首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Yaoling tungsten deposit is a typical wolframite quartz vein‐type tungsten deposit in the South China metallogenic province. The wolframite‐bearing quartz veins mainly occur in Cambrian to Ordovician host rocks or in Mesozoic granitic rocks and are controlled by the west‐north‐west trending extensional faults. The ore mineralization mainly comprises wolframite and variable amounts of molybdenite, chalcopyrite, pyrite, fluorite, and tourmaline. Hydrothermal alteration is well developed at the Yaoling tungsten deposit, including greisenization, silicification, fluoritization, and tourmalinization. Three types of primary/pseudosecondary fluid inclusions have been identified in vein quartz, which is intimately intergrown with wolframite. These include two‐phase liquid‐rich aqueous inclusions (type I), two‐ or three‐phase CO2‐rich inclusions (type II), and type III daughter mineral‐bearing multiphase high‐salinity aqueous inclusions. Microthermometric measurements reveal consistent moderate homogenization temperatures (peak values from 200 to 280°C), and low to high salinities (1.3–39 wt % NaCl equiv.) for the type I, type II, and type III inclusions, where the CO2‐rich type II inclusions display trace amounts of CH4 and N2. The ore‐forming fluids are far more saline than those of other tungsten deposits reported in South China. The estimated maximum trapping pressure of the ore‐forming fluids is about 1230–1760 bar, corresponding to a lithostatic depth of 4.0–5.8 km. The δDH2O isotopic compositions of the inclusion fluid ranges from ?66.7 to ?47.8‰, with δ18OH2O values between 1.63 and 4.17‰, δ13C values of ?6.5–0.8‰, and δ34S values between ?1.98 and 1.92‰, with an average of ?0.07‰. The stable isotope data imply that the ore‐forming fluids of the Yaoling tungsten deposit were mainly derived from crustal magmatic fluids with some involvement of meteoric water. Fluid immiscibility and fluid–rock interaction are thought to have been the main mechanisms for tungsten precipitation at Yaoling.  相似文献   

2.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

3.
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ~(18)O_(H2O) values calculated from the δ~(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.  相似文献   

4.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   

5.
The unidirectional solidification textures (UST) quartz is generally thought to form from fluids exsolved from shallow intrusions and/or magma chambers, but such an idea is still poorly constrained from the evidence of stable isotopes. In this study, we report for the first time the δ18O of quartz that shows UST from the Qulong Cu–Mo and the Yechangping Mo porphyry deposits in China. The analysis results show that the UST quartz samples from the Qulong deposit have δ18O values ranging from +6.2 ‰ to +7.6 ‰, which are similar to that of quartz phenocrysts (+6.7 ‰ to +7.8 ‰). In contrast, the UST quartz samples from the Yechangping porphyry Mo deposit yield a high δ18O value (+10.0 ‰). The δ18Owater value of Yechangping UST quartz (+8.5 ‰) is also higher than that of Qulong (+4.6 ‰ to +5.8 ‰). Hydrothermal biotite from potassic alteration and sericite from early phyllic alteration at Qulong have similar δ18O values to UST quartz, suggesting the involvement of magmatic fluids during this stage of deposit evolution.  相似文献   

6.
The Chehugou Mo–Cu deposit, located 56 km west of Chifeng, NE China, is hosted by Triassic granite porphyry. Molybdenite–chalcopyrite mineralization of the deposit mainly occurs as veinlets in stockwork ore and dissemination in breccia ore, and two ore‐bearing quartz veins crop out to the south of the granite porphyry stock. Based on crosscutting relationships and mineral paragenesis, three hydrothermal stages are identified: (i) quartz–pyrite–molybdenite ± chalcopyrite stage; (ii) pyrite–quartz ± sphalerite stage; and (iii) quartz–calcite ± pyrite ± fluorite stage. Three types of fluid inclusions in the stockwork and breccia ore are recognized: LV, two‐phase aqueous inclusions (liquid‐rich); LVS, three‐phase liquid, vapor, and salt daughter crystal inclusions; and VL, two‐phase aqueous inclusions (gas‐rich). LV and LVS fluid inclusions are recognized in vein ore. Microthermometric investigation of the three types of fluid inclusions in hydrothermal quartz from the stockwork, breccia, and vein ores shows salinities from 1.57 to 66.75 wt% NaCl equivalents, with homogenization temperatures varying from 114°C to 550°C. The temperature changed from 282–550°C, 220–318°C to 114–243°C from the first stage to the third stage. The homogenization temperatures and salinity of the LV, LVS and VL inclusions are 114–442°C and 1.57–14.25 wt% NaCl equivalent, 301–550°C and 31.01–66.75 wt% NaCl equivalent, 286–420°C and 4.65–11.1 wt% NaCl equivalent, respectively. The VL inclusions coexist with the LV and LVS, which homogenize at the similar temperature. The above evidence shows that fluid‐boiling occurred in the ore‐forming stage. δ34S values of sulfide from three type ores change from ?0.61‰ to 0.86‰. These δ34S values of sulfide are similar to δ34S values of typical magmatic sulfide sulfur (c. 0‰), suggesting that ore‐forming materials are magmatic in origin.  相似文献   

7.
The Haobugao deposit, located in the southern segment of the Great Xing'an Range, is a famous skarn‐related Pb‐Zn‐(Cu)‐(Fe) deposit in northern China. The results of our fluid inclusion research indicate that garnets of the early stage (I skarn stage) contain three types of fluid inclusions (consistent with the Mesozoic granites): vapor‐rich inclusions (type LV, with VH2O/(VH2O + LH2O) < 50 vol %, and the majority are 5–25 vol %), liquid‐rich two‐phase aqueous inclusions (type VL, with VH2O/(VH2O + LH2O) > 50 vol %, the majority are 60–80 vol %), and halite‐bearing multiphase inclusions (type SL). These different types of fluid inclusions are totally homogenized at similar temperatures (around 320–420°C), indicating that the ore‐forming fluids of the early mineralization stage may belong to a boiling fluid system. The hydrothermal fluids of the middle mineralization stage (II, magnetite‐quartz) are characterized by liquid‐rich two‐phase aqueous inclusions (type VL, homogenization temperatures of 309–439°C and salinities of 9.5–14.9 wt % NaCl eqv.) that coexist with vapor‐rich inclusions (type LV, homogenization temperatures of 284–365°C and salinities of 5.2–10.4 wt % NaCl eqv.). Minerals of the late mineralization stage (III sulfide‐quartz stage and IV sulfide‐calcite stage) only contain liquid‐rich aqueous inclusions (type VL). These inclusions are totally homogenized at temperatures of 145–240°C, and the calculated salinities range from 2.0 to 12.6 wt % NaCl eqv. Therefore, the ore‐forming fluids of the late stage are NaCl‐H2O‐type hydrothermal solutions of low to medium temperature and low salinity. The δD values and calculated δ18OSMOW values of ore‐forming fluids of the deposit are in the range of ?4.8 to 2.65‰ and ?127.3‰ to ?144.1‰, respectively, indicating that ore‐forming fluids of the Haobugao deposit originated from the mixing of magmatic fluid and meteoric water. The S‐Pb isotopic compositions of sulfides indicate that the ore‐forming materials are mainly derived from underlying magma. Zircon grains from the mineralization‐related granite in the mining area yield a weighted 206Pb/238U mean age of 144.8 ±0.8 Ma, which is consistent with a molybdenite Re‐Os model age (140.3 ±3.4 Ma). Therefore, the Haobugao deposit formed in the Early Cretaceous, and it is the product of a magmatic hydrothermal system.  相似文献   

8.
浙东南石平川钼矿床地质特征、成矿时代及成因   总被引:3,自引:0,他引:3  
石平川钼矿床位于浙东南政和—大埔断裂与长乐—南澳断裂之间的火山坳陷带相对隆起区,空间上和成因上均与燕山晚期侵入的钾长花岗岩体关系密切,矿体受断裂构造控制。矿化类型为石英脉型,围岩蚀变主要为绢云母化、黄铁矿化,次为碳酸盐化。石英流体包裹体Rb-Sr等时线年龄为(87±1)Ma[锶初始值I(Sr)=0.713 36],形成时间为晚白垩世。成矿期流体包裹体研究表明其均一温度为114.4~325.8℃,集中于170.2~227.0℃。氢氧同位素研究表明,成矿流体的δ(D)为-52.8‰~-64.9‰,δ(18O)为-3.85‰~-7.27‰,反映成矿流体来自混合的岩浆水与大气降水。黄铁矿的硫同位素研究表明δ(34S)为+3.14‰~+4.19‰,表现为岩浆硫特征。辉钼矿Re的质量分数为15.05×10-6~37.65×10-6,与其他钼矿床中辉钼矿Re质量分数的对比结果显示,成矿物质来源于下地壳。以上研究表明石平川钼矿床属中低温岩浆期后热液充填石英脉型钼矿床。  相似文献   

9.
The Nage Cu-Pb deposit,a new found ore deposit in the southeast Guizhou province,southwest China,is located on the southwestern margin of the Jiangnan Orogenic Belt.Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations,and are structurally controlled by EW-trending fault.It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb.Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks.The ore minerals include chalcopyrite,galena and pyrite,and gangue minerals are quartz,sericite and chlorite.The H-O isotopic compositions of quartz,S-Cu-Pb isotopic compositions of sulfide minerals,Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit.The δ65CuNBS values of chalcopyrite range from-0.09% to +0.33‰,similar to basic igneous rocks and chalcopyrite from magmatic deposits.δ65CuNBS values of chalcopyrite from the early,middle and final mineralization stages show an increasing trend due to63Cu prior migrated in gas phase when fluids exsolution from magma.δ34SCDT values of sulfide minerals range from 2.7‰ to +2.8‰,similar to mantle-derived sulfur(0±3‰).The positive correlation between δ65CuNBS and δ34SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma.δDH2OSMOW and δ18OH2O-SMOW values of water in fluid inclusions of quartz range from 60.7‰ to 44.4‰ and +7.9‰ to +9.0‰(T=260°C),respectively and fall in the field for magmatic and metamorphic waters,implicating that mixed sources for H2O in hydrothermal fluids.Ores and sulfide minerals have a small range of Pb isotopic compositions(208Pb/204Pb=38.152 to 38.384,207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve,and similar to Neoproterozoic host rocks(208Pb/204Pb=38.201 to 38.6373,207Pb/204Pb=15.648 to 15.673 and 206Pb/204Pb=17.820 to 18.258),but higher than diabase(208Pb/204Pb=37.830 to 38.012,207Pb/204Pb=15.620 to 15.635 and206Pb/204Pb=17.808 to 17.902).These results imply that the Pb metal originated mainly from host rocks.The H-O-S-Cu-Pb isotopes tegather with geology,indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.  相似文献   

10.
The Middle–Lower Yangtze River Valley is one of the most important metallogenic belts in China, hosting numerous Cu–Fe–Au–Mo deposits. The Taochong deposit is located in the northern part of the Fanchang iron ore district of the Middle–Lower Yangtze River metallogenic belt. The Fe-orebody is hosted by Middle Carboniferous to Lower Permian limestones. Skarns and Fe-orebodies occur as tabular bodies along interlayer-gliding faults, at some distance from the inferred granitic intrusions. Field evidence and petrographic observations indicate that the three stages of hydrothermal activity—the skarn, iron oxide (main mineralization stage), and carbonate stages—all contributed to the formation of the Taochong iron deposit. The skarn stage is characterized by the formation of garnet and pyroxene, with high-temperature, hypersaline hydrothermal fluids with isotopic compositions similar to those of typical magmatic fluids. These fluids were probably generated by the separation of brine from a silicate melt instead of the product of aqueous fluid immiscibility. The iron oxide stage coincides with the replacement of garnet and pyroxene by actinolite, chlorite, quartz, calcite and hematite. The hydrothermal fluids at this stage are represented by saline fluid inclusions that coexist with vapor-rich inclusions with anomalously low δD values (− 66‰ to − 94‰). The decrease in ore fluid δ18Owater with time and decreasing depth is consistent with the decreases in fluid salinity and temperature. The fluid δD values also show a decreasing trend with decreasing depth. Both fluid inclusion and stable isotopic data suggest that the ore fluid during the main period of mineralization was evolved by the boiling of various mixtures of magmatic brine and meteoric water. This process was probably induced by a drop in pressure from lithostatic to hydrostatic. The carbonate stage is represented by calcite veins that cut across the skarn and orebody, locally producing a dense stockwork. This observation indicates the veins formed during the waning stages of hydrothermal activity. The fluids from this stage are mainly represented by a variety of low-salinity fluid inclusions, as well as fewer high-salinity inclusions. These particular fluids have the lowest δ18Owater values (− 2.2‰ to 0.4‰) and a wide of range of δD values (− 40‰ to − 81‰), which indicate that they were originated from a mixture of residual fluids from the oxide stage, various amounts of meteoric water, and possibly condensed vapor. Low-temperature boiling probably occurred during this stage.We also discuss the reasons behind the anomalously low δD values in fluid inclusion water extracted by thermal decrepitation from quartz at high temperatures, and suggest that calcite data provide a possible benchmark for adjusting low δD values found in quartz intergrown with calcite.  相似文献   

11.
Abstract. The Ta'ergou tungsten deposit in Gansu province, northwestern China, is located in the western part of the North Qilian Caledonian orogen, and consists of scheelite skarn bodies and wolframite quartz veins. The tungsten‐bearing skarn developed by the replacement of carbonate layers intercalated in the Precambrian schist and amphibolite whereas wolframite‐quartz ore veins developed along a group of fractures that cut through horizontal skarns. The Ta'ergou tungsten deposit is genetically related to the Caledonian Yeniutan granodiorite intrusion and occurs ca. 500 m wide in the exo‐contact zone 300 ~ 500 m apart from the intrusion. The granodiorite displays a lower grade of differentiation, low content of SiO2 and high contents of mafic components. There are three types of fluid inclusions in the wolframite‐quartz vein systems, i. e. aqueous, CO2‐H2O and CO2‐rich. The homogenization temperature of aqueous inclusion ranges from 140 to 380d?C and their salinities from 6.4 to 17.4 equivalent wt% NaCl. Laser Raman spectroscopy shows that the inclusions contain a relatively high content of CO2. The δ34S values of skarn type sulfides range from +8.1 to +12.7 per mil and those of quartz vein sulfides from +9.3 to +14.9 per mil, similar to sulfides of the granodiorite with from +6.0 to +11.7 per mil. The δ18O values of quartz are between +10.5 and +13.3 per mil and those of wolframite between +3.4 and +5.1 per mil. The δ18O water values of ore forming fluids range from +0.6 to +6.4 per mil and suggest the mixture of magmatic fluids with meteoric water formed the ore‐forming fluids. It has been proved that Precambrian strata in the west sector of North Qilian region are enriched in tungsten. We propose the strata were remelted to be tungsten‐granitoid during subduction. The polymetallic tungsten was gradually accumulated into the roof pendants of the granite intrusion by fractional crystallization and then was deposited by hydrothermal fluids during metasomatism and infilling along fractures. On the other hand, the granite intrusion also acted as “heating machine” to make hydrothermal fluids leach out the metals from Precambrian strata and these metals joined the ore‐forming hydrothermal system.  相似文献   

12.
Classic porphyry Cu–Mo deposits are mostly characterized by close temporal and spatial relationships between Cu and Mo mineralization. The northern Dabate Cu–Mo deposit is a newly discovered porphyry Cu–Mo polymetallic deposit in western Tianshan, northwest China. The Cu mineralization postdates the Mo mineralization and is located in shallower levels in the deposit, which is different from most classic porphyry Cu–Mo deposits. Detailed field investigations, together with microthermometry, laser Raman spectroscopy, and O‐isotope studies of fluid inclusions, were conducted to investigate the origin and evolution of ore‐forming fluids from the main Mo to main Cu stage of mineralization in the deposit. The results show that the ore‐forming fluids of the main Mo stage belonged to an NaCl + H2O system of medium to high temperatures (280–310°C) and low salinities (2–4 wt% NaCl equivalent (eq.)), whereas that of the main Cu stage belonged to an F‐rich NaCl + CO2 + H2O system of medium to high temperatures (230–260°C) and medium to low salinities (4–10 wt% NaCl eq.). The δ18O values of the ore‐forming fluids decrease from 3.7–7.8‰ in the main Mo stage to ?7.5 to ?2.9‰ in the main Cu stage. These data indicate that the separation of Cu and Mo was closely related to a large‐scale vapor–brine separation of the early ore‐forming fluids, which produced the Mo‐bearing and Cu‐bearing fluids. Subsequently, the relatively reducing (CH4‐rich) Mo‐bearing, ore‐forming fluids, dominantly of magmatic origin, caused mineralization in the rhyolite porphyry due to fluid boiling, whereas the relatively oxidizing (CO2‐rich) Cu‐bearing, ore‐forming fluids mixed with meteoric water and precipitated chalcopyrite within the crushed zone at the contact between rhyolite porphyry and wall rock. We suggest that the separation of Cu and Mo in the deposit may be attributed to differences in the chemical properties of Cu and Mo, large‐scale vapor–brine separation of early ore‐forming fluids, and changes in oxygen fugacity.  相似文献   

13.
The Huaixi copper-gold polymetallic deposit of SE Zhejiang Province, China, is a typical hydrothermal-vein ore body. The Caomen K-feldspar granite porphyry, the dominant intrusion in the mining district, has been dated by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analyses of zircon, which yielded a weighted mean 206Pb/238U age of 101.6 ± 0.9 Ma (MSDW?=?1.3). Rb-Sr dating of fluid inclusions in auriferous quartz from ore bodies yielded an isochron age of 101 ± 2 Ma. These results indicate that intrusion of the Caomen pluton and Cu-Au mineralization was contemporaneous and corresponds to the third episode of Mesozoic magmatism and metallogenesis in South China. Calculated δ18O values of fluid inclusions from ore-bearing quartz range from??0.89 to??1.98‰ and δD from??42.60 to??60.20‰, suggesting that the ore-forming fluids are derived from a mixed source of magmatic and meteoric waters. δ18S values of 8 pyrites range from??2.14 to?+4.14‰ with a mean of?+1.67‰, similar to magmatic sulphur. These isotope data support a genetic relationship between the Huaixi copper-gold deposit and the Caomen alkaline granite and probably indicate a common deep source. Petrography and chemical compositions show that the Caomen alkaline granite crystallized from shoshonitic magmas characterized by high SiO2 (75.64–78.00%) and alkali (K2O?+?Na2O?=?7.96–8.82%) but low FeOT (1.34–3.31%), P2O5 (0.05–0.13%) and TiO2 (0.12–0.18%). The granitic rocks are enriched in Ga, Rb, Th, U, and Pb but depleted in Ba, Nb, Sr, P, and Ti. REEs are characterized by marked negative Eu anomalies (Eu/Eu*?=?0.06–0.13) and exhibit right-dipping ‘V’ patterns with LREE enrichment. These are similar to the Late Cretaceous alkaline granites in the coastal areas of Zhejiang and Fujian provinces, implying that the Caomen granite formed in a post-collisional extensional tectonic setting. Combined with previous studies, we interpret the Huaixi copper-gold deposit and the associated Caomen alkaline granite as related to back-arc extension due to high-angle subduction of the palaeo-Pacific plate, caused by northward movement of the Indian plate.  相似文献   

14.
The Sawayaerdun gold deposit, located in Wuqia County, Southwest Tianshan, China, occurs in Upper Silurian and Lower Devonian low‐grade metamorphic carbonaceous turbidites. The orebodies are controlled by a series of NE‐NNE‐trending, brittle–ductile shear zones. Twenty‐four gold mineralized zones have been recognized in the Sawayaerdun ore deposit. Among these, the up to 4‐km‐long and 200‐m wide No. IV mineralized zone is economically the most important. The average gold grade is 1–6 g/t. Gold reserves of the Sawayaerdun deposit have been identified at approximately 37 tonnes and an inferred resource of 123 tonnes. Hydrothermal alteration is characterized by silicification, pyritization, arsenopyritization, sericitization, carbonatization and chloritization. On the basis of field evidence and petrographic analysis, five stages of vein emplacement and hydrothermal mineralization can be distinguished: stage 1, early quartz stage, characterized by the occurrence of quartz veins; stage 2, arsenopyrite–pyrite–quartz stage, characterized by the formation of auriferous quartz veinlets and stockworks; stage 3, polymetallic sulfide quartz stage, characterized by the presence of auriferous polymetallic sulfide quartz veinlets and stockworks; stage 4, antimony–quartz stage, characterized by the formation of stibnite–jamesonite quartz veins; and stage 5, quartz–carbonate vein stage. Stages 2 and 3 represent the main gold mineralization, with stage 4 representing a major antimony mineralization episode in the Sawayaerdun deposit. Two types of fluid inclusion, namely H2O–NaCl and H2O–CO2–NaCl types, have been recognized in quartz and calcite. Aqueous inclusions show a wide range of homogenization temperatures from 125 to 340°C, and can be correlated with the mineralization stage during which the inclusions formed. Similarly, salinities and densities of these fluids range for each stage of mineralization from 2.57 to 22 equivalent wt% NaCl and 0.76 to 1.05 g/cm3, respectively. The ore‐forming fluids thus are representative of a medium‐ to low‐temperature, low‐ to medium‐salinity H2O–NaCl–CO2–CH4–N2 system. The δ34SCDT values of sulfides associated with mineralization fall into a narrow range of ?3.0 to +2.6‰ with a mean of +0.1‰. The δ13CPDB values of dolomite and siderite from the Sawayaerdun gold deposit range from ?5.4 to ?0.6‰, possibly reflecting derivation of the carbonate carbon from a mixed magmatic/sedimentary source. Changes in physico‐chemical conditions and composition of the hydrothermal fluids, water–rock exchange and immiscibility of hydrothermal fluids are inferred to have played important roles in the ore‐forming process of the Sawayaerdun gold–antimony deposit.  相似文献   

15.
河南西峡石板沟金矿成矿流体地球化学及矿床成因讨论   总被引:3,自引:2,他引:3  
张德会  刘伟 《现代地质》1999,13(2):130-136
石板沟金矿是近年在豫西南发现的一个剪切带容矿的脉状金矿。根据流体包裹体地球化学研究,分析了矿床成矿流体地球化学特征,讨论了金的沉淀机制和矿床成因。构造蚀变岩型金矿的形成主要与热液蚀变作用有关,石英脉型金矿的形成,则可能主要与岩浆热液与变质热液的混合作用有关。矿质主要源自晋宁期岩浆岩,成矿流体和热能主要来自海西期花岗岩。矿床为剪切带容矿的中低温热液金矿床。  相似文献   

16.
以林家三道沟、小佟家堡子金(银)矿床为例,系统总结了区内金(银)矿床的成矿条件及地质特征,对矿床的相关岩体、围岩及矿石进行了流体包裹体、稳定同位素测试分析。结果表明:矿床赋存于古元古界辽河群大石桥亚群杨树沟岩组第6岩段碎屑岩-碳酸盐岩建造和盖县亚群汤家沟岩组碎屑岩建造中;主要容矿岩石为硅化大理岩、变粒岩、片岩;近矿围岩蚀变主要为硅化、绢云母化、黄铁矿化和碳酸盐化;自然金的粒度以显微不可见金为主;均一温度(100~200 ℃)、成矿流体盐度(w(NaCl)(1.91 % ~9.73%)均较低;矿石石英中成矿流体δD值为-48.0‰~-93.0‰,δ18OH2O计算值为-8.63‰~+1.31‰,表明成矿流体主要来自于地热水和原生地层水;矿石硫同位素δ34S值平均为+8.61‰,赋矿围岩、岩体δ34S为+0.50‰~+7.6‰,表明矿石中硫主要来自古元古代地层和印支晚期岩体;金(银)矿石中206Pb/204Pb为17.664~19.186 7,207Pb/204Pb为15.044~15.883,208Pb/204Pb为37.693~38.784,铅源具有壳幔混合源特点。矿床成因类型为沉积变质-岩浆热液叠加型。  相似文献   

17.
The Ciemas gold deposit is located in West Java of Indonesia,which is a Cenozoic magmatism belt resulting from the Indo-Australian plate subducting under the Eurasian plate.Two different volcanic rock belts and associated epithermal deposits are distributed in West Java:the younger late Miocene-Pliocene magmatic belt generated the Pliocene-Pleistocene epithermal deposits,while the older late Eocene-early Miocene magmatic belt generated the Miocene epithermal deposits.To constrain the physico-chemical conditions and the origin of the ore fluid in Ciemas,a detailed study of ore petrography,fluid inclusions,laser Raman spectroscopy,oxygen-hydrogen isotopes for quartz was conducted.The results show that hydrothermal pyrite and quartz are widespread,hydrothermal alteration is well developed,and that leaching structures such as vuggy rocks and extension structures such as comb quartz are common.Fluid inclusions in quartz are mainly liquid-rich two phase inclusions,with fluid compositions in the NaCl-H20 fluid system,and contain no or little CO_2.Their homogenization temperatures cluster around 240℃-320℃,the salinities lie in the range of 14-17 wt.%NaCl equiv,and the calculated fluid densities are 0.65-1.00 g/cm~3.The values of δ~(18)O_(H2O-VSMOW)for quartz range from +5.5‰ to +7.7‰,the δD_(VSMOW) of fluid inclusions in quartz ranges from-70‰ to-115‰.All of these data indicate that mixing of magmatic fluid with meteoric water resulted in the formation of the Ciemas deposit.A comparison among gold deposits of West Java suggests that Miocene epithermal ore deposits in the southernmost part of West Java were more affected by magmatic fluids and exhibit a higher degree of sulfldation than those of Pliocene-Pleistocene.  相似文献   

18.
文章对江南造山带中段湖南东部地区主要金矿床开展了成矿年龄测定和硫同位素分析。获得该区黄金洞和大洞金矿床矿脉石英流体包裹体Rb-Sr等时线年龄分别为152±13Ma和70±1.3Ma;同时获得黄金洞矿床矿脉硫化物δ34S均值为-6.3‰(主要集中在-4.8‰到-8.6‰之间)、大洞δ34S均值为-9.2‰(主要在-8‰到-10‰之间)、雁林寺δ34S均值为-1.2‰(主要在-2.6‰和6.1‰之间)。结合华南区域大地构造演化特征、江南造山带主要金矿床成矿地质条件,认为440~400Ma、160~110Ma和~70Ma是该区的三个主要金矿化期;含矿流体主要来源于深部,与变质水和/或岩浆水有关,但成矿晚期有大量再循环的大气降水和/或海水加入。江南造山带湖南段金矿床具有与造山作用有关的浅成型金矿的某些成矿特点。  相似文献   

19.
《Resource Geology》2018,68(3):258-274
The Dabaoshan deposit in Northern Guangdong Province, South China, is a Cu–Mo–W–Pb–Zn polymetallic deposit, located in the southern part of the Qin–Hang porphyry–skarn Cu–Mo ore belt. The deposit mainly comprises porphyry Mo and stratiform skarn Cu ore deposits. The genesis of the Cu ore deposit has been ascribed to a typical skarn ore deposit formed by the metasomatism of Devonian carbonate rock layers or to a volcanic rock‐hosted massive sulfide deposit formed by marine exhalation. In this paper, we report on the homogenization temperatures and salinities of fluid inclusions and C, H, O, S, and Pb isotopic compositions of fluids and minerals in this deposit. Homogenization temperatures and salinities of fluid inclusions in garnet, diopside, quartz, and calcite provide information on the skarnification, mineralization, and postmineralization stages. The data show that ore‐forming fluids experienced a continuous transition from high temperatures and salinities to low temperatures and salinities over the entire period of mineralization. C, H, and O isotopic compositions indicate that ore‐forming fluids were derived mainly from magmatic water. O isotopic compositions indicate that ore‐forming fluids mingled with atmospheric water during the last stage of mineralization. Sulfur in the ore came mainly from deep magmatic sources. Pb isotopic compositions in the orebody show that almost all the lead in the ore was derived from magma with a crustal source. Combined geological, geophysical, and geochemical data were achieved before we proposed that the Dabaoshan porphyry–skarn Cu–Mo–W–Pb–Zn deposit, as one member of the Qin–Hang porphyry–skarn Cu–Mo ore belt, formed during the Jurassic subduction of the paleo‐Pacific plate beneath the Eurasian continent at quite low angle. NE‐ and EW‐trending structures controlled the emplacement of magmatic rocks in the South China region. In the mining area, the Xiangguanping Fault and its branches were the main conduits for magmatic crystallization and mineralization. The many subfaults, folds, and interlayer fracture zones on both sides of the main fault provided the requisite space for the ore and, together, were the controlling structures of the orebody.  相似文献   

20.
The Tonggou Cu polymetallic deposit in the Bogda Orogenic Belt, Eastern Tianshan shows evidence for three stages of hydrothermal mineralization: early pyrite veins (Stage 1), polymetallic sulfide ± epidote–quartz (Stage 2), and late-stage pyrite–calcite veins (Stage 3). Fluid inclusion petrography and microthermometry analyses indicate that the liquid-rich aqueous inclusions (L), vapour-rich aqueous inclusions (V), and NaCl daughter mineral–bearing three phase inclusions (S) formed during the main stage of mineralization, and that the ore fluids represent high-temperature and high-salinity H2O-NaCl hydrothermal fluids that underwent boiling. Stable isotope (H, O) data indicate that the ore fluids of the Tonggou deposit were originally derived from magmatic water in Stage 2 and subsequently mixed with local meteoric water during Stage 3. Sulphur isotope compositions (6.7‰ to 10.9‰) are consistent with the δ34S values of pyrite from the Qijiaojing Formation sandstone, indicating the primary source of the sulphur ore. Furthermore, chalcopyrite grains separated from the chalcopyrite-rich ore samples yield an isochron age of 303 ± 12 Ma (MSWD = 1.2). These results indicate that the Tonggou deposit is a transition between high–sulfidation and porphyry deposits which formed in the Late Carboniferous. It also suggests an increased likelihood for the occurrence of Cu (Au, Mo) in the Bogda Orogenic Belt, especially at locations where the Cu-Zn deposits are thicker; further deep drilling and exploration are encouraged in these areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号