首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Several factors influence the behaviour of infilled frames, which have been a subject of research in the past with moderate success. The new generation of European design standards imposes the need to prevent brittle collapse of the infills and makes the structural engineer accountable for this requirement, yet it fails to provide sufficient information for masonry infills design. Therefore, the present work aims at understanding the seismic behaviour of masonry infill walls within reinforced concrete frames, using both unreinforced and reinforced solutions (bed joint reinforcement and reinforced plaster). For this purpose, three reinforced concrete buildings with different infill solutions were constructed at a scale of 1:1.5, all with the same geometry, and were tested on the shaking table of the National Laboratory for Civil Engineering, Portugal. All solutions performed adequately for the design earthquake, with no visible damage. Still, the experimental tests show that the double‐leaf‐unreinforced infill walls underperformed during a large earthquake, collapsing out of plane by rotating as rigid bodies with multiple configurations. Also the reinforced concrete buildings collapsed, because of the adverse interaction with the infill walls. The infill walls with bed joint reinforcement and reinforced plaster did not collapse out of plane, because of their connection to the concrete frame, which is an essential requirement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Recent seismic events have provided evidence that damage to masonry infills can lead not only to large economic losses but also to significant injuries and even fatalities. The estimation of damage of such elements and the corresponding consequences within the performance‐based earthquake engineering framework requires the construction of reliable fragility functions. In this paper, drift‐based fragility functions are developed for in‐plane loaded masonry infills, derived from a comprehensive experimental data set gathered from current literature, comprising 152 masonry infills with different geometries and built with different types of masonry blocks, when tested under lateral cyclic loading. Three damage states associated with the structural performance and reparability of masonry infill walls are defined. The effect of mortar compression strength, masonry prism compression strength, and presence of openings is evaluated and incorporated for damage states where their influence is found to be statistically significant. Uncertainty due to specimen‐to‐specimen variability and sample size is quantified and included in the proposed fragility functions. It is concluded that prism strength and mortar strength are better indicators of the fragility of masonry infills than the type of bricks/blocks used, whose influence, in general, is not statistically significant for all damage states. Finally, the presence of openings is also shown to have statistically relevant impact on the level of interstory drift ratio triggering the lower damage states.  相似文献   

3.
Numerous research studies have proved that numerical models aiming at an accurate evaluation of the seismic response of RC framed buildings cannot ignore the inelastic behaviour of infills and the interaction between infill and frame elements. To limit the high computational burden of refined non-linear finite element models, in the latest decades, many researchers have developed simplified infill models by means of single or multiple strut-elements. These models are low time-consuming and thus adequate for static and dynamic analyses of multi-storey structures. However, their simulation of the seismic response is sometimes unsatisfying, particularly in the presence of infill walls with regular or (particularly) irregular distributions of openings. This paper presents a new 2D plane macro-element, which provides a refined simulation of the non-linear cyclic response of infilled framed structures at the expense of a limited computational cost. The macro-element consists of an articulated quadrilateral panel, a single 1D diagonal link, and eight 2D links and is able to model the shear and flexural behaviour of the infill and the non-linear flexural/sliding interaction between infill and surrounding frame. The proposed macro-element has been implemented into the open source software OpenSees and used to simulate the response of single-storey, single-span RC infilled frame prototypes tested by other authors. The above prototypes are selected as made of different masonry units and characterised by full or open geometric configuration.  相似文献   

4.
Eight half‐scale brick masonry walls were tested to study two important aspects of confined masonry (CM) walls related to its seismic behavior under in‐plane and out‐of‐plane loads. Four solid wall specimens tested to investigate the role of type of interface between the masonry and tie‐columns, such as toothing varying from none to every course. The other four specimens with openings were tested to study the effectiveness of various strengthening options around opening to mitigate their negative influence. In the set of four walls, one wall was infilled frame while the other three were CM walls of different configurations. The experimental results were further used to determine the accuracy of various existing models in predicting the in‐plane response quantities of CM walls. Confined masonry walls maintained structural integrity even when severely damaged and performed much better than infill frames. No significant effect of toothing details was noticed although toothing at every brick course was preferred for better post‐peak response. For perforated walls, provision of vertical elements along with continuous horizontal bands around openings was more effective in improving the overall response. Several empirical and semi‐empirical equations are available to estimate the lateral strength and stiffness of CM walls, but those including the contribution of longitudinal reinforcement in tie‐columns provided better predictions. The available equations along with reduction factors proposed for infills could not provide good estimates of strength and stiffness for perforated CM walls. However, recently proposed relations correlating strength/stiffness with the degree of confinement provided reasonable predictions for all wall specimens. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Unreinforced masonry infill walls are widely used as non-structural partitions in RC frames. The effects of infills on the structural responses are often ignored in the design process since they are generally considered as expendable elements. However, recent studies have shown that not only shear damage can be inflicted to the columns braced by the infill walls, but also that the structural stability can be jeopardised by the fall-off of the infills. This paper presents the development of new detailing methods for the infill walls, which features slit panels, isolation gaps between the infills and columns, and anchorage of the infills. The proposed detailing methods were tested and verified experimentally using shake-table tests on five 1/3-scale infilled RC frame specimens with different combinations of the features stated above. The design and construction of the shake-table test specimens have taken into account the similitude requirements. The test results indicate that the proposed detailing method effectively reduced the undesirable interaction between column and infill walls. And the use of proper anchorage could prevent the fall off of infills from the bounding frame. Furthermore, the specimens with slit infill walls displayed better seismic performances, which could be attributed to the rocking behaviour of the sub-panels with increased aspect ratios.  相似文献   

6.
In this paper, a technique is presented which employs the results of pseudo‐dynamic tests for the development of a mathematical model. This technique, described by means of the mathematical modelling of a three‐storey reinforced concrete frame building with infill in the bottom two storeys, which was tested at ELSA in Ispra, proved to be effective and to lead to a fairly accurate structural model. The results of analyses suggest that the global non‐linear seismic response of reinforced concrete frames with masonry infill can be adequately simulated by a relatively simple mathematical model, which combines beam elements with concentrated plasticity, simple connection elements, and equivalent strut elements representing the infill walls (provided that the infill does not fail out of plane and that no shear sliding failure occurs). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The objective of this study is to investigate the effect of masonry infills on the seismic performance of low‐rise reinforced concrete (RC) frames with non‐seismic detailing. For this purpose, a 2‐bay 3‐storey masonry‐infilled RC frame was selected and a 1 : 5 scale model was constructed according to the Korean practice of non‐seismic detailing and the similitude law. Then, a series of earthquake simulation tests and a pushover test were performed on this model. When the results of these tests are compared with those in the case of the bare frame, it can be recognized that the masonry infills contribute to the large increase in the stiffness and strength of the global structure whereas they also accompany the increase of earthquake inertia forces. The failure mode of the masonry‐infilled frame was that of shear failure due to the bed‐joint sliding of the masonry infills while that of the bare frame appeared to be the soft‐storey plastic mechanism at the first storey. However, it is judged that the masonry infills can be beneficial to the seismic performance of the structure since the amount of the increase in strength appears to be greater than that in the induced earthquake inertia forces while the deformation capacity of the global structure remains almost the same regardless of the presence of the masonry infills. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Seismic fragility of lightly reinforced concrete frames with masonry infills is assessed through numerical simulations considering uncertainty in ground motion and building materials. To achieve this aim, a numerical model of the components is developed, a rational approach to proportion and locate individual struts in the equivalent three‐strut model is proposed, and an explicit nonlinear column shear response model accounting for the infill–column interaction and soft‐story mechanism is employed. The proposed numerical model is used to (1) generate probabilistic seismic demand models accounting for a wide range of ground motion intensities with different frequency content and (2) determine limit state models obtained from nonlinear pushover analysis and incremental dynamic analysis. Using the demand and limit state model, fragility curves for the masonry‐infilled frames are developed to investigate the impact of various infill properties on the frame vulnerability. It is observed that the beneficial effect of the masonry infill diminishes at more severe limit states because of the interaction with the boundary frame. In some cases, this effect almost vanishes or switches to an adverse effect beyond a threshold of ground motion intensities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Aimed at investigating the effect of openings on the in‐plane behaviour of masonry infills in reinforced concrete frames, a parametric study is presented based on model calibration via experimental tests. Two types of openings are investigated: central window openings and different combinations of door and window openings based on the typologies of southern European countries. First, a finite element model of the structure is made using the DIANA software program. Then, after calibration with experimental results, a parametric analysis is carried out to investigate the effect of the presence and location of the different types of openings on the in‐plane behaviour of the infilled frame. Finally, different equations for predicting the initial stiffness and lateral strength of infilled frames with any types of openings were obtained. An α factor related to the geometry of the piers between openings is proposed to take into account the location of the openings in the developed equations. Subsequently, the masonry infill panel is replaced by a diagonal strut. An empirical equation is also proposed for the width of an equivalent strut to replace a masonry infill panel with openings in such a way that they possess the same initial stiffness. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Recent earthquakes have confirmed the role played by infills in the seismic response of reinforced concrete buildings. The control and limitation of damage to such nonstructural elements is a key issue in performance‐based earthquake engineering. The present work is focused on modeling and analysis of damage to infill panels, and, in particular, it is aimed towards linear analysis procedures for assessing the damage limitation limit state of infilled reinforced concrete frames. First, code provisions on infill modeling and acceptance criteria at the damage limitation limit state are reviewed. Literature contributions on damage to unreinforced masonry infill panels and corresponding displacement capacity are reported and discussed. Two procedures are then proposed aiming at a twofold goal: (i) the determination of ‘equivalent’ interstory drift ratio limits for a bare frame model and (ii) the estimation of the stiffness of equivalent struts representing infill walls in a linear model. These two quantities are determined such that a linear model ensures a reliable estimation of seismic capacity at the damage limitation limit state, providing the same intensity level as that obtained from nonlinear analyses carried out on structural models with infills. Finally, the proposed procedures are applied to four‐story and eight‐story case study‐infilled frames, designed for seismic loads according to current technical codes. The results of these application examples are presented and discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Experimental tests have shown that unreinforced masonry (URM) infill walls are affected by simultaneous loading in their in-plane and out-of-plane directions, but there have been few attempts to represent this interaction in nonlinear time history analysis of reinforced concrete (RC) buildings with URM infill walls. In this paper, a recently proposed macro-model that accounts for this interaction is applied to the seismic analysis of RC framed structures with URM infill walls representative of Mediterranean building stock and practices. Two RC framed structures that are representative of low and mid-rise residential buildings are analysed with a suite of a bidirectional ground motions, scaled to three different intensities. During the analyses, the in-plane/out-of-plane interaction is monitored, showing that cracking of the infills occurs predominantly by in-plane actions, while failure occurs due to a combination of in-plane and out-of-plane displacements, with the out-of-plane component usually playing the dominant role. Along the frame height, the bottom storeys are generally the most damaged, especially where thin infill walls are used. These results are consistent with observations of damage to URM infill walls in similar buildings during recent earthquakes.  相似文献   

12.
Strength and stiffness reduction factors for infilled frames with openings   总被引:1,自引:0,他引:1  
Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence of infill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.  相似文献   

13.
Effects of masonry infills on the seismic vulnerability of steel frames is studied through multi-scale numerical modelling. First, a micro-modelling approach is utilized to define a homogenized masonry material, calibrated on experimental tests, which is used for modelling the nonlinear response of a one-story, single span, masonry-infilled portal under horizontal loads. Based on results of the micro-model, the constitutive behavior of a diagonal strut macro-element equivalent to the infill panel is calibrated. Then, the diagonal strut is used to model infill panels in the macro-scale analysis of a multi-span multi-story infilled moment-resisting (MR) steel frame. The seismic vulnerability of the MR frame is evaluated through a nonlinear static procedure. Numerical analyses highlight that infills may radically modify the seismic response and the failure mechanism of the frame, hence the importance of the infill correct modelling.  相似文献   

14.
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenchuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.  相似文献   

15.
为研究填充墙对底层框架多层砌体房屋地震反应的影响,以典型的填充墙-底层框架多层砌体房屋为基础,建立有限元计算模型并进行了弹塑性动力时程分析。根据不同模型的计算结果以及填充墙的刚度和强度,分析了填充墙对底层框架多层砌体房屋自振周期、地震作用下房屋整体变形、底层框架的损伤以及填充墙与底层框架相互作用的影响。计算结果表明:填充墙对房屋整体地震反应产生明显影响,其影响不能忽略。在上部砌体结构质量和刚度不变的情况下,结构自振周期随着填充墙刚度的增加而降低;随着填充墙与底层框架之间连接作用的增强,结构整体的变形减小,底层框架的损伤增大。当填充墙与底层框架之间采用弱连接时,采用强度较高的填充墙可以提高结构整体的变形能力,从而提高结构整体的抗震能力。  相似文献   

16.
This paper presents pseudo‐dynamic test results on the in‐plane seismic behaviour of infilled frames. Thirteen single‐storey, single‐bay, half‐size‐scale, reinforced concrete‐frame specimens, most of which infilled with non‐structural masonry made of perforated bricks and cement mortar are tested. The infills are in contact with frames, without any connector; openings are not covered. The frames are different in their strength and details, reinforcement grade, and aspect ratio. Seismic input is the 1976 Tolmezzo (Friuli, Italy) ground acceleration, to which specimens are subjected two times: virgin and damaged by the previous test. The global seismic response of initially virgin infilled specimens considerably differs from that of bare specimens. This follows a dramatic change of properties: compared to a bare frame, the initial stiffness increases by one order of magnitude, and the peak strength more than doubles. The peak drift lessens; however, the displacement ductility demand does not. The energy demand is greater. Nevertheless, the influence of infill decreases as damage proceeds. Displacement time histories of damaged specimens are quite similar. At the local level, infill causes asymmetry and concentration of the frame deformation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
One of the main challenges in earthquake risk mitigation is the assessment of existing buildings not designed according to modern codes and the development of effective techniques to strengthen these structures. Particular attention should be given to RC frame structures with masonry infill panels, as demonstrated by their poor performance in recent earthquakes in Europe. Understanding the seismic behaviour of masonry‐infilled RC frames presents one of the most difficult problems in structural engineering. Analytical tools to evaluate infill–frame interaction and the failure mechanisms need to be further studied. This research intends to develop a simplified macro‐model that takes into account the out‐of‐plane behaviour of the infill panels and the corresponding in‐plane and out‐of‐plane interaction when subjected to seismic loadings. Finally, a vulnerability assessment of an RC building will be performed in order to evaluate the influence of the out‐of‐plane consideration in the building response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Two models of masonry infilled reinforced concrete frame buildings were tested at the shaking table. Models were built in the reduced scale 1:4 using the materials produced in accordance to modelling demands of true replica modelling technique. The first model represented a one‐storey box‐like building and the second one the two‐stories building with plan shaped in the form of a letter H. Models were shaken with the series of horizontal sine dwell motions with gradually increasing amplitude. Masonry infills of tested models were constructed of relatively strong bricks laid in weak mortar. Therefore, typical cracks developed and propagated along mortar beds without cracking of bricks or crushing of infill corners. Data collected from tests will be used in future evaluation, verification and development of computational models for prediction of in‐plane and out‐of‐plane behaviour of masonry infills. The responses of tested models can be well compared with global behaviour of real structures using the modelling rules. The similarity of local behaviour of structural elements, e.g. reinforced concrete joints, is less reliable due to limitations in modelling of steel reinforcement properties. The model responses showed that buildings designed according to Eurocodes are able to sustain relatively high dynamic excitations due to a significant level of structural overstrength. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
本文对砌体填充墙的损伤状态进行了划分,并将损伤状态与常用修复方案相关联,明确了不同损伤状态所需要的修复方案。为了建立适用于中国砌体填充墙的易损性函数,对砌体填充墙面内抗震性能的试验数据进行了统计分析以建立损伤状态与工程需求参数的拟合经验关系。以层间位移角作为填充墙的工程需求参数,通过对数正态分布拟合试验数据。结果表明采用对数正态分布拟合的易损性曲线能够满足Lilliefors检验要求,可将其用于砌体填充墙的易损性评估中。  相似文献   

20.
A computational model for evaluating the dynamical response and the damage of large masonry walls subjected to out‐of‐plane seismic actions is presented. During earthquakes, these actions are often the main cause of damage for the front wall and lateral walls of old masonry‐built churches and monuments. Since the crack patterns often tend to subdivide the plane walls into a number of blocks, the model assumes such walls as a series of quadrilateral plane rigid elements connected to each other in the middle of their adjoining sides. Only the out‐of‐plane displacements are considered, and the connections are regarded as spherical elasto‐plastic joints which allow rotations whose axis is in the plane of the undeformed wall. The hysteretic characteristics of these joints are defined so as to approximate the brittle behaviour of masonry material and the degradation due to cyclic loadings. The numerical results obtained using a limited number of elements show that the global out‐of‐plane response of the masonry walls and the mechanical degradation at each connection are in accord with the observed behaviour of real churches hit by strong earthquakes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号