Our models predict the strengths to be only ≈2 to 5°K in brightness temperature because most of the NH3 is frozen out; this is comparable to the noise in our data. By combining our data with those of an earlier investigation when the Saturnicentric latitude of the Sun was B′ = 21.2°, we obtain the spectrum of the rings. The high-frequency end of the ring spectrum (ν > 230 cm?1) has nearly constant brightness temperature of 85°K. At lower frequencies, the brightness temperature decreases roughly as predicted by a simple absorption model with an optical depth proportional to ν1.5. This behavior could be due to mu-structure on the surface of the ring particles with a scale size of 10 to 100 μm and/or to impurities in their composition.  相似文献   

16.
Radar observations of the asteroid 1580 Betulia, made at a wavelength of 12.6 cm, show a mean radar cross section of 2.2 ± 0.8 km2 and a total spectral bandwidth of 26.5 ± 1.5 Hz. Combining our bandwidth measurements with the optically determined rotation period sets a lower limit to the asteroid's radius of 2.9 ± 0.2 km.  相似文献   

17.
The preliminary measurements by Pioneer 11 of the limb darkening and polarization of Titan at red and blue wavelenghts (M. G. Tomasko, 1980,J. Geophys. Res., 85, 5937–5942) are refined and the measurements of the brightness of the integrated disk at phase angles from 22 to 96° are reduced. At 28° phase, Titan's reflectivity in blue light at southern latitudes is as much as 25% greater than that at northern latitudes, comparable to the values observed by Voyager 1 (L. A. Sromovsky et al., 1981,Nature (London), 292, 698–702). In red light the reflectivity is constant to within a few percent for latitudes between 40°S and 60°N. Titan's phase coefficient between 22 and 96° phase angle averages about 0.014 magnitudes/degree in both colors—a value considerably greater than that observed at smaller phase from the Earth. Comparisons of the data with vertically homogeneous multiple-scattering models indicate that the single-scattering phase functions of the aerosols in both colors are rather flat at scattering angles between 80 and 150° with a small peak at larger scattering (i.e., small phase) angles. The models indicate that the phase integral, q, for Titan in both red and blue light is about 1.66 ± 0.1. Together with Younkin's value for the bolometric geometric albedo scaled to a radius of 2825 km, this implies an effective temperature in equilibrium with sunlight of 84 ± 2°K, in agreement with recent thermal measurements. The single-scattering polarizations produced by the particles at 90° scattering angle are quite large, >85% in blue light and >95% in red. A vertically homogeneous model in which the particles are assumed to scatter as spheres cannot simultaneously match the polarization observations in both colors for any refractive index. However, the observed polarizations are most sensitive to the particle properties near optical depth 12 in each color, and so models based on single scattering by spheres can be successful over a range of refractive indices if the size of the particles increases with depth and if the cross section of the particles increases sufficiently rapidly with decreasing wavelenght. For example, with nr = 1.70, the polarization (and the photometry) are reproduced reasonably well in both colors when the area-weighted average radous of the particles, α, is given by α = (0.117 μm)(τred/0.5)0.217. While this model does not reproduce the large increase in brightness from 129 to 160° phase observed by Voyager 1, the observed increase is determined by the properties of the particles in the top few hundredths of an optical depth. Thus the addition of a very thin layer of forward-scattering aerosols on top of the above model offers one way of satisfying both the Pioneer 11 and Voyager 1 observations. Of course, other models, using bimodal size distributions or scattering by nonspherical particles, may also be capable of reproducing these data.  相似文献   

18.
Michael J. Price 《Icarus》1973,20(4):455-464
New measurements of the equivalent widths of the 4-0 S(0) and S(1) H2 quadrupole lines in the Uranian spectrum have been obtained using high dispersion (4.12 Å/mm) image-tube spectrography. The measured equivalent widths are 62 ± 19mA?and 58 ± 13 mA? for the S(0) and S(1) lines, respectively. Curve-of-growth analysis in terms of a reflecting layer model yields an H2 column-density of 780?330+940km amagat and a temperature of 78?24+80°K. Interpretation using a semi-infinite, homogeneous, isotropically scattering model for line formation yields a scattering mean free path at λ6400 Å of 550 ± 250 km amagat. Quoted errors for both the H2 column-density and the scattering mean free path include the effect of uncertainty in the choice of atmospheric temperature. The results are discussed in terms of current models for the Uranian atmosphere.  相似文献   

19.
Thirteen-centimeter-wavelength radar observations of Mars made in 1982 at Arecibo Observatory yield accurate measurements of the full backscatter spectrum in two orthogonal polarizations. The data, which were obtained for several widely separated subradar longitudes at 24°N latitude, provide the first global view of the distribution of small-scale surface roughness on Mars. The diffuse component of the echo exhibits strong spatial variations. Areas of maximum depolarization correlate well with volcanic regions (Tharsis and Elysium), while the heavily cratered upland terrain yields relatively low depolarization. Parts of Tharsis give near-complete depolarization (polaziation ratio μc ? 1 when viewed at oblique angles of incidence). Northern Martian plains regions (Tharsis, Elysium, and Amazonis) may comprise the most extensive area of severe decimeter-scale surface roughness in the inner Solar System. On the average, the northern Martian tropics yield higher diffuse radar cross sections (σD = 0.05–0.12) and a higher of degree disk-integrated depolarization (μc = 0.1–0.4) than is found for the Moon, Mercury, and Venus. Comparisons between the Moon and Mars using radar data, ground truth, and simple scattering models suggest that Mars possesses a relatively high average coverage by decimeter-scale rocks. Also discussed are several of the more interesting quasispecular scattering results, the most unsual of which were obtained over the Olympus Mons aureole region.  相似文献   

20.
It is shown that a lower limit exists on the microwave brightness of the rings of Saturn, if they are assumed to be composed of Mie scatterers of geological composition. The lower limit (about 15°K) is due to scattering of planetary microwave emission. Significant variation of brightness with azimuth along the rings is expected if the particles are typically of 2–3cm radius. Implications for the multiple-scattering hypothesis of the radar cross section of the rings are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号