首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract. A number of recent studies based on hydrographic observations and modelling simulations have dealt with the major climatic shift that occurred in the deep circulation of the Eastern Mediterranean. This work presents hydrographic observations and current measurements conducted from 1997 to 1999, which reveal strong modifications in the dynamics of the upper, intermediate and deep layers, as well as an evolution of the thermohaline characteristics of the deep Aegean outflow since 1995. The reversal of the circulation in the upper layer of the north/central Ionian is worthy of note. The observations indicate a reduction of Atlantic Water in the northern Ionian with an increase on the eastern side of the basin. In the intermediate layer, the dispersal path of the Levantine Intermediate Water (LIW) is altered. Highly saline (>39.0) and well-oxygenated intermediate waters were found near the Western Cretan Arc Straits. They flow out from the Aegean, thus interrupting the traditional path of the LIW, and spread prevalently northwards into the Adriatic Sea. In the deep layer, dense waters, exiting from the Adriatic (σø−29.18 kg · m−3), flow against the western continental margin in the Ionian Sea at a depth of between 1000–1500 m. Dense waters of Aegean origin (> 29.20 kg · m−3), discharged into the central region of the Eastern Mediterranean during the early stages of the transient, propagate prevalently to the east in the Levantine basin and to the west in the northern Ionian Sea. Near-bottom current measurements conducted in the Ionian Sea reveal unforeseen aspects of deep dynamics, suggesting a new configuration of the internal thermohaline conveyor belt of the Eastern Mediterranean.  相似文献   

2.
The biogeochemistry of the following elements Al, Fe, Sibio, POC, PNtot, Cabio, Sorg, P and Mn has been studied within waters of the Cretan Sea in March and September 1994, as part of the PELAGOS project. Particulate aluminosilicate concentrations, exemplified by Al, are very low (<1 μgl−1) especially in the upper waters. Higher concentrations occur below 200 m, especially at depths of 200 m and 500–700 m in the central and eastern areas, and are thought to result from sediment injections from the shelf edge and slope. The results for Sibio, Cabio, P and Sorg show much higher concentrations within the photic waters. Temporal and spatial high concentrations in these waters closely relate to the existence of cyclonic eddies on the east and west sides of the sea, while low concentrations are associated with an intervening anticyclonic eddy. However in September, discharge of Black Sea Water in the west sufficiently suppresses the thermocline to prevent upwelled water from reaching the surface and hence these substances are prevented from forming.Particulate Fe (expressed as Feexcess) concentrations show much higher concentrations relative to Al in September, and are thought to result from additional atmospheric inputs. The low particulate Mn concentrations in the upper water compared with deeper waters are considered to be a product of photoinhibition of MnOx precipitation from Mn(II).An attempt has been made to assess input/output budgets of Al, Ca, Fe and Mn through the Antikithira and Kassos Straits. Much of the outflows leave through the Kassos Strait and, except for Ca, net outflows through the Antikithira Straits are negligible.  相似文献   

3.
In the current study, low-background γ-spectrometry was employed to determine the 228Ra/226Ra activity ratio and 137Cs activity of 84 coastal water samples collected at six sites along the main island of Japan (Honshu Island) within the Sea of Japan, including the Tsushima Strait, and two other representative sites on Honshu Island (a Pacific shore and the Tsugaru Strait) at 1-month intervals in 2006.The 228Ra/226Ra ratio of coastal waters in the Sea of Japan exhibited similar patterns of seasonal variation, with minimum values during early summer (228Ra/226Ra = 0.6–0.8), maximum values during autumn (228Ra/226Ra = 1.5–3), and a time lag in their temporal changes ( 2.5 months and over  1300 km distance). However, the 2 other sites represented no clear periodic variation.In contrast to the positive correlation between 137Cs activity (0.6–1.7 mBq/L) and salinity (15–35), the 228Ra/226Ra ratio of coastal water samples from the Sea of Japan was not observed to correlate with salinity, and the increase in the 228Ra/226Ra ratio was not as marked (0.5–1; May–June 2004 and 2005) during the migration along Honshu Island. The input of land-derived water and/or the diffusion of radium from coastal sediments is unlikely to have affected the wide seasonal variation in the 228Ra/226Ra ratio observed in these water samples.The seasonal variation in the 228Ra/226Ra ratio recorded for the coastal waters of the Sea of Japan is considered to be mainly controlled by the remarkable changes in the mixing ratio of the 228Ra-poor Kuroshio and the 228Ra-rich continental shelf waters within the East China Sea (ECS). After passing through the Tsushima Strait, this water mass moves northeast along the coastline of the Sea of Japan as the Tsushima Coastal Branch Current (TCBC).  相似文献   

4.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) measured in deep profiles in the N-E Atlantic and in the N-W Mediterranean in the period 1984–2002 are described. After accurate validation, they show close agreement with those previously published.Classic profiles were obtained, with concentrations decreasing in deep waters. In the Mediterranean and in the Atlantic comparable concentrations were found in the 1500–2000 m waters, 44–46 μmol l−1 DOC, 2.6–2.8 μmol l−1 DON and 0.02–0.03 μmol l−1 DOP. In the surface layers, DOC concentrations were higher, but DON and DOP concentrations lower, in the Mediterranean than in the Atlantic, leading to higher element ratios in the Mediterranean. In autumn, values were, respectively, DOC:DON 17 vs. 14, DOC:DOP 950 vs. 500 and DON:DOP 55 vs. 35. The data suggest an increase in DOC and DON in the North Atlantic Central Water over 15 years, which may be linked to the North Atlantic climatic oscillations.Refractory DOM found in the 1500–2000 m layer exhibited C:N:P ratios of 1570:100:1. The labile+semi-labile (=non-refractory) DOM (nrDOM) pool was computed as DOM in excess of the refractory pool. Its contribution to total DOM above the thermocline in the open sea amounted to 25–35% of DOC, 30–35% of DON, and 60–80% of DOP. Element ratios of the nrDOM varied among stations and were lower than those of refractory DOM, except for C:N in the Mediterranean: nrDOC:nrDON 10–19, nrDOC:nrDOP 160–530 and nrDON:nrDOP 15–38. The specific stoichiometry of DOM in the Mediterranean led us to postulate that overconsumption of carbon is probably a main process in that oligotrophic sea.By coupling non-refractory DOM stoichiometry and relationships between the main DOM elements in the water column, the relative mineralization of C, N and P from DOM was studied. Below the thermocline, the preferential removal of phosphorus with regard to carbon from the semi-labile DOM can be confirmed, but not the preferential removal of nitrogen. In the ocean surface layers, processes depend on the oceanic area and can differ from deep waters, so preferential carbon removal seems more frequent. Bacterial growth efficiency data indicate that bacteria are directly responsible for mineralization of a high proportion of DON and DOP in the deep water.  相似文献   

5.
The Wadden Sea (North Sea, Europe) is a shallow coastal sea with high benthic and pelagic primary production rates. To date, no studies have been carried out in the Wadden Sea that were specifically designed to study the relation between pelagic respiration and production by comparable methods. Because previous studies have suggested that the import of primary-produced pelagic organic matter is important for benthic Wadden Sea carbon budgets, we hypothesised that on an annual average the northern Wadden Sea water column is autotrophic. To test this hypothesis, we studied annual dynamics of primary production and respiration at a pelagic station in a shallow tidal basin (List Tidal Basin, northern Wadden Sea). Since water depth strongly influences production estimates, we calculated primary production rates per unit area in two ways: on the basis of the mean water depth (2.7 m) and on the basis of 1 m depth intervals and their respective spatial extent in the List Tidal Basin. The latter more precise estimate yielded an annual primary production of 146 g C m− 2 y− 1. Estimates based on the mean water depth resulted in a 40% higher annual rate of 204 g C m− 2 y− 1. The total annual pelagic respiration was 50 g C m− 2 y− 1. The P/R ratio varied between seasons: from February to October the water column was autotrophic, with the highest P/R ratio of 4–5 during the diatom spring bloom in April/May. In autumn and winter the water column was heterotrophic. On an annual average, the water column of the List Tidal Basin was autotrophic (P/R 3). We suggest that a large fraction of the pelagic produced organic matter was respired locally in the sediment.  相似文献   

6.
Quasi-synoptic observations of the horizontal and vertical structure of a cold-core cyclonic mesoscale eddy feature (Cyclone Noah) were conducted in the lee of Hawai’i from November 4–22, 2004 as part of the E-Flux interdisciplinary collaborative research program. Cyclone Noah appears to have spun up to the southwest of the ‘Alenuihaha Channel (between Maui and Hawai’i) as a result of strong and persistent northeasterly trade winds through the channel. Shipboard hydrographic surveys 2.5 months later suggest that Noah weakened and was in a hypothesized spin-down phase of its life cycle. Although the initial surface expression of Noah was limited in scale to 40 km in diameter and, as evidenced by surface temperatures, 2–3 °C cooler than the surrounding waters, depth profiles revealed a fully developed semi-elliptical shallow feature (200 m), 144 km long and 90 km wide (based on sigma-t=23 kg m−3) with tangential speeds of 40–80 cm s−1, and substantial isopycnal doming. Potential vorticity distribution of Noah suggests that radial horizontal flow of the core water was inhibited from the surface to depths of 75 m, with high vorticity confined above the sigma-t=23.5 kg m−3 isopycnal surface. Upward displacements of isopycnal surfaces in the eddy's center (50 m) were congruent with enhanced pigment concentrations (0.50 mg m−3). Comparisons of the results obtained for E-Flux I (Noah) and E-Flux III (Opal) suggest that translation characteristics of cyclonic Hawaiian lee eddies may be important in establishing the biogeochemical and biological responses of the oligotrophic ocean to cyclonic eddies.  相似文献   

7.
8.
Benthic foraminiferal biomass, density, and species composition were determined at 10 sites in the Gulf of Mexico. During June 2001 and 2002, sediment samples were collected with a GoMex box corer. A 7.5-cm diameter subcore was taken from a box core collected at each site and sliced into 1-cm or 2-cm sections to a depth of 2 or 3 cm; the >63-μm fraction was examined shipboard for benthic foraminifera. Individual foraminifers were extracted for adenosine triphosphate (ATP) using a luciferin–luciferase assay, which indicated the total ATP content per specimen; that data was converted to organic carbon. Foraminiferal biomass and density varied substantially (2–53 mg C m−2; 3600–44,500 individuals m−2, respectively) and inconsistently with water depth: although two 1000-m deep sites were geographically separated by only 75 km, the foraminiferal biomass at one site was relatively low (9 mg C m−2) while the other site had the highest foraminiferal biomass (53 mg C m−2). Although most samples from Sigsbee Plain (>3000 m) had low biomass, one Sigsbee site had >20 mg foraminiferal C m−2. The foraminiferal community from all sites (i.e. bathyal and abyssal locales) was dominated by agglutinated, rather than calcareous or tectinous, species. Foraminiferal density never exceeded that of metazoan meiofauna at any site. Foraminiferal biomass, however, exceeded metazoan meiofaunal biomass at 5 of the 10 sites, indicating that foraminifera constitute a major component of the Gulf's deep-water meiofaunal biomass.  相似文献   

9.
Sources and discharges of dissolved organic carbon (DOC) from the central Sumatran river Siak were studied. DOC concentrations in the Siak ranged between 560 and 2594 μmol l−1 and peak out after its confluence with the river Mandau. The Mandau drains part of the central Sumatran peatlands and can be characterized as a typical blackwater river due to its high DOC concentration, its dark brown-coloured, acidic water (pH 4.4–4.7) and its low concentration of total suspended matter (12–41 mg l−1). The Mandau supplies about half of the DOC that enters the Siak Estuary where it mixes conservatively with ocean water. The DOC input from the Siak into the ocean was estimated to be 0.3 Tg C yr−1. Extrapolated to entire Indonesia the data suggest a total Indonesian DOC export of 21 Tg yr−1 representing 10% of the global riverine DOC input into the ocean.  相似文献   

10.
The dynamics of dissolved inorganic carbon (DIC) and processes controlling net community production (NCP) were investigated within a mature cyclonic eddy, Cyclone Opal, which formed in the lee of the main Hawaiian Islands in the subtropical North Pacific Gyre. Within the eddy core, physical and biogeochemical properties suggested that nutrient- and DIC-rich deep waters were uplifted by 80 m relative to surrounding waters, enhancing biological production. A salt budget indicates that the eddy core was a mixture of deep water (68%) and surface water (32%). NCP was estimated from mass balances of DIC, nitrate+nitrite, total organic carbon, and dissolved organic nitrogen, making rational inferences about the unobserved initial conditions at the time of eddy formation. Results consistently suggest that NCP in the center of the eddy was substantially enhanced relative to the surrounding waters, ranging from 14.1±10.6 (0–110 m: within the euphotic zone) to 14.2±9.2 (0–50 m: within the mixed layer) to 18.5±10.7 (0–75 m: within the deep chlorophyll-maximum layer) mmol C m−2 d−1 depending on the depth of integration. NCP in the ambient waters outside the eddy averaged about 2.37±4.24 mmol C m−2 d−1 in the mixed layer (0–95 m). Most of the enhanced NCP inside the eddy appears to have accumulated as dissolved organic carbon (DOC) rather than exported as particulate organic carbon (POC) to the mesopelagic. Our results also suggest that the upper euphotic zone (0–75 m) above the deep chlorophyll maximum is characterized by positive NCP, while NCP in the lower layer (>75 m) is close to zero or negative.  相似文献   

11.
Two strings of moored current meters deployed between March 1993 and May 1994, together with monthly CTD surveys, provide the first comprehensive set of observations over the seasonal cycle in the Clyde Sea. In the summer, a strong thermal stratification maintained a partial isolation of the deep waters. In winter, the stratification was weaker, and a 1 °C temperature inversion was persistent from November to the end of March. Rapid inflow of dense water from the North Channel of the Irish Sea served to re-establish the strong stratification in the spring. The mean rate of exchange was estimated from the salinity (practical salinity scale) and mass budgets to be 1·1×104 m3 s−1, indicating an average flushing time for the Clyde Sea of 3–4 months.Episodic increases in deep water salinity indicated that bottom water renewal occurred throughout the winter. Intense renewal events were observed in March 1993 and February 1994, when the North Channel density was near its seasonal maximum, and were coincident with periods of high wind stress. In the month prior to these rapid spring inflows, the basin bottom salinity reached its seasonal minimum, indicating that the effects of mixing dominated over renewal at this time. A marked inflow in the summer was inferred from the salinity budget, and observed as a salinity increase at a depth of 90 m. A 2-layer flow was observed in the Arran Deep basin throughout the year, the surface flow forming part of a clockwise circulation about Arran, with an opposing bottom layer circulation. This surface circulation prevents freshwater from entering the Kilbrannan Sound, leaving this area relatively susceptible to deep water mixing by the wind.At a station in the north of the basin, the internal tidal current was observed to have an amplitude of 2–3 cm s−1, which is half the amplitude of the barotropic tide. The energy available to mix the water column mixing associated with the internal tide at this position is estimated to be 0·01 mWm−2, which is 2 orders of magnitude less than wind mixing. The kinetic energy density in the Clyde Sea was found to be predominantly in low frequency oscillations (<1·0 cycles per day), the seasonal variation exhibiting some correlation with the wind.  相似文献   

12.
Mesoscale eddies and tropical instability waves in the eastern tropical Pacific, first revealed by satellite infrared imagery, play an important role in the dynamics and biology of the region, and in the transfer of mass, energy, heat, and biological constituents from the shelf to the deep ocean and across the equatorial currents.From boreal late autumn to early spring, four to 18 cyclonic or anticyclonic eddies are formed off the coastal region between southern Mexico and Panama. The anticyclonic gyres, which tend to be larger and last longer than the cyclonic ones, are the best studied: they typically are 180–500 km in diameter, depress the pycnocline from 60 to 145 m at the eddy center, have swirl speeds in excess of 1 m s−1, migrate west at velocities ranging from 11 to 19 cm s−1 (with a slight southward component), and maintain a height signature of up to 30 cm. The primary generating agents for these eddies are the strong, intermittent wind jets that blow across the isthmus of Tehuantepec in Mexico, the lake district in Nicaragua and Costa Rica, and the Panama canal. Other proposed eddy-generating mechanisms are the conservation of vorticity as the North Equatorial Counter Current (NECC) turns north on reaching America, and the instability of coastally trapped waves/currents.Tropical Instability Waves (TIWs) are perturbations in the SST fronts on either side of the equatorial cold tongue. They produce SST variations on the order of 1–2 °C, have periods of 20–40 days, wavelengths of 1000–2000 km, phase speeds of around 0.5 m s−1 and propagate westward both north and south of the Equator. The Tropical Instability Vortices (TIVs) are a train of westward-propagating anticyclonic eddies associated with the TIWs. They exhibit eddy currents exceeding 1.3 m s−1, a westward phase propagation speed between 30 and 40 km d−1, a signature above the pycnocline, and eastward energy propagation. Like the TIWs, they result from the latitudinal barotropically unstable shear between the South Equatorial Current (SEC) and the NECC with a potential secondary source of energy from baroclinic instability of the vertical shear with the Equatorial Undercurrent (EUC).This review of mesoscale processes is part of a comprehensive review of the oceanography of the eastern tropical Pacific Ocean.  相似文献   

13.
Analyses of two years (1992 and 1993) of high-resolution sea surface temperature satellite images of the southern Mid Atlantic Bight (MAB), showed that unusually extensive overhang of shelf water occurs episodically, and coherently over along shelf distances of several 100 km. These episodes are dubbed overrunning of the Slope Sea by shelf water. The overrunning volume has a “face” and a “back” (southern and northern limit). It transports substantial quantities of shelf water southward, and does not retreat onto the shelf, but eventually joins the western edge of the Gulf Stream in the vicinity of Chesapeake Bay. The combined analyses of satellite imagery and various in situ data further demonstrated that the shelf waters overrunning the Slope Sea were not mere surface features but reached depths between 40 and 60 m. Results confirm previous concepts on shelf circulation, shelf–slope exchange and fate of shelf water. They also shed new light on shelf water budget: overrunning of the Slope Sea and southwest transport by upper slope current constitutes an important conduit for shelf water transport. Winter storms move the shelf–slope front, and with it shelf water, offshore to distances 10–40 km. The offshore displacement of shelf water can be related to the onshore veering of the Gulf Stream near Cape Hatteras, producing a blocking effect on the shelf circulation. Such a blocking effect of the southwestward flow of shelf water in the MAB appeared to be the reason for the overrunning of shelf water off New Jersey. In addition, the excess fresh water discharge from the St. Lawerence was also observed to be related to the overflow of shelf water off New Jersey.  相似文献   

14.
Biogeochemical processes in sediments under the influence of the Rhône River plume were studied using both in situ microelectrodes and ex situ sediment core incubations. Organic carbon (OC) and total nitrogen (TN) content as well as stable carbon isotopic composition of OC (δ13COC) were analysed in 19 surface sediments to determine the distribution and sources of organic matter in the Rhône delta system. Large spatial variations were observed in both the total O2 uptake (5.2 to 29.3 mmol m−2 d−1) and NH4+ release (−0.1 to −3.5 mmol m−2 d−1) rates at the sediment–water interface. The highest fluxes were measured near the Rhône River mouth where sedimentary OC and TN contents reached 1.81% and 0.23% respectively. Values of δ13COC ranged from −26.83‰ to −23.88‰ with a significant seawards enrichment tracing the dispersal of terrestrial organic matter on the continental shelf. The amount of terrestrial-derived OC reaches 85% in sediments close to the Rhône mouth decreasing down to 25% in continental shelf sediments. On the prodelta, high terrestrial OC accumulation rates support high oxygen uptake rates and thus indicating that a significant fraction of terrestrial OC is remineralized. A particulate organic carbon (POC) mass balance indicates that only 3% of the deposited POC is remineralized in prodelta sediments while 96% is recycled on the continental shelf. It was calculated that a large proportion of the Rhône POC input is either buried (52%) or remineralized (8%), mostly on the prodelta area. The remaining fraction (40%) is either mineralized in the water or exported outside the Rhône delta system in dissolved or particulate forms.  相似文献   

15.
We report measurements of dissolved iron (dFe, <0.4 μm) in seawater collected from the upper 300 m of the water column along the CLIVAR SR3 section south of Tasmania in March 1998 (between 42°S and 54°S) and November–December 2001 (between 47°S and 66°S). Results from both cruises indicate a general north-to-south decrease in mixed-layer dFe concentrations, from values as high as 0.76 nM in the Subtropical Front to uniformly low concentrations (<0.1 nM) between the Polar Front and the Antarctic continental shelf. Samples collected from the seasonal sea-ice zone in November–December 2001 provide no evidence of significant dFe inputs from the melting pack ice, which may explain the absence of pronounced ice-edge algal blooms in this sector of the Southern Ocean, as implied by satellite ocean-color images. Our data also allow us to infer changes in the dFe concentration of surface waters during the growing season. South of the Polar Front, a comparison of near-surface with subsurface (150 m depth) dFe concentrations in November–December 2001 suggests a net seasonal biological uptake of at least 0.14–0.18 nM dFe, of which 0.05–0.12 nM is depleted early in the growing season (before mid December). A comparison of our spring 2001 and fall 1998 data indicates a barely discernible seasonal depletion of dFe (0.03 nM) within the Polar Frontal Zone. Further north, most of our iron profiles do not exhibit near-surface depletions, and mixed-layer dFe concentrations are sometimes higher in samples from fall 1998 compared to spring 2001; here, the near-surface dFe distributions appear to be dominated by time-varying inputs of aerosol iron or advection of iron-rich subtropical waters from the north.  相似文献   

16.
Lagrangian time series of dimethylsulfide (DMS) concentrations from a cyclonic and an anticyclonic eddy in the Sargasso Sea were used in conjunction with measured DMS loss rates and a model of vertical mixing to estimate gross DMS production in the upper 60 m during summer 2004. Loss terms included biological consumption, photolysis, and ventilation to the atmosphere. The time- and depth (0–60 m)-averaged gross DMS production was estimated to be 0.73±0.09 nM d−1 in the cyclonic eddy and 0.90±0.15 nM d−1 in the anticyclonic eddy, with respective DMS replacement times of 5±1 and 6±1 d. The higher estimated rate of gross production and lower measured loss rate constants in the anticyclonic eddy were equally responsible for this eddy's 50% higher DMS inventory (0–60 m). When normalized to chlorophyll and total dimethylsulfoniopropionate (DMSP), estimated gross production in the anticyclonic eddy was about twice that in the cyclonic eddy, consistent with the greater fraction of phytoplankton that were DMSP producers in the anticyclonic eddy. Higher rates of gross production were estimated below the mixed layer, contributing to the subsurface DMS maximum found in both eddies. In both eddies, gas exchange, microbial consumption, and photolysis were roughly equal DMS loss terms in the surface mixed layer (0.2–0.4 nM d−1). Vertical mixing was a substantial source of DMS to the surface mixed layer in both eddies (0.2–0.3 nM d−1) owing to the relatively high DMS concentrations below the mixed layer. Estimated net biological DMS production rates (gross production minus microbial consumption) in the mixed layer were substantially lower (by almost a factor of 3) than those estimated in a previous study of the Sargasso Sea, which may explain the relatively low mixed-layer DMS concentrations found here during July 2004 (3 nM) compared to previous summers (4–6 nM).  相似文献   

17.
The recent changes in the thermohaline circulation of the Eastern Mediteranean caused by a transition from a system with a single source of deep water in the Adriatic to one with an additional source in the Aegean are described and assessed in detail. The name Cretan Sea Overflow Water (CSOW) is proposed for the new deep water mass. CSOW is warmer (θ>13.6°C) and more saline (S>38.80) than the previously dominating Eastern Mediterranean Deep Water (EMDW), causing temperatures and salinities to rise towards the bottom. All major water masses of the Eastern Mediterranean, including the Levantine Intermediate Water (LIW), have been strongly affected by the change. The stronger inflow into the bottom layer caused by the discharge of CSOW into the Ionian and Levantine Basins induced compensatory flows further up in the water column, affecting the circulation at intermediate depth. In the northeastern Ionian Sea the saline intermediate layer consisting of Levantine Intermediate Water and Cretan Intermediate Water (CIW) is found to be less pronounced. The layer thickness has been reduced by factor of about two, concurrently with a reduction of the maximum salinity, reducing advection of saline waters into the Adriatic. As a consequence, a salinity decrease is observed in the Adriatic Deep Water. Outside the Aegean the upwelling of mid-depth waters reaches depths shallow enough so that these waters are advected into the Aegean and form a mid-depth salinity-minimum layer. Notable changes have been found in the nutrient distributions. On the basin-scale the nutrient levels in the upper water column have been elevated by the uplifting of nutrient-rich deeper waters. Nutrient-rich water is now found closer to the euphotic zone than previously, which might induce enhanced biological activity. The observed salinity redistribution, i.e. decreasing values in the upper 500–1400 m and increasing values in the bottom layer, suggests that at least part of the transition is due to an internal redistribution of salt. An initiation of the event by a local enhancement of salinity in the Aegean through a strong change in the fresh water flux is conceivable and is supported by observations.  相似文献   

18.
Nutrient and oxygen data collected in the southern Aegean Sea (Cretan Sea) and the straits of the Cretan Arc, during the four seasonal PELAGOS cruises in 1994–1995, are investigated and compared with data collected from 1987 to 1992 within the same area. During the cruises of the PELAGOS Project, nutrient enrichment of the intermediate layers of the Cretan Sea was observed, as a result of intrusion of ‘nutrient-rich, oxygen-poor’ Transition Mediterranean Water (TMW) compensating the Cretan Deep Water (CDW) outflow. TMW occupied the intermediate layers of the entire Cretan Sea. The concentrations of nutrients within this layer were often two times higher than those observed in the same area during previous studies undertaken before 1992 (increase 2.5 μmol/l of nitrate, 0.05 μmol/l of phosphate and 2.5μmol/l of silicate). The decrease of oxygen in this layer is about 0.8ml/l (35 μmol/l). Outflow of CDW occurs principally through the Antikithira and Kassos Straits (the two deeper straits of the Cretan Arc); it results in an increase of oxygen content but a decrease in the nutrient content of water in the deep and bottom layers outside the Cretan Sea. The major mesoscale features in the area have a major influence of the distributions and exchanges of nutrients and oxygen through the straits of the Cretan Arc. The surface and the intermediate layers were richer in nutrients and poorer in oxygen in spring (March 1994), than in autumn (September 1994).  相似文献   

19.
Changes from winter (July) to summer (February) in mixed layer carbon tracers and nutrients measured in the sub-Antarctic zone (SAZ), south of Australia, were used to derive a seasonal carbon budget. The region showed a strong winter to summer decrease in dissolved inorganic carbon (DIC;  45 µmol/kg) and fugacity of carbon dioxide (fCO2;  25 µatm), and an increase in stable carbon isotopic composition of DIC (δ13CDIC;  0.5‰), based on data collected between November 1997 and July 1999.The observed mixed layer changes are due to a combination of ocean mixing, air–sea exchange of CO2, and biological carbon production and export. After correction for mixing, we find that DIC decreases by up to 42 ± 3 µmol/kg from winter (July) to summer (February), with δ13CDIC enriched by up to 0.45 ± 0.05‰ for the same period. The enrichment of δ13CDIC between winter and summer is due to the preferential uptake of 12CO2 by marine phytoplankton during photosynthesis. Biological processes dominate the seasonal carbon budget (≈ 80%), while air–sea exchange of CO2 (≈ 10%) and mixing (≈ 10%) have smaller effects. We found the seasonal amplitude of fCO2 to be about half that of a study undertaken during 1991–1995 [Metzl, N., Tilbrook, B. and Poisson, A., 1999. The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean. Tellus Series B—Chemical and Physical Meteorology, 51(4): 849–861.] for the same region, indicating that SAZ may undergo significant inter-annual variations in surface fCO2. The seasonal DIC depletion implies a minimum biological carbon export of 3400 mmol C/ m2 from July to February. A comparison with nutrient changes indicates that organic carbon export occurs close to Redfield values (ΔP:ΔN:ΔC = 1:16:119). Extrapolating our estimates to the circumpolar sub-Antarctic Ocean implies a minimum organic carbon export of 0.65 GtC from the July to February period, about 5–7% of estimates of global export flux. Our estimate for biological carbon export is an order of magnitude greater than anthropogenic CO2 uptake in the same region and suggests that changes in biological export in the region may have large implications for future CO2 uptake by the ocean.  相似文献   

20.
In order to better understand the relationship between the natural radionuclide 234Th and particulate organic carbon (POC), marine particles were collected in the northwestern Mediterranean Sea (spring/summer, 2003 and 2005) by sediment traps that separated them according to their in situ settling velocities. Particles also were collected in time-series sediment traps. Particles settling at rates of >100 m d−1 carried 50% and 60% of the POC and 234Th fluxes, respectively, in both sampling years. The POC flux decreased with depth for all particle settling velocity intervals, with the greatest decrease (factor of 2.3) in the slowly settling intervals (0.68–49 m d−1) over trap depths of 524–1918 m, likely due to dissolution and decomposition of material. In contrast the flux of 234Th associated with the slowly settling particles remained constant with depth, while 234Th fluxes on the rapidly settling particles increased. Taking into account decay of 234Th on the settling particles, the patterns of 234Th flux with depth suggest that either both slow and fast settling particles scavenge additional 234Th during their descent or there is significant exchange between the particle classes. The observed changes in POC and 234Th flux produce a general decrease in POC/234Th of the settling particles with depth. There is no consistent trend in POC/234Th with settling velocity, such as might be expected from surface area and volume considerations. Good correlations are observed between 234Th and POC, lithogenic material and CaCO3 for all settling velocity intervals. Pseudo-Kds calculated for 234Th in the shallow traps (2005) are ranked as lithogenic material opal <calcium carbonate <organic carbon. Organic carbon contributes 33% to the bulk Kd, and for lithogenic material, opal and CaCO3, the fraction is 22% each. Decreases in POC/234Th with depth are accompanied by increases in the ratio of 234Th to lithogenic material and opal. No change in the relationship between 234Th and CaCO3 was evident with depth. These patterns are consistent with loss of POC through decomposition, opal through dissolution and additional scavenging of 234Th onto lithogenic material as the particles sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号