首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geochimica et cosmochimica acta》1999,63(19-20):3003-3008
Hydroxamate siderophores are biologically-synthesized, Fe(III)-specific ligands which are common in soil environments. In this paper, we report an investigation of their adsorption by the iron oxyhydroxide, goethite; their influence on goethite dissolution kinetics; and their ability to affect Pb(II) adsorption by the goethite surface. The siderophores used were desferrioxamine B (DFO-B), a fungal siderophore, and desferrioxamine D1, an acetyl derivative of DFO-B (DFO-D1). Siderophore adsorption isotherms yielded maximum surface concentrations of 1.5 (DFO-B) or 3.5 (DFO-D1) μmol/g at pH 6.6, whereas adsorption envelopes showed either cation-like (DFO-B) or ligand-like (DFO-D1) behavior. Above pH 8, the adsorbed concentrations of both siderophores were similar. The dissolution rate of goethite in the presence of 240 μM DFO-B or DFO-D1 was 0.02 or 0.17 μmol/g hr, respectively. Comparison of these results with related literature data on the reactions between goethite and acetohydroxamic acid, a monohydroxamate ligand, suggested that the three hydroxamate groups in DFO-D1 coordinate to Fe(III) surface sites relatively independently. The results also demonstrated a significant depleting effect of 240 μM DFO-B or DFO-D1 on Pb(II) adsorption by goethite at pH > 6.5, but there was no effect of adsorbed Pb(II) on the goethite dissolution rate.  相似文献   

2.
In dynamic natural systems such as soils and surface waters, transient biogeochemical processes can induce strong chemical non-steady-state conditions. In this paper, we investigate the effects of non-steady-state conditions on ligand-controlled iron oxide dissolution. The rates of goethite dissolution at pH 6 in the presence of low molecular weight organic acids (oxalate, citrate or malonate) were observed. Non-steady-state conditions were induced by rapid additions of fungal, bacterial or plant siderophores. In the presence of the low molecular weight organic acids, dissolved iron concentrations are below detection limit as predicted by equilibrium solubility calculations. The rapid addition of the siderophores triggered reproducible, fast dissolution of kinetically labile iron from the iron oxide surface. The same effect was observed upon rapid additions of high citrate concentrations to goethite-oxalate suspensions. The concentration of the labile iron pool at the mineral surface was a function of the surface concentration of the low molecular weight organic acids and of the reaction time before addition of the siderophores. Isotopic exchange with 59Fe independently confirmed the existence of the labile iron pool before addition of the siderophore. A dissolution mechanism was elucidated that is consistent with these observations and with accepted models of ligand-controlled dissolution. We conclude that the fast dissolution reaction observed here is an important process in biological iron acquisition and that it is based on a general geochemical mechanism.  相似文献   

3.
The adsorption of octyl hydroxamate on electrolytic manganese dioxide was investigated through adsorption studies, electrophoretic mobility measurements, infrared spectroscopy and Hallimond tube flotation. The adsorption measurements at room temperature and flotation studies show that a peak in adsorption density and flotation response occurs around pH 9. IR spectra indicate the presence of basic manganous hydroxamate complex at the surface. The electrophoretic mobility studies suggest that hydroxamate adsorbs specifically at the manganese dioxide/water interface. Adsorption measurements at an elevated temperature show that adsorption density increases with increasing temperature. It is postulated that the reactive species in adsorption could be the hydroxamic acid species.  相似文献   

4.
《Geochimica et cosmochimica acta》1999,63(19-20):2957-2969
Fourier transform infrared (FTIR) and extended X-ray absorption fine structure (EXAPS) spectroscopic measurements were performed on Pb(II)ethylenediaminetetraacetic (EDTA) adsorbed on goethite as a function of pH (4–6), Pb(II)EDTA concentration (0.11–72 μM), and ionic strength (16 μM–0.5 M). FTIR measurements show no evidence for carboxylate-Fe(III) bonding or protonation of EDTA at Pb:EDTA = 1:1. Both FTIR and EXAFS spectroscopic measurements suggest that EDTA acts as a hexadentate ligand, with all four of its carboxylate and both of its amine groups bonded to Pb(II). No evidence was observed for inner-sphere Pb(II)-goethite bonding at Pb:EDTA = 1:1. Hence, the adsorbed complexes should have composition Pb(II)EDTA2−. Because substantial uptake of PbEDTA(II)2− occurred in the samples, we interpret that Pb(II)EDTA2− adsorbed as outer-sphere complexes and/or as complexes that lose part of their solvation shells and hydrogen bond directly to goethite surface sites. We propose the term “hydration-sphere” for the latter type of complexes because they should occupy space in the primary hydration spheres of goethite surface functional groups and to distinguish this mode of sorption from common structural definitions of inner- and outer-sphere complexes. The lack of evidence for inner-sphere EDTA-Fe(III) bonding suggests that previously proposed metal/ligand-promoted dissolution mechanisms should be modified, specifically to account for the presence of outer-sphere precursor species.  相似文献   

5.
Fluoride ion interaction with synthetically prepared goethite has been investigated over a range of pH values (4–9) and F concentrations (10–3–10–5 M). The amount of F retained by goethite suspensions was found to be a function of pH, media ionic strength, F concentration, and goethite concentration. The lowest ionic strength (0.001 M KNO3) gave the highest adsorption medium. Uptake was minimal at pH >7 and increased with decreasing pH. Thermodynamic properties for fluoride adsorption at 298 K and 323 K were investigated. The isosteric heat of adsorption (H r) was calculated and the heterogeneity and homogeneity of the surface examined for goethite. In view of the importance of fluoride in dental health, the interaction of fluoride on goethite in the physical environment has important implications on dental epidemiology.  相似文献   

6.
The adsorption of copper(II) onto goethite was studied as a function of pH, total dissolved copper concentration, surface area of goethite, and ionic strength. The adsorption of copper was similar to that of other hydrolyzable metals. A tenfold increase in goethite surface area had a significant effect on the adsorption edge, but a tenfold increase in the ionic strength of the medium did not effect the adsorption edge. The distribution coefficients increase sharply with increase in pH and ranged from 10 to 60,000 ml/g over a range of two and half pH units, depending on the goethite surface area and copper concentration. A tenfold decrease in ionic strength as well as a tenfold increase in surface area of goethite did not have any effect on the magnitude of distribution coefficients. Distribution coefficients were used to calculate the number of protons released per mole of copper adsorbed during the adsorption process. The average number of protons released per mole of copper adsorbed was estimated to be 1.40 ± 0.10.Managed by Martin Marietta Energy System, Inc., for the U.S. Department of Energy under contract no. DE-AC05-840R21400.  相似文献   

7.
8.
In situ atomic force microscopy (AFM) has been used to compare the growth of pure calcite and the growth of calcite in the presence of sulfate ions from aqueous solutions at a constant value of supersaturation (S.I. = 0.89) with respect to calcite. The effect of sulfate ions on calcite growth rates is determined and a potential incorporation of sulfate ions is identified in the calcite during growth. Solutions supersaturated with respect to calcite with solution concentration ratio of one and a constant pH of 10.2, were prepared and sulfate was added as Na2SO4 aqueous solution. The solution composition was readjusted in order to keep the supersaturation and pH constant. PHREEQC was used to determine relevant solution concentrations. In situ AFM experiments of calcite growth were performed using a fluid cell and flowing solutions passed over a freshly cleaved calcite surface. Growth rates were determined from the closure of the rhombohedral etch pits induced by initial dissolution with pure water. The spreading rate of 2-dimensional nuclei was also measured. At low concentrations of sulfate (≤ 0.5 mM), no effect on the growth rate of the calcite was observed. At higher concentrations (2 to 3 mM) of sulfate, the growth rate increased, possibly because a higher concentration of calcium and carbonate was necessary to maintain the supersaturation constant. At much higher concentrations of additional sulfate (up to 60 mM) the growth rate of the calcite was substantially decreased, despite the fact that a further increase of calcium and carbonate was required. The morphology of 2-dimensional growth nuclei became increasingly elongated with increasing sulfate content. Measurements of step height showed that newly grown steps were approximately 1 Å higher when grown in high sulfate concentrations, compared to steps grown in sulfate-free solutions. At sulfate concentrations above 5 mM the growth mechanism changes from layer growth to surface roughening. These observations suggest that the new growth has incorporated sulfate into the calcite surface.  相似文献   

9.
Past mining, processing, and waste disposal activities have left a legacy of uranium-contaminated soil and groundwater. Phosphate addition to subsurface environments can potentially immobilize U(VI) in-situ through interactions with uranium at mineral-water interfaces. Phosphate can induce the precipitation of low solubility U(VI)-phosphates, and it may enhance or inhibit U(VI) adsorption to iron(III) (oxy)hydroxide surfaces. Such surfaces may also facilitate the heterogeneous nucleation of U(VI)-phosphate precipitates. The interactions among phosphate, U(VI), and goethite (α-FeOOH) were investigated in a year-long series of experiments at pH 4. Reaction time, total U(VI), total phosphate, and the presence and absence of goethite were systematically varied to determine their effects on the extent of U(VI) uptake and the dominant uranium immobilization mechanism. Dissolved U(VI) and phosphate concentrations were interpreted within a reaction-based modeling framework that included dissolution-precipitation reactions and a surface complexation model to account for adsorption. The best available thermodynamic data and past surface complexation models were integrated to form an internally consistent framework. Additional evidence for the uptake mechanisms was obtained using scanning electron microscopy and X-ray diffraction. The formation and crystal growth of a U(VI)-phosphate phase, most likely chernikovite, UO2HPO4·4H2O(s), occurred rapidly for initially supersaturated suspensions both with and without goethite. Nucleation appears to occur homogeneously for almost all conditions, even in the presence of goethite, but heterogeneous nucleation was likely at one condition. The U(VI)-phosphate solids exhibited metastability depending on the TOTU:TOTP ratio. At the highest phosphate concentration studied (130 μM), U(VI) uptake was enhanced due to the likely formation of a ternary surface complex for low (∼1 μM) to intermediate (∼10 μM) TOTU concentrations and to U(VI)-phosphate precipitation for high TOTU (∼100 μM) concentrations. For conditions favoring precipitation, the goethite surface acted as a sink for dissolved phosphate that resulted in higher dissolved U(VI) concentrations relative to goethite-free conditions. Based on the total uranium and available sorption sites, a critical phosphate concentration between 15 μM and 130 μM was required for preferential precipitation of uranium phosphate over U(VI) adsorption.  相似文献   

10.
Interactions of copper, organic acids, and sulfate in goethite suspensions   总被引:1,自引:0,他引:1  
Sorption of copper and sulfate onto goethite (-FeOOH) in aqueous solution is examined in Cu---SO4 binary-sorbate systems and in Cu-SO4-organic acid (either phthalic acid or chelidamic acid) ternary-sorbate systems. Compared to single-sorbate systems, sorption of Cu onto goethite was enhanced at low pH values in the presence of sulfate. Sorption data for Cu and SO4 in Cu---SO4 binary-sorbate systems were described with the Generalized Two Layer Model by proposing formation of a Cu---SO4 ternary surface complex. Addition of sulfate to a Cu-phthalic acid binary sorbate system had little effect on Cu sorption. However, addition of sulfate to Cu-chelidamic acid binary-sorbate systems resulted in significant reduction of Cu sorption at low pH values, primarily due to competition for surface sites between sulfate and Cu-chelidamic acid ternary surface complexes. While organic acids such as humic substances can potentially influence sorption of metal ions, results from this study suggest that the extent of such influence may be strongly dependent on the presence of other sorbing anions, such as sulfate. Sorption of Cu and SO4 in Cu---SO4-organic acid ternary-sorbate systems was predicted reasonably well, based on surface reactions and equilibrium constants derived from fitting of sorption data from single- and binary-sorbate systems. These modeling results provide a validation of the extrapolation of sorption from simple systems to multicomponent systems through surface complexation modeling.  相似文献   

11.
Crystallization of sodium sulfate salts in limestone   总被引:1,自引:0,他引:1  
Crystallization pressure of salt crystals growing in confined pores is found to be the main cause for damage to stone and masonry. In this work, the crystallization of sodium sulfate salts in Cordova Cream and Indiana limestones is investigated using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The DSC experiments indicate that sodium heptahydrate always precipitates prior to the decahydrate (mirabilite), at a temperature between 15 and 7°C in the selected stones. The threshold supersaturation for the nucleation of heptahydrate is less than 2. In constrast, mirabilite precipitates close to or below 0°C and its crystallization pattern is completely different: precipitation takes place abruptly when the threshold supersaturation is reached, which is greater than 7. Indeed, the DSC and the DMA experiments reveal the rare nature of the nucleation of mirabilite for the investigated stones. The crystallization pressure exerted by heptahydrate does not cause damage under the conditions of the cooling experiments. In contrast, mirabilite exerts a very high crystallization pressure on the pore wall causing damage of the stone; moreover, the transient stress can remain for a long period of time since the relaxation process is slow.  相似文献   

12.
The adsorption of monocarboxylates (acetate, benzoate, and cyclohexanecarboxylate) at the water/goethite interface was studied as a function of pH and ionic strength by means of quantitative adsorption measurements and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. ATR-FTIR spectra were obtained of suspensions prepared in both H2O and D2O. In order to identify the number of predominating surface complexes and to improve the resolution of overlapping peaks the ATR-FTIR spectra were subjected to a 2D correlation spectroscopic analysis. The adsorption envelopes of acetate, benzoate, and cyclohexanecarboxylate are similar and depend strongly on pH and ionic strength, but the pH dependence is also correlated to the slightly different pKa values of the monocarboxylic acids. At the molecular level, the ATR-FTIR spectroscopic results reveal two surface complexes: one solvent-surface hydration-separated ion pair and one surface hydration-shared ion pair. The former predominates at circumneutral pH values while the latter forms mainly in the acidic pH range. We find no evidence for direct inner-sphere coordination between the carboxylic oxygens and the Fe(III) ions present at the surface. The identification of surface hydration-shared ion pairs emphasizes the importance of comparatively strong ionic hydrogen-bonding interactions for adsorption processes at the water/goethite interface.  相似文献   

13.
韩鹏举  刘新  白晓红 《岩土力学》2014,35(9):2555-2561
通过不同含量的硫酸钠水泥土抗压强度测试,分析硫酸钠对水泥土X射线衍射(XRD)物相成分改变的化学反应过程,对比分析经Image-ProPlus6.0(IPP)软件处理前、后的微观扫描电镜试验(SEM)图像,计算放大200倍下SEM图像的孔隙平均直径分布规律,探讨硫酸钠对水泥土宏观强度与微观孔隙的影响规律。结果表明,硫酸钠充分参与了水泥土的固化过程,促进了Ca(OH)2、CaSO4、CaCO3与C-A-S-H等水化产物的生成;水泥土强度随硫酸钠含量增加而增大,在含量等于9g/kg时达到最大值;硫酸钠使水泥土的孔径分布发生改变,放大200倍下水泥土微观图像孔隙率随着硫酸钠含量的增大呈减小趋势;当硫酸钠含量小于9g/kg时,生成的水化产物使水泥土的结构呈现较强的粒状-镶嵌-胶结结构,对强度有利,当硫酸钠含量较大时,水化产物产生的膨胀力大于胶结力,使其强度下降。  相似文献   

14.
甲醛作为一种致畸、致癌的高毒性有机污染物,对人体健康构成威胁,如何有效去除气体中的甲醛是关注的热点问题之一。采用粒径0.84~3.35 mm的天然针铁矿矿石于300℃氢还原转化为磁铁矿纳米材料,将纳米磁铁矿固定床非均相Fenton氧化反应器与紫外光催化双氧水氧化反应器串接,对比研究了双氧水、双氧水-紫外光、磁铁矿-双氧水、磁铁矿-双氧水-紫外光4种不同反应体系中双氧水投加量、甲醛初始浓度、载气流量对甲醛净化效率的影响。通过小型质谱仪对甲醛Fenton光催化氧化产物进行在线监测及TOC碳平衡分析,探讨甲醛净化的机理。结果显示制备的磁铁矿作为催化剂去除甲醛气体效果明显,在紫外光-10%双氧水-磁铁矿协同作用下,最高去除率可达98%,且在不同气速下对气体中不同浓度的甲醛都有很好的净化效果。研究结果表明,制备的磁铁矿纳米材料催化剂在去除甲醛气体过程中起着重要作用,经紫外光均相催化的双氧水协同作用可以在常温下很好地把气体中的甲醛氧化为CO2,是一种低成本的有机废气净化技术方法。  相似文献   

15.
Calcite is generally associated with apatite minerals in phosphate deposits. To explore the possibility of separating these minerals by a soap flotation technique, their electrokinetic properties and flotation behaviour were studied in the presence of sodium oleate.Microelectrophoresis data indicate oleate adsorption on these minerals, and from Hallimond-tube flotation tests it has been noted that in a controlled pH environment and for a certain sodium oleate concentration range, separation of these minerals is possible.The study of apatite/calcite-sodium metasilicate-sodium oleate systems indicates the preferential adsorption of silicate at the calcite surface. This suggests the potential use of sodium metasilicate as the modifying agent for the separation of apatite from calcite by depressing calcite when using sodium oleate as collector.  相似文献   

16.
万旭升  赖远明 《冰川冻土》2016,38(2):431-437
为探讨硫酸钠盐渍土盐胀机理,研究了十水硫酸钠晶体在硫酸钠溶液中的析出规律.针对不同浓度的硫酸钠溶液,在1℃·min-1、0.1℃·min-1和0.02℃·min-13种降温速率下,通过降温试验对晶体初始析出温度进行观测.试验表明:十水硫酸钠晶体的析出受降温速率的影响,随着降温速率的减小,晶体初始析出温度升高;降温速率的大小对晶体析出后溶液浓度变化几乎没有影响,但其会影响晶体形态,降温速率越小,晶体形态更为稳定;晶体析出受到相变驱动力作用,相变驱动力与降温速率大小呈正比,降温速率越大,晶体初始析出结晶力越大.  相似文献   

17.
Crystallisation of sodium sulfate: supersaturation and metastable phases   总被引:1,自引:0,他引:1  
Crystallisation of sodium sulfate solutions by evaporation under controlled climatic conditions has revealed the existence of crystalline hydrated sodium sulfate salts not previously reported. The sodium sulfate phase crystallising and the concentration of the solution at the point of crystallisation depends on the climatic conditions (temperature and evaporation rate). During the rehydration of the anhydrous sodium sulfate phase, thenardite, another previously unreported phase was formed prior to the nucleation of the stable phase, mirabilite Na2SO4 · 10H2O. The addition of organic inhibitors changes both the crystallisation and the rehydration behavior in this system.  相似文献   

18.
The nonsteroidal anti-inflammatory drug “diclofenac” is the pharmaceutically active ingredient of several medicines. Since the compound is used in many of its water-soluble salt forms, it is one of the most frequently found pollutants in different parts of the water cycle. Its reaction with sodium hypochlorite was investigated in the presence of humic substances and sandy soil extract at neutral pH at 25 and 250 mg/L initial concentrations. In the lower concentration, the reaction follows a pseudo-first-order kinetics, while at the higher concentration, it is described as the sum of two first-order reactions. These kinetic results, together with the organic chlorine content of the residues, indicated that both chlorination and oxidation took place. The chlorination is significantly faster. The colloids present catalyze the reactions: The clay minerals of soil extract accelerated the chlorination, while the humic acids could work as photocatalysts in the oxidation, while these compounds themselves were chlorinated. The adsorption of diclofenac on activated carbon was enhanced by humic substances, and every isotherm had a breaking point near to 3 mg/L equilibrium concentration (c e) resulting in two steps. According to the measurements of the zeta potential, the system proved to be relatively stable at this c e value, but at higher diclofenac concentrations the stability retained only in the presence of the hydrophilic fulvic acid. The results supported the adsorption hypothesis that in the first step the charge transfer interaction while in the second step hydrogen bond formation plays the key role.  相似文献   

19.
含NaCl和Na2SO4双组分盐渍土的水盐相变温度研究   总被引:1,自引:0,他引:1  
盐渍土相变温度是判断土体中水分冻结与融化、盐分结晶与溶解的重要参数.不同盐分含量相变温度的差异,给盐渍土在降温过程中的水盐迁移过程及变形规律的模拟带来极大的不确定性.通过降温试验,研究了降温过程中氯盐和硫酸盐综合作用盐渍土中水盐相变温度的变化情况.结果表明:全盐量相同时,盐结晶温度随NaCl和Na2SO4比例的不同而不...  相似文献   

20.
The release of dissolved organic matter (DOM) from forest floor material constitutes a significant flux of C to the mineral soil in temperate forest ecosystems, with estimates on the order of 120-500 kg C ha−1 year−1. Interaction of DOM with minerals and metals results in sorptive fractionation and stabilization of OM within the soil profile. Iron and aluminum oxides, in particular, have a significant effect on the quantity and quality of DOM transported through forest soils due to their high surface area and the toxic effects of dissolved aluminum on microbial communities. We directly examined these interactions by incubating forest floor material, including native microbiota, for 154 days in the presence of (1) goethite (α-FeOOH), (2) gibbsite (γ-Al(OH)3), and (3) quartz (α-SiO2) sand (as a control). Changes in molecular and thermal properties of water extractable organic matter (WEOM, as a proxy for DOM) were evaluated. WEOM was harvested on days 5, 10, 20, 30, 60, 90, and 154, and examined by thermogravimetry/differential thermal analysis (TG/DTA) and diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy. Results indicated significant differences in WEOM quality among treatments, though the way in which oxide surfaces influenced WEOM properties did not seem to change significantly with increasing incubation time. Dissolved organic C concentrations were significantly lower in WEOM from the oxide treatments in comparison to the control treatment. Incubation with goethite produced WEOM with mid-to-high-range thermal lability that was depleted in both protein and fatty acids relative to the control. The average enthalpy of WEOM from the goethite treatment was significantly higher than either the gibbsite or control treatment, suggesting that interaction with goethite surfaces increases the energy content of WEOM. Incubation with gibbsite produced WEOM rich in thermally recalcitrant and carboxyl-rich compounds in comparison to the control treatment. These data indicate that interaction of WEOM with oxide surfaces significantly influences the composition of WEOM and that oxides play an important role in determining the biogeochemistry of forest soil DOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号