首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Saline seepage zone development and hence dryland salinity is a major environmental problem which many arid to semiarid landscapes in Australia are experiencing. Due to the geological complexity of the regional aquifer system and the heterogeneous nature of the local groundwater system, each groundwater seepage zone in the Spicers Creek catchment, central west, New South Wales, Australia possesses different mechanisms which control its development. Saline seepage zones have formed adjacent to a fault zone, and two experimental sites were established through these groundwater discharge zones to understand geochemical processes which have led to the development of soil sodicity, gully erosion and the flushing of salts into the surface water systems. Seepage zone groundwaters contain a distinctive geochemical signature with elevated concentrations of Na, Cl, HCO3, Ca, Sr, B, As and Li. The mixing of deep saline groundwaters together with ion exchange processes lead to a distinctive seepage zone groundwater chemistry being developed. Altering the landscape features within this rural groundwater system has developed water toxicity for crops, soil sodicity leading to land degradation, and waterlogging problems.  相似文献   

2.
《Geochimica et cosmochimica acta》1999,63(23-24):4013-4035
The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetélé, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry.The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994–1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.  相似文献   

3.
High and variable levels of salinity were investigated in an intermittent stream in a high-rainfall area (~800 mm/year) of the Mt. Lofty Ranges of South Australia. The groundwater system was found to have a local, upslope saline lens, referred to here as a groundwater salinity ‘hotspot’. Environmental tracer analyses (δ18O, δ2H, 87/86Sr, and major elements) of water from the intermittent stream, a nearby permanent stream, shallow and deep groundwater, and soil-water/runoff demonstrate seasonal groundwater input of very saline composition into the intermittent stream. This input results in large salinity increases of the stream water because the winter wet-season stream flow decreases during spring in this Mediterranean climate. Furthermore, strontium and water isotope analyses demonstrate: (1) the upslope-saline-groundwater zone (hotspot) mixes with the dominant groundwater system, (2) the intermittent-stream water is a mixture of soil-water/runoff and the upslope saline groundwater, and (3) the upslope-saline-groundwater zone results from the flushing of unsaturated-zone salts from the thick clayey regolith and soil which overlie the metamorphosed shale bedrock. The preferred theory on the origin of the upslope-saline-groundwater hotspot is land clearing of native deep-rooted woodland, followed by flushing of accumulated salts from the unsaturated zone due to increased recharge. This cause of elevated groundwater and surface-water salinity, if correct, could be widespread in Mt. Lofty Ranges areas, as well as other climatically and geologically similar areas with comparable hydrogeologic conditions.  相似文献   

4.
Evaporative process plays a dominant role in determining the water chemistry of the springs at Teels Marsh, a closed basin in western Nevada. Analysis of the spring waters indicates that calcium, magnesium, sulfate, and silica are removed from solution during dry periods, even though groundwater is undersaturated with respect to gypsum, amorphous silica, and sepiolite. The removal mechanism is precipitation of authigenic phases such as gypsum above the water table, in the vadose zone.In episodes of rain and snowfall in which none of the waters enters the phreatic zone, ions in the rain and snow accumulate near the ground surface. This accumulation of material, together with the sparse rain and snowfall, inhibits chemical weathering of silicate minerals. Only at high elevations in the basin is there sufficient fluxing of water through the alluvium for silicate weathering to make a significant contribution to the sodium content of the springs. When a sufficiently heavy rainfall occurs, salts are partially dissolved and the ions transported to the permanent groundwater. The kinetics of dissolution of secondary phases in the vadose zone exert an important control on the composition of the springs.  相似文献   

5.
Contributions of groundwater conditions to soil and water salinization   总被引:23,自引:2,他引:21  
 Salinization is the process whereby the concentration of dissolved salts in water and soil is increased due to natural or human-induced processes. Water is lost through one or any combination of four main mechanisms: evaporation, evapotranspiration, hydrolysis, and leakage between aquifers. Salinity increases from catchment divides to the valley floors and in the direction of groundwater flow. Salinization is explained by two main chemical models developed by the authors: weathering and deposition. These models are in agreement with the weathering and depositional geological processes that have formed soils and overburden in the catchments. Five soil-change processes in arid and semi-arid climates are associated with waterlogging and water. In all represented cases, groundwater is the main geological agent for transmitting, accumulating, and discharging salt. At a small catchment scale in South and Western Australia, water is lost through evapotranspiration and hydrolysis. Saline groundwater flows along the beds of the streams and is accumulated in paleochannels, which act as a salt repository, and finally discharges in lakes, where most of the saline groundwater is concentrated. In the hummocky terrains of the Northern Great Plains Region, Canada and USA, the localized recharge and discharge scenarios cause salinization to occur mainly in depressions, in conjunction with the formation of saline soils and seepages. On a regional scale within closed basins, this process can create playas or saline lakes. In the continental aquifers of the rift basins of Sudan, salinity increases along the groundwater flow path and forms a saline zone at the distal end. The saline zone in each rift forms a closed ridge, which coincides with the closed trough of the groundwater-level map. The saline body or bodies were formed by evaporation coupled with alkaline-earth carbonate precipitation and dissolution of capillary salts. Received, May 1998 · Revised, July 1998 · Accepted, September 1998  相似文献   

6.
According to the field experiment in the sodic saline soil region in the Songnen Plain, the dynamics of the soil water and solute affected by the shallow groundwater were explored during the growing season in 2004. The results presented that, influenced by the strongly evaporative demand, the soil water tended to transport to the upper soil layer with salt. The layered soil water balance model (LSWB model) revealed that the ratio of the water exchange between the groundwater and upper layer of the soil was 11.7:1. The groundwater discharge was 53.86 mm, but the groundwater recharge from the upper layer of soil was only 5.04 mm from 11 July to 06 September, which indicated that the groundwater could discharge to upper layer of soil and influence the soil salinization through capillary rise. The observed values of the salt content from July to mid-October presented that the soil solute was more changeable influenced by the climatic condition at 30 cm depth. As the field saturated hydraulic conductivity was low, the salts mainly accumulated in about 50–70 cm depth soil layer and hardly leached into deeper soil layer. Furthermore, the salt content was mainly controlled by the groundwater in the subsoil below 100 cm depth, the salt content decreased with the groundwater level receding. As influenced by the shallow groundwater and freeze-thaw action, further studies should be performed on the mechanism of soil salinization in the sodic saline soil region in the Songnen Plain of China.  相似文献   

7.
The Duna-Tisza Interfluve, Hungary has an agricultural economy but is plagued by severe problems of soil and wetland salinization despite 200 years of intensive research. The study’s objective was to determine the origin of salts and the mechanisms of salinity distribution. To this end, flow-patterns and chemistry of groundwater were evaluated in a 100 km?×?65 km area, with emphasis on the Kolon- and Kelemenszék Lakes region. The lakes are located 13 km apart and have chemically contrasting water and soil types. Two groundwater flow-domains were identified: a gravity-drive meteoric fresh water and an over-pressured deeper domain of saline water. The waters are channeled by a highly permeable gravel aquifer to the surface and may merge near Kelemenszék Lake, causing it to be saline. Kolon Lake receives meteoric groundwater only, hence its fresh chemical character. The cross-formational ascent of the deep waters, combined with the gravitational systems’ geometry and the flow-channeling effect of the near-surface rocks, explains the contrasting chemistry between lakes, and the origin and pattern of soil salinization. The scheme is proposed as a generally valid hydrogeological profile for the interfluve, and has been named the Duna-Tisza Interfluve Hydrogeological Type Section.  相似文献   

8.
The problem of soil degradation through alkalinization/salinization in an irrigated area with a semi-arid climate was examined in the inner delta of the Niger River, Mali, by the study of groundwater hydraulics and hydrochemistry in an area recharged by irrigation water. On the basis of data analysis on various scales, it is concluded that the current extent of the surface saline soils is due to a combination of three factors: (1) the existence of ancient saline soils (solonchaks) resulting from the creation of a broad sabkha west of the former course of the Niger River, now called the Fala of Molodo. These saline crusts were gradually deposited during the eastward tilting of the tectonic block that supports the Niger River; (2) the irrigation processes during the recent reflooding of the Fala of Molodo (river diversion in 1950). These used very poorly mineralized surface water but reintroduced into the alluvial groundwater system – generally of a low permeability (K=10–6?m?s–1) – salts derived from the ancient solonchaks; and (3) the redeposition of the dissolved salts on the surface due to the intense evapotranspiration linked to the present Sahelian climate. In this context, only efficient artificial draining of subsurface alluvial groundwater can eliminate most of the highly mineralized flow and thus reduce the current saline deposits.  相似文献   

9.
In this study, hydrogeologic and hydrochemical information from the Mersin-Erdemli groundwater system were integrated and used to determine the main factors and mechanisms controlling the chemistry of groundwaters in the area and anthropogenic factors presently affecting them. The PHREEQC geochemical modeling demonstrated that relatively few phases are required to derive water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into four categories: (1) silicate weathering reactions; (2) dissolution of salts; (3) precipitation of calcite, amorphous silica and kaolinite; (4) ion exchange. As determined by multivariate statistical analysis, anthropogenic factors show seasonality in the area where most contaminated waters related to fertilizer and fungicide applications that occur during early summer season.  相似文献   

10.
华北平原东部淡水资源短缺,旱涝碱成灾害限制了农业生产的可持续发展。海河的治理,解决了排洪排涝排咸出路。春季开发利用地下水包括微咸水和半咸水抗旱灌溉。夏季利用伏雨洗盐排咸,增大降雨入渗,减少径流流失,防治渍涝灾害,把降雨转化为地下水资源。秋冬引蓄河水,回灌地下水补源。以土壤与潜水的地层空间作为调节大气降水、土壤水、地下水、地表水的地下水库,以调控地下水埋深在临界动态为指标,最大限度地把时空分布不均的天然降雨转化为可持续利用的水资源。地表水地下水联合运用,促使水资源采补平衡,降雨灌溉淋洗脱盐强于干旱蒸发积盐过程,地下水淡化强于矿化过程。实现旱涝碱咸综合治理,水土资源可持续利用,经济社会可持续发展,生态环境良性循环。  相似文献   

11.
Impacts of irrigation with treated wastewater effluents on soils and groundwater aquifer in the vicinity of Sidi Abid Region (Tunisia) are evaluated. The groundwater aquifer was monitored by several piezometers, where monthly water levels were registered and groundwater salinity was evaluated. This resulted in characterizing the spatial and temporal evolution of the hydrochemical and hydrodynamic properties of the aquifer, showing thereby the impact of artificial recharge. Piezometric maps for pre-recharge and post-recharge situations were developed and a comparison study of both piezometric situations was considered. The piezometric evolution map showed a generalized rise of the piezometric level in the vicinity of the irrigation zone. The extent of recharge was shown to increase with time as the groundwater level increase, which was localized in the vicinity of the irrigation area, reached more extended zones. Several groundwater samples were withdrawn from wells and piezometers and analyzed. Examining the corresponding physical and chemical parameters showed an increase in the concentrations of nutrients (28 mg/l for NO3 and 3.97 mg/l for NH4) in the groundwater aquifer below the irrigation zone, which confirms again the infiltration of treated wastewater effluents. The evolution of soil salinity was examined through chemical analysis of soil samples. Electric conductivities of soils were generally shown to be less than 4 mS/cm while the irrigation water has an electric conductivity that may reach 6.63 mS/cm. This might be explained by the phenomenon of dilution and the capacity of soils to evacuate salts downward.  相似文献   

12.
Freshwater requirements of a semi-arid supratidal and floodplain salt marsh   总被引:2,自引:0,他引:2  
When rivers are impounded, the reduction in downstream flow can produce important and often adverse effects, especially in the estuarine environment. One or more dams have been proposed for the Olifants River system in the Western Cape, South Africa. This estuary has an extensive area of salt marsh that was examined to see whether it required occasional flooding with freshwater to wash out accumulated salts. The dominant salt marsh species,Sarcocornia pillansii, occurred in supratidal and floodplain areas where the water table was shallowest, the soil moisture highest, and the soil electrical conductivity lowest. Aerial photographs and simulated runoff data showed that no flood had covered the floodplain during the previous 80 years. The data indicate that salt marsh plants use saline groundwater during the dry months of the year in order to survive, but use the short season winter rainfall period with low salinity conditions to grow and reproduce. This study demonstrated that live roots ofS. pillansii reached the water table during the dry season. Tissue and soil water potentials, the relationship between vegetation cover, depth to the water table, and electrical conductivity of the groundwater support the conclusion that saline groundwater is the only source of water during the drier months of the year. Freshwater flooding of the river in winter may be important because it covers the supratidal area with less saline water and reduces the depth to the water table on the floodplain. This makes the groundwater more accessible to the halophytes growing on the floodplain.  相似文献   

13.
The current research has been conducted to evaluate groundwater aquifers qualitatively in the area located in the Western side of Qena city. The Quaternary aquifer represents the main groundwater source in the study area. It exists under unconfined to semiconfined conditions at depths varying between 4 m due North and 80 m in the South. The chemical analyses of the groundwater samples indicate that 77% of the total samples are fresh and 20% are brackish, while only 3% are saline. In addition, the iso-salinity contour map indicates that the salinity increases towards the central and northern parts of the study area. The total and permanent hardness increase as water salinity increases and vice versa in case of temporary hardness in the groundwater samples. The chemical water types and the ion ratios indicate meteoric origin of groundwater as well as the dissolution of terrestrial and marine salts. The contribution of recent recharge from the River Nile to a few groundwater wells in the study area varies from low to high. In addition, the most recharge sources are from the precipitation. Nitrate concentrations in groundwater increase towards the central and Northern areas significantly elevated in response to increasing anthropogenic land uses. Much of the solutes and physicochemical parameters in these waters are under the undesirable limits of World Health Organization (WHO) for drinking purpose, and a plot of sodium adsorption ratio versus EC shows that about 23% of the groundwater samples are good water quality, about 45% of groundwater samples are moderate quality, and 23% of the groundwater samples are intermediate water class, while the rest of samples (9%) are out of the range.  相似文献   

14.
A comparison of the d-excess values of precipitation and of spring water, streams, groundwater wells and submarine groundwater discharge indicated that the precipitation that occurred during winter season was an important source of groundwater recharge. Due to the steep slope of the island, most of the short duration and high intensity precipitation is lost through direct surface runoff. The comparison indicated that snowmelt is an important resource of groundwater recharge on Rishiri Island. Future climate change will continue to diminish the snowpack, and therefore, reduce groundwater recharge. It may cause the decline of the groundwater level in the coastal area and possibly shift the saline–freshwater boundary on the island. Chloride data indicated that saltwater intrusion is beginning to occur on the western flank of the island. A Piper diagram shows that the water samples are characterized by the dominance of the Ca–HCO3 and Na–Cl type. Their chemistry probably results from sea salt spray and the dissolution of minerals. These results support the need for the effective management of groundwater resources.  相似文献   

15.
An investigation of soil salinization was carried out in the Nanshantaizi area (Northwest China) with WET Sensor. This device can measure such soil parameters as bulk soil electrical conductivity, water content, and the pore water electrical conductivity that are important for soil salinization assessments. A distribution map of soil salinization was produced, and the factors influencing soil salinization and its processes were discussed in detail. The study shows that moderately salinized to salt soils are mainly observed in the alluvial plain, where groundwater level is high and lateral recharge water contains high salinity. Nanshantaizi is covered by slightly salinized soils. The soil salinization distribution estimated by WET Sensor is generally consistent with the actual levels of salinization. Soil salinity in Nanshantaizi is mostly of natural origin and accumulated salts could leach to deeper soils or aquifers by water percolation during irrigation. Groundwater evaporation, groundwater level depth and quality of recharge water are important factors influencing soil salinization in the alluvial plain.  相似文献   

16.
Deforestation, over-development of water resources and population growth have contributed to degeneration of vegetation in the Heihe River Basin in northwest China. Salts and water contents are the most important factors affecting the growth of vegetation in this arid area. This study was conducted to determine soluble salt levels of soils in the unsaturated zone and the hydrochemistry of groundwater at 14 sites in this region. Concentrations of soluble ions in the soils deceased with depth. Soil ion contents increased at depths below the root system of native plants. Sulfate was the dominant anion in both the unsaturated zone and the groundwater. Total dissolved solids (TDS) in groundwater ranged from less than 1 g/L in the middle reaches of the watershed to about 10 g/L in the arid lower reaches. In the middle and upper reaches of the watershed, salinity in soil and groundwater decreased. Groundwater was highly variable in hydrochemistry. The lower reaches was predominated by SO4–Na•Mg and SO4–Mg•Na type water, whereas in the middle reaches groundwater is characterized by lower TDS and HCO3-dominated type water. Evapotranspiration is responsible for occurrence of the soluble salts in the soil profiles. Dissolution is the dominant chemical process in the middle reaches, whereas evapotranspiration prevails in the lower reaches of the Heihe River.  相似文献   

17.
Groundwater samples collected from the East Bokaro coalfield of Jharkhand state, India during the dry and rainy seasons of the year 2012. Samples were analyzed for the assessment of groundwater quality in the study area. The results of the chemical analysis indicate that the pH values were found alkaline in nature during both the season. The major cations in groundwater was in the order of Na+>Ca2+>Mg2+>K+ during the dry season while Ca2+>Na+>Mg2+>K+ during the rainy season. The abundance of the major anions was of HCO3->SO42->Cl->NO3->F- did not change on the seasonal basis. The average NO3-concentration was exceeded the desirable limit for drinking water as per Indian standard in the rainy season. Silicate weathering was inferred to be a dominant process, controlling the groundwater chemistry in both seasons, with lesser contributions by carbonate weathering and ion exchange. Leaching of salts from the unsaturated zone also has a major impact on groundwater quality during the rainy season. The water quality data indicate that groundwater is generally suitable for irrigation. However, higher salinity and residual sodium carbonate values at some sites may limit groundwater use and therefore an adequate drainage and water management plan for the study area is required.  相似文献   

18.
The problem of salt-ravaged lands is reported in many parts of the world and could be exacerbated by the presence of an endorheic pond normally associated with a saline low-lying area. An endorheic or playa pond accumulates dissolved salts which can be carried primarily by groundwater before discharging into the pond; then, intense evaporation produces salt residues which can wreak havoc on the adjacent areas. The objective of this study is to investigate the subsurface conditions and groundwater interactions beneath two endorheic saline ponds of Thailand’s Great Mekong Basin to have a better understanding and thereby efficiently manage the resources. A comprehensive analysis of the physical and geochemical properties (limited to pH, specific conductance and salinity) of the subsurface system was performed to determine the processes that regulated the migration of dissolved salt. The data collected from the deep and shallow groundwater of the basin were analyzed to determine their physical and chemical properties. Soil samples of various depths were examined to determine their respective geologic, chemical and unsaturated properties. The groundwater near the salt ponds was different from that of other areas in that its groundwater table was closer to the surface soil and its deep groundwater, which is of high pressure, was more saline than its shallow groundwater. As the capillary rise influences the topsoil, particularly in the saline pond areas, the vertical upward flow and the capillary force are thus the additional mechanisms of salt transportation to the endorheic ponds. Since these surface water bodies are the discharge sites for saline groundwater and are not perennial, a practical solution is to localize the saline groundwater.  相似文献   

19.
P. BUURMAN 《Sedimentology》1980,27(5):593-606
Fossil soils occur in the Reading Beds of Alum Bay. All soils have hydromorphic characteristics, caused by either groundwater or stagnating pluvial water; some have illuviation of clay. The combination of bioturbation (striated burrows) and iron segregation may indicate that the Reading Beds in Alum Bay are of fluviomarine origin. The soils were formed in a warm climate with a marked dry season. They indicate a landscape with minor variations in surface level. The Reading Beds have clay mineral assemblages that are partly inherited and partly changed by soil formation. Some soil horizons might be used for stratigraphic correlation.  相似文献   

20.
Present study is an effort to distinguish between the contributions of natural weathering and anthropogenic inputs towards high salinity and nutrient concentrations in the groundwater of National Capital Territory (NCT) Delhi, India. Apart from the source identification, the aquifer of entire territory has been characterized and mapped on the basis of salinity in space and water suitability with its depth. Major element chemistry, conventional graphical plots and specific ionic ratio of Na+/Cl, SO4 2−/Cl, Mg2+/Ca2+ and Ca2+/(HCO3  + SO4 2−) are conjointly used to distinguish different salinization sources. Results suggest that leaching from the various unlined landfill sites and drains is the prime cause of NO3 contamination while study area is highly affected with inland salinity which is geogenic in origin. The seasonal water level fluctuation and rising water level increases nutrients concentration in groundwater. Mixing with old saline sub-surface groundwater and dissolution of surface salts in the salt affected soil areas were identified as the principle processes controlling groundwater salinity through comparison of ionic ratio. Only minor increase of salinity is the result of evaporation effect and pollution inflows. The entire territory has characterized into four groups as fresh, freshening, near freshening and saline with respect to salinity in groundwater. The salinity mapping suggests that in general, for drinking needs, groundwater in the fresh, freshening and near freshening zone is suitable up to a depth of 45, 20 and 12 m, respectively, while the saline zones are unsuitable for any domestic use. In the consideration of increasing demand of drinking water in the area; present study is vital and recommends further isotopic investigations and highlights the need of immediate management action for landfill sites and unlined drains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号