首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
为查明夏垫断裂东北段的空间位置、性质及其活动性,由大厂八百户起向东北方向,经过三河齐心庄至北京马坊镇,以可控震源激发方式,完成高分辨率浅层地震勘探测线7条,长约22 km.各地震反射时间剖面波组特征变化明显,断裂特征清晰,获取了准确的断点定位及断裂发育特征,展现了自八百户经齐心庄至马坊镇延伸约20 km范围内夏垫断裂的...  相似文献   

2.
跨1679年三河-平谷8.0级地震区完成的单次覆盖深地震反射剖面和浅层地震反射剖面,揭示了三河-平谷地震区的地壳结构和断裂的深、浅构造特征.结果表明,该区地壳以TWT6~7 s左右的强反射带为界分为上地壳和下地壳,上地壳厚约18~21 km,下地壳厚约13~15 km.剖面揭示的地壳深断裂和浅部活动断裂具有上下一致的对...  相似文献   

3.
浅层人工地震方法是针对厚覆盖区探测断裂的一种不可替代的技术。为查明夏垫断裂西南段的空间位置、性质及其活动性,2016年底对跨夏垫断裂西南段进行了高分辨率的浅层人工地震探测,获得三条480 m深度范围内地下结构图像的地震剖面,揭示了夏垫断裂西南段的形态\,特征以及空间位置。  相似文献   

4.
利用三河—平谷8.0级大震区实施的深地震反射剖面与宽角反射剖面探测方法获得的结果进行了综合研究和解释. 结果表明:两种探测方法给出的地壳基本分层是一致的,在三河—平谷大震区上地壳的埋深为21~23km,莫霍界面的深度为36~37km;该地区基底结构起伏变化较大,浅部断裂发育,在确定的数条断裂构造带中夏垫断裂是一条特征明显、深浅共存的断裂构造带;震源区周围差异明显的速度异常结构和特殊而复杂的地质构造环境意味着这些部位是发生大地震的有利部位;该地区莫霍界面起伏变化和较厚的反射叠层以及局部复杂的楔形反射带的存在等现象表明,该地区地壳结构发生过强烈的挤压、变形,同时也反映出岩浆活动对下地壳结构进行了物质的和结构的强烈改造,从而构成了该地区复杂的地壳深部结构,可将其视为三河—平谷8.0级大地震孕育和发生的深部要素.  相似文献   

5.
北京地区地壳精细结构的深地震反射剖面探测研究   总被引:20,自引:4,他引:16       下载免费PDF全文
长度100 km、NW向穿过三河—平谷8.0级地震区和北京地区主要断裂构造的深地震反射剖面,揭示了该区地壳精细结构图像和断裂的深浅构造特征.结果表明,该区地壳以TWT6~7 s左右的强反射带为界分为上地壳和下地壳,上地壳厚约18~21 km,下地壳厚约13~15 km.剖面TWT3~4 s以上,反射层位丰富,构造形态清晰,且在剖面上具有明显不同的构造特征;在三河—平谷地震区以西,剖面揭示了2~3组反射能量较强的反射震相和一系列错断基底面的断裂,在三河—平谷地震区以东,为一套自东向西倾伏的密集强反射层,这套反射具有典型的沉积盆地特征,盆地最深处约为8~9 km.剖面揭示的地壳深断裂倾角陡直,该断裂切割、扰动了下地壳物质和壳幔过渡带,向上延伸至上地壳,将地壳深部构造与浅部断裂联系在一起,构成了该区最主要的深浅构造特征.  相似文献   

6.
三河-平谷8.0级大震区震源细结构的深地震反射探测研究   总被引:18,自引:2,他引:18  
在1679年三河-平谷8.0级大震的震源区布置了两条总长140km,24次覆盖的近垂直深地震反射剖面,剖面穿过夏垫断裂及二十里长山断裂,结果表明,该区以双程走时7.0s(21km)左右和11.0-12.5s(33-37km)左右的两个强反射叠层把地壳分为上地壳,下地壳和壳幔过渡带;地壳结构在纵向上差异较大,浅部成层性较好,层组较多,结构复杂;上地壳总体呈反射“透明”性质,下部地壳表现为明显的反射性质;在横向上也具有明显的差异;深部断裂主要有夏垫断裂下方的地壳深断裂,断层面较陡,近下直立,该断裂可能为三河-平谷8.0级大地震的发震断裂;分别在两条剖面下地壳和上地壳下部存在局部强反射能量团,应为上地幔物质上涌冷却形成的岩墙或岩体;由于该处的岩浆活动造成了局部应力分布的差异。导致了地壳深断裂的形成,这可能是三河8.0级大震的深部构造背景。  相似文献   

7.
龙门山山前彭州隐伏断裂高分辨率地震反射剖面   总被引:10,自引:1,他引:9       下载免费PDF全文
彭州断裂是龙门山山前一条重要的隐伏断裂.为了调查彭州断裂的位置、性质及其活动性,5·12汶川MS8.0地震发生后,作者采用可控震源和高精度的地震反射勘探方法,对彭州隐伏断裂进行了高分辨率地震反射成像.本文利用获得的浅层地震剖面资料并结合石油地震反射剖面,给出了彭州断裂的空间展布特征以及断裂两侧的新生代地层厚度.结果表明,彭州断裂为一条走向NE、倾向NW、倾角约为58°~62°的逆断层,该断层向上错断了第四纪沉积层,具有明显的第四纪活动,向下大约在深度8~10 km左右收敛到向西缓倾的滑脱面之上.研究结果为评价断裂的活动性和灾后重建提供了地震学证据.  相似文献   

8.
为进一步深入研究夏垫断裂的发震构造及活动性,在夏垫断裂震中区开展浅层地震勘探,布设小道距、高密度地震勘探测线,对地震反射剖面进行综合解释。以潘各庄段为中心,向两侧展开布设,共布设浅层地震勘探测线12条,测线总长约18 km。野外数据采集采用中间激发、双边不对称接收、满覆盖次数不少于12次的观测系统。原始资料经过常规处理和精细处理,获得了高质量的反射波叠加时间剖面。地震反射时间剖面揭示的波组变化特征明显,断裂特征清晰,解释夏垫断裂为倾向SE、视倾角约为72°的正断层;同时展现了自小石各庄至南张岱延伸约20 km范围内夏垫断裂的空间展布及浅部构造特征,解释测线范围内夏垫断裂走向约为N40°E。在此基础上,结合微地貌测量和以往研究成果,推测夏垫断裂为全新世活动断裂,其中夏垫断裂中心段伴随次断裂发育和断层绕射波,该特征向两侧减弱,与断裂陡坎的分布和连续的高差变化相对应,同时验证了夏垫镇潘各庄附近为震中的结果。探测结果所揭示的夏垫断裂的空间展布及地层结构特征与地质资料吻合。   相似文献   

9.
地震勘探资料揭示郑州老鸦陈断层特征   总被引:2,自引:1,他引:1  
断层活动性的探测研究是城市地震预测和防震减灾的基础性工作。为了查明郑州老鸦陈断层的位置、性质及其活动性,2006年底,在郑州市北郊横跨老鸦陈断层进行了不同探测深度的浅层地震勘探,通过采用爆破震源和可控震源相结合、不同观测系统参数相结合的工作方法,获得了探测深度30—6000m范围内的地下结构与构造图像。结果表明,老鸦陈断层为一条倾向NE、走向NW的正断层,该断层错断了新第三纪(N)以前的地层,在Q N地层内部没有发现断层引起的地层错断现象。  相似文献   

10.
廊固凹陷深部剪切破裂构造的地震学证据   总被引:2,自引:0,他引:2       下载免费PDF全文
基于区域地震台网观测数据,采用近震波形反演方法,确定2018年2月12日河北永清M4.3地震的最佳双力偶源震源机制解为:节面Ⅰ走向297°,倾角58°,滑动角-32°;节面Ⅱ走向45°,倾角63°,滑动角-144°;是一个略带正断分量的右旋走滑地震.结合近震转换波测定主震的震源深度在19km附近.地震序列的双差定位结果显示:永清地震序列震中呈北东向窄带展布,表明此次地震主要向北东向破裂;深度集中分布在17~19km,整体形态近于铅直,显示发震断裂具有走向北东、倾向南东、倾角陡立的特征,与节面Ⅱ的性质比较吻合,推测节面Ⅱ为发震断层面.将发震断层面参数与震源区附近断裂性质进行对比分析,形成了关于廊固凹陷附近区域地震构造的一些认识:(1)推测永清地震的发震构造不是地壳浅部发育的先存正断裂,而是震源区下方一条地壳尺度的深断裂,该深断裂为新生断裂,具有右旋走滑正断性质,倾角陡峭、近于直立、宽度较大,向上与夏垫断裂相通.(2)综合震源区附近多条深地震反射剖面探测结果,推测永清地震的发震断裂与新夏垫断裂同属一条断裂,称为:新夏垫深断裂.该断裂从夏垫向西南方向延伸至文安,并可能与霸县—束鹿—邯郸断裂带相联系,总长度超过150km.(3)基于2006年文安M5.1地震与2018年永清M4.3地震在震源机制上的相似性及震源位置上的关联性,结合区域构造条件,认为两次地震的发震构造均为新夏垫深断裂.(4)根据研究区几次显著地震的震源深度分布特征,参考区域断层构造、电性结构和流变学模型,推测活化克拉通块体新生断裂的脆韧性转换界面深度在15km附近.  相似文献   

11.
中国及其周邻地区中深源地震的活动特征分析   总被引:2,自引:0,他引:2  
根据USGS最新的7万多条地震资料,分析了中国及其周邻地区的地震深度特征,特别是4个中深源震区的深度特征。结果表明:中国及其周邻四大中深源地震区多位于各板块的交界带上,地震活动强度最大的地区为吉林——日本深震区,其次为台湾中深震区,中印缅交界区和新疆——兴都库什中深震区的地震强度相当;并且后面两的地震频次在55km,110km和220km左右深度出现了多震层位式的高值;由深度资料推断板块间的作用方式来看,太平洋板块向欧亚大陆的挤压是一个由浅入深的过程,在不同的部位有不同的俯冲角度,印度板块向欧亚大陆的推挤,表现为前垂直插入后之中,俯冲现象不明显。  相似文献   

12.
本文利用三维有限元方法,研究和计算了大震发生前、发生时,发生后震源断层面与深部同面立接断层之间的相互作用以及发震后促使深部断层发生错动从而对震源区近场横向活动断层致锁的结果,得到以下结果:(1)临近大震前震源断层面端部调整单元下方的深部断层有较高的剪应力水平,造成震时对震源断层面发生底辟作用的条件,即调整单元区对应的深部断层单元首次满足破裂条件并发生破裂。(2)震源端部的调整单元和具有蠕能力的横向  相似文献   

13.
利用相关函数分析方法对1900年以来缅甸转换构造区、滇西南旋转构造域和兴都库什中深源地震区的7.0级以上地震与中国大陆西部及邻区的其它各地震活动区7.0级以上地震的相互关系进行研究。结果表明:缅甸转换构造区、滇西南旋转构造域和兴都库什中深源地震区的地震活动与其它各地震活动区的地震活动在时间和空间上存在一定的对应关系。这一结果对中国大陆西部及邻区强震的预报有一定的意义。  相似文献   

14.
1679年三河-平谷8级地震破裂带的大地切片实验研究   总被引:2,自引:1,他引:1  
何宏林  闵伟  原口强 《地震地质》2008,30(1):289-297
大地切片调查法,就是在不搅动的状态下从地下切出未固结的第四纪浅部地层的垂直断片,它是一种较新的活动断层探测技术。发生在1679年9月2日的三河-平谷8级地震(烈度Ⅺ),是北京及附近地区历史上记录到的最大地震。在该地震的宏观震中——潘各庄附近,运用大地切片调查法对该地震破裂带进行了实验性探测,获得了较好的效果。实验研究表明:大地切片保留了完好的沉积细结构特征;大地切片调查实施时,要选择合适的动力源,对于北京平原这种黏土含量较高的沉积层,挖掘机加振动锤的动力组合优于吊车加振动锤的动力组合;大地切片由于振动会造成一定地层厚度的压缩,但黏土含量较高的北京地区,压缩比例基本<5%。另外,结合探槽和大地切片的对比分析,揭示了最近2次古地震事件,分别是1679年事件和该地震之前的一次事件,两次地震的垂直同震位移分别是1·4m和1·2m  相似文献   

15.
邢台地震前地壳形变异常的可能性物理机制   总被引:4,自引:0,他引:4  
将地壳介质视为麦克斯威尔体 ,运用差分法和三维有限元方法 ,探讨了邢台分层地壳结构模型 (含高速体和低速体及深大断裂 )中深部断裂加速蠕滑时 ,平均应力、水平最大剪应力和地表面垂直位移随时间演化的特征 ,计算结果表明 :(1 )在地壳中上部 1 1km处 ,深部断裂的加速蠕滑急剧加速了水平最大剪应力的增加速率 ,可达数百倍 ,深部断裂的加速蠕滑是邢台强地震成核过程的开始 ,可实现地壳下部的能量向地壳中上部快速转移 ;(2 )深部断裂的加速蠕滑引起的地面垂直位移变化与邢台地震震前的地表面垂直位移变化非常一致 .说明邢台地震震前地壳表面垂直方向的位移不仅与岩石的膨胀有关 ,而且可能与地壳内深部断裂的加速蠕滑密切相关 .  相似文献   

16.
At 3:05, September 4, 2017, an ML4.4 earthquake occurred in Lincheng County, Xingtai City, Hebei Province, which was felt obviously by surrounding areas. Approximately 60km away from the hypocenter of Xingtai MS7.2 earthquake in 1966, this event is the most noticeable earthquake in this area in recent years. On the one hand, people are still shocked by the 1966 Xingtai earthquake that caused huge disaster, on the other hand, Lincheng County is lack of strong earthquakes. Therefore, this quake has aroused widespread concerns by the government, society and seismologists. It is necessary to clarify whether the seismogenic structure of this event is consistent with the previous seismicity and whether it has any new implications for the seismic activity and seismic hazard in this region. Therefore, it is of great significance to study its seismogenic mechanism for understanding the earthquake activity in Xingtai region where a MS7.2 earthquake had occurred in 1966. In this study, the Lincheng earthquake and its aftershocks are relocated using the multi-step locating method, and the focal mechanism and focal depth are determined by the "generalized Cut and Paste"(gCAP)method. The reliability of the results is analyzed based on the data of Hebei regional seismic network. In order to better constrain the focal depth, the depth phase sPL fitting method is applied to the relocation of focal depth. The inversion and constraint results show that aftershocks are mainly distributed along NE direction and dip to SE direction as revealed by depth profiles. Focal depths of aftershocks are concentrated in the depths of 6.5~8.2km with an average of about 7km. The best double-couple solution of the mainshock is 276°, 69° and -40° for strike, dip and slip angle for nodal plane I and 23°, 53° and -153° for nodal plane Ⅱ, respectively, revealing that it is a strike-slip event with a small amount of normal-fault component. The initial rupture depth of mainshock is about 7.5km obtained by the relocation while the centroid depth is 6km derived from gCAP method which was also verified by the seismic depth phase sPL observed by several stations, indicating the earthquake is ruptured from deep to shallow. Combined with the research results on regional geological structure and the seismic sequence relocation results, it is concluded that the nodal plane Ⅱ is the seismogenic fault plane of this earthquake. There are several active faults around the hypocenter of Lincheng earthquake sequence, however, none of the known faults on the current understanding is completely consistent with the seismogenic fault. To determine the seismogenic mechanism, the lucubrated research of the MS7.2 Xingtai earthquake in 1966 could provide a powerful reference. The seismic tectonic characteristics of the 1966 Xingtai earthquake sequence could be summarized as follows:There are tensional fault in the shallow crust and steep dip hidden fault in the middle and lower crust, however, the two faults are not connected but separated by the shear slip surfaces which are widely distributed in the middle crust; the seismic source is located between the hidden fault in the lower crust and the extensional fault in the upper crust; the earthquake began to rupture in the deep dip fault in the mid-lower crust and then ruptured upward to the extensional fault in the shallow crust, and the two fault systems were broken successively. From the earthquake rupture revealed by the seismic sequence location, the Lincheng earthquake also has the semblable feature of rupturing from deep to shallow. However, due to the much smaller magnitude of this event than that of the 1966 earthquake, the accumulated stress was not high enough to tear the fracture of the detachment surface whose existence in Lincheng region was confirmed clearly by the results of Lincheng-Julu deep reflection seismology and reach to the shallower fault. Therefore, by the revelation of the seismogenic mechanism of the 1966 Xingtai earthquake, the seismogenic fault of Lincheng earthquake is presumed to be a concealed fault possessing a potential of both strike-slip and small normal faulting component and located below the detachment surface in Lincheng area. The tectonic significance indicated by this earthquake is that the event was a stress adjustment of the deep fault and did not lead to the rupture of the shallow fault. Therefore, this area still has potential seismic hazard to a certain extent.  相似文献   

17.
应用有限元分析方法 ,分析计算了具有立交成因的原地重复地震的孕育机理 ,得出如下结论 :在第一个地震临震前 ,与发震断层平行立接的深部断层对发震断层有底劈作用 ,发震后深部断层会继续破裂传播 ,导致浅层的横向断层扭曲 ,从而使横向断层闭锁而孕育地震。  相似文献   

18.
In this paper, a new method for small event detection named Match & Locate(M&L)is used to detect and locate the small earthquakes that are missing in the catalogue of the February 28, 2014 Shizuishan ML4.4 earthquake swarm. A total of 34 earthquakes were detected, which is nearly 3 times as much as the number(13)of earthquakes from Ningxia seismic network. The number of earthquake swarm sequence is greatly increased. Then, it provides the possibility for the fine study of the earthquake swarm activity and seismogenic fault. The best double couple solution of the main shock obtained by the cut and paste method is strike 354°, dip 70° and slip 166° for nodal plane I, and strike 89°, dip 77° and slip 21°for nodal plane Ⅱ. The main shock is a dextral strike-slip earthquake with a small amount of thrust component. And, the depth of the main shock is 7~8km, which is a shallow earthquake, derived from the results of the double difference relocation and the best fitting depth of focal mechanism. Together with the results of deep 3-D seismic tomography of the Yinchuan Basin, our results show that the main shock and the largest aftershock more likely occurred in the upper crust, and the rest of earthquakes mainly occurred at the bottom of sedimentary layer or on the top of the upper crust crystallization basement. We find some interesting phenomena on the pattern of time-space evolution of the earthquake swarm. The distribution of earthquake swarm is in the near north-south direction. Aftershocks are mainly concentrated in the north region of the main shock, which show an obvious trend of extending gradually from the south to the north. Also, the result shows the general trend of shallower focal depth with the development of aftershocks to the north. The results of distribution and depth profile of the earthquake swarm and the focal mechanism of the main shock all show that the sequence probably occurred in the fault at the east foot of Helan Mountain with an eastward dip and a larger dip angle. Surface projection image of the earthquake sequence shows that the epicenter distribution extends northward from the northern end of the fault. This may suggest that the deep part of the fault is likely to extend northward.  相似文献   

19.
A strong earthquake with magnitude MS6.2 hit Hutubi, Xinjiang at 13:15:03 on December 8th, 2016(Beijing Time). In order to better understand its mechanism, we performed centroid moment tensor inversion using the broadband waveform data recorded at stations from the Xinjiang regional seismic network by employing gCAP method. The best double couple solution of the MS6.2 mainshock on December 8th, 2016 estimated from local and near-regional waveforms is strike:271°, dip:64ånd rake:90° for nodal plane I, and strike:91°, dip:26ånd rake:90°for nodal plane Ⅱ; the centroid depth is about 21km and the moment magnitude(MW)is 5.9. ISO, CLVD and DC, the full moment tensor, of the earthquake accounted for 0.049%, 0.156% and 99.795%, respectively. The share of non-double couple component is merely 0.205%. This indicates that the earthquake is of double-couple fault mode, a typical tectonic earthquake featuring a thrust-type earthquake of squeezing property.The double difference(HypoDD)technique provided good opportunities for a comparative study of spatio-temporal properties and evolution of the aftershock sequences, and the earthquake relocation was done using HypoDD method. 486 aftershocks are relocated accurately and 327 events are obtained, whose residual of the RMS is 0.19, and the standard deviations along the direction of longitude, latitude and depth are 0.57km, 0.6km and 1.07km respectively. The result reveals that the aftershocks sequence is mainly distributed along the southern marginal fault of the Junggar Basin, extending about 35km to the NWW direction as a whole; the focal depths are above 20km for most of earthquakes, while the main shock and the biggest aftershock are deeper than others. The depth profile shows a relatively steep dip angle of the seismogenic fault plane, and the aftershocks dipping northward. Based on the spatial and temporal distribution features of the aftershocks, it is considered that the seismogenic fault plane may be the nodal plane I and the dip angle is about 271°. The structure of the Hutubi earthquake area is extremely complicated. The existing geological structure research results show that the combination zone between the northern Tianshan and the Junggar Basin presents typical intracontinental active tectonic features. There are numerous thrust fold structures, which are characterized by anticlines and reverse faults parallel to the mountains formed during the multi-stage Cenozoic period. The structural deformation shows the deformation characteristics of longitudinal zoning, lateral segmentation and vertical stratification. The ground geological survey and the tectonic interpretation of the seismic data show that the recoil faults are developed near the source area of the Hutubi earthquake, and the recoil faults related to the anticline are all blind thrust faults. The deep reflection seismic profile shows that there are several listric reverse faults dipping southward near the study area, corresponding to the active hidden reverse faults; At the leading edge of the nappe, there are complex fault and fold structures, which, in this area, are the compressional triangular zone, tilted structure and northward bedding backthrust formation. Integrating with geological survey and seismic deep soundings, the seismogenic fault of the MS6.2 earthquake is classified as a typical blind reverse fault with the opposite direction close to the southern marginal fault of the Junggar Basin, which is caused by the fact that the main fault is reversed by a strong push to the front during the process of thrust slip. Moreover, the Manas earthquake in 1906 also occurred near the southern marginal fault in Junggar, and the seismogenic mechanism was a blind fault. This suggests that there are some hidden thrust fault systems in the piedmont area of the northern Tianshan Mountains. These faults are controlled by active faults in the deep and contain multiple sets of active faults.  相似文献   

20.
The seismogenic structure of the Lushan earthquake has remained in suspensed until now. Several faults or tectonics, including basal slipping zone, unknown blind thrust fault and piedmont buried fault, etc, are all considered as the possible seismogenic structure. This paper tries to make some new insights into this unsolved problem. Firstly, based on the data collected from the dynamic seismic stations located on the southern segment of the Longmenshan fault deployed by the Institute of Earthquake Science from 2008 to 2009 and the result of the aftershock relocation and the location of the known faults on the surface, we analyze and interpret the deep structures. Secondly, based on the terrace deformation across the main earthquake zone obtained from the dirrerential GPS meaturement of topography along the Qingyijiang River, combining with the geological interpretation of the high resolution remote sensing image and the regional geological data, we analyze the surface tectonic deformation. Furthermore, we combined the data of the deep structure and the surface deformation above to construct tectonic deformation model and research the seismogenic structure of the Lushan earthquake. Preliminarily, we think that the deformation model of the Lushan earthquake is different from that of the northern thrust segment ruptured in the Wenchuan earthquake due to the dip angle of the fault plane. On the southern segment, the main deformation is the compression of the footwall due to the nearly vertical fault plane of the frontal fault, and the new active thrust faults formed in the footwall. While on the northern segment, the main deformation is the thrusting of the hanging wall due to the less steep fault plane of the central fault. An active anticline formed on the hanging wall of the new active thrust fault, and the terrace surface on this anticline have deformed evidently since the Quaterary, and the latest activity of this anticline caused the Lushan earthquake, so the newly formed active thrust fault is probably the seismogenic structure of the Lushan earthquake. Huge displacement or tectonic deformation has been accumulated on the fault segment curved towards southeast from the Daxi country to the Taiping town during a long time, and the release of the strain and the tectonic movement all concentrate on this fault segment. The Lushan earthquake is just one event during the whole process of tectonic evolution, and the newly formed active thrust faults in the footwall may still cause similar earthquake in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号