首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stochastic ground motion models produce synthetic time‐histories by modulating a white noise sequence through functions that address spectral and temporal properties of the excitation. The resultant ground motions can be then used in simulation‐based seismic risk assessment applications. This is established by relating the parameters of the aforementioned functions to earthquake and site characteristics through predictive relationships. An important concern related to the use of these models is the fact that through current approaches in selecting these predictive relationships, compatibility to the seismic hazard is not guaranteed. This work offers a computationally efficient framework for the modification of stochastic ground motion models to match target intensity measures (IMs) for a specific site and structure of interest. This is set as an optimization problem with a dual objective. The first objective minimizes the discrepancy between the target IMs and the predictions established through the stochastic ground motion model for a chosen earthquake scenario. The second objective constraints the deviation from the model characteristics suggested by existing predictive relationships, guaranteeing that the resultant ground motions not only match the target IMs but are also compatible with regional trends. A framework leveraging kriging surrogate modeling is formulated for performing the resultant multi‐objective optimization, and different computational aspects related to this optimization are discussed in detail. The illustrative implementation shows that the proposed framework can provide ground motions with high compatibility to target IMs with small only deviation from existing predictive relationships and discusses approaches for selecting a final compromise between these two competing objectives.  相似文献   

2.
Himalayan region is one of the most active seismic regions in the world and many researchers have highlighted the possibility of great seismic event in the near future due to seismic gap. Seismic hazard analysis and microzonation of highly populated places in the region are mandatory in a regional scale. Region specific Ground Motion Predictive Equation (GMPE) is an important input in the seismic hazard analysis for macro- and micro-zonation studies. Few GMPEs developed in India are based on the recorded data and are applicable for a particular range of magnitudes and distances. This paper focuses on the development of a new GMPE for the Himalayan region considering both the recorded and simulated earthquakes of moment magnitude 5.3–8.7. The Finite Fault simulation model has been used for the ground motion simulation considering region specific seismotectonic parameters from the past earthquakes and source models. Simulated acceleration time histories and response spectra are compared with available records. In the absence of a large number of recorded data, simulations have been performed at unavailable locations by adopting Apparent Stations concept. Earthquakes recorded up to 2007 have been used for the development of new GMPE and earthquakes records after 2007 are used to validate new GMPE. Proposed GMPE matched very well with recorded data and also with other highly ranked GMPEs developed elsewhere and applicable for the region. Comparison of response spectra also have shown good agreement with recorded earthquake data. Quantitative analysis of residuals for the proposed GMPE and region specific GMPEs to predict Nepal–India 2011 earthquake of Mw of 5.7 records values shows that the proposed GMPE predicts Peak ground acceleration and spectral acceleration for entire distance and period range with lower percent residual when compared to exiting region specific GMPEs.  相似文献   

3.
A fully nonstationary stochastic model for strong earthquake ground motion is developed. The model employs filtering of a discretized white‐noise process. Nonstationarity is achieved by modulating the intensity and varying the filter properties in time. The formulation has the important advantage of separating the temporal and spectral nonstationary characteristics of the process, thereby allowing flexibility and ease in modeling and parameter estimation. The model is fitted to target ground motions by matching a set of statistical characteristics, including the mean‐square intensity, the cumulative mean number of zero‐level up‐crossings and a measure of the bandwidth, all expressed as functions of time. Post‐processing by a second filter assures zero residual velocity and displacement, and improves the match to response spectral ordinates for long periods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A method for generating a suite of synthetic ground motion time‐histories for specified earthquake and site characteristics defining a design scenario is presented. The method employs a parameterized stochastic model that is based on a modulated, filtered white‐noise process. The model parameters characterize the evolving intensity, predominant frequency, and bandwidth of the acceleration time‐history, and can be identified by matching the statistics of the model to the statistics of a target‐recorded accelerogram. Sample ‘observations’ of the parameters are obtained by fitting the model to a subset of the NGA database for far‐field strong ground motion records on firm ground. Using this sample, predictive equations are developed for the model parameters in terms of the faulting mechanism, earthquake magnitude, source‐to‐site distance, and the site shear‐wave velocity. For any specified set of these earthquake and site characteristics, sets of the model parameters are generated, which are in turn used in the stochastic model to generate the ensemble of synthetic ground motions. The resulting synthetic acceleration as well as corresponding velocity and displacement time‐histories capture the main features of real earthquake ground motions, including the intensity, duration, spectral content, and peak values. Furthermore, the statistics of their resulting elastic response spectra closely agree with both the median and the variability of response spectra of recorded ground motions, as reflected in the existing prediction equations based on the NGA database. The proposed method can be used in seismic design and analysis in conjunction with or instead of recorded ground motions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Predictive equations based on the stochastic approach are developed for earthquake ground motions from Garhwal Himalayan earthquakes of 3.5≤Mw≤6.8 at a distance of 10≤R≤250 km. The predicted ground motion parameters are response spectral values at frequencies from 0.25 to 20 Hz, and peak ground acceleration (PGA). The ground motion prediction equations (GMPEs) are derived from an empirically based stochastic ground motion model. The GMPEs show a fair agreement with the empirically developed ground motion equations from Himalaya as well as the NGA equation. The proposed relations also reasonably predict the observed ground motion of two major Himalayan earthquakes from Garhwal Himalayan region. For high magnitudes, there is insufficient data to satisfactorily judge the relationship; however it reasonably predicts the 1991 Uttarkashi earthquake (Mw=6.8) and 1999 Chamoli earthquake (Mw=6.4) from Garhwal Himalaya region.  相似文献   

7.
Strong ground motions caused by earthquakes with magnitudes ranging from 3.5 to 6.9 and hypocentral distances of up to 300 km were recorded by local broadband stations and three-component accelerograms within Georgia’s enhanced digital seismic network. Such data mixing is particularly effective in areas where strong ground motion data are lacking. The data were used to produce models based on ground-motion prediction equations (GMPEs), one benefit of which is that they take into consideration information from waveforms across a wide range of frequencies. In this study, models were developed to predict ground motions for peak ground acceleration and 5%-damped pseudo-absolute-acceleration spectra for periods between 0.01 and 10 s. Short-period ground motions decayed faster than long-period motions, though decay was still in the order of approximately 1/r. Faulting mechanisms and local soil conditions greatly influence GMPEs. The spectral acceleration (SA) of thrust faults was higher than that for either strike-slip or normal faults but the influence of strike-slip faulting on SA was slightly greater than that for normal faults. Soft soils also caused significantly more amplification than rocky sites.  相似文献   

8.
The city of Adapazarı — located in the Marmara Region of northwest Turkey — is situated on a deep sedimentary basin and was the city most heavily damaged by the strong ground motion of the 17 August 1999 Kocaeli earthquake (moment magnitude Mw = 7.4). This study determines site amplifications of the attenuation relationships for shallow earthquakes in the Adapazarı basin by using the previous ground motion prediction equations (GMPEs) and the traditional spectral ratio method. The site amplifications are determined empirically by averaging the residuals between the observed and predicted peak ground acceleration (PGA) and spectral acceleration (SA) values for various periods. Residuals are significantly correlated with the known characteristics of geological units. A new attenuation model has also been developed for 5% damped spectral acceleration to determine the dependence of strong ground motions on frequency.  相似文献   

9.
The aim of this paper is to compute the ground-motion prediction equation (GMPE)-specific components of epistemic uncertainty, so that they may be better understood and the model standard deviation potentially reduced. The reduced estimate of the model standard deviation may also be more representative of the true aleatory uncertainty in the ground-motion predictions.The epistemic uncertainty due to input variable uncertainty and uncertainty in the estimation of the GMPE coefficients are examined. An enhanced methodology is presented that may be used to analyse their impacts on GMPEs and GMPE predictions. The impacts of accounting for the input variable uncertainty in GMPEs are demonstrated using example values from the literature and by applying the methodology to the GMPE for Arias Intensity. This uncertainty is found to have a significant effect on the estimated coefficients of the model and a small effect on the value of the model standard deviation.The impacts of uncertainty in the GMPE coefficients are demonstrated by quantifying the uncertainty in hazard maps. This paper provides a consistent approach to quantifying the epistemic uncertainty in hazard maps using Monte Carlo simulations and a logic tree framework. The ability to quantify this component of epistemic uncertainty offers significant enhancements over methods currently used in the creation of hazard maps as it is both theoretically consistent and can be used for any magnitude–distance scenario.  相似文献   

10.
The purpose of this paper is to investigate the ground motion characteristics of the Chi‐Chi earthquake (21 September 1999) as well as the interpretation of structural damage due to this earthquake. Over 300 strong motion records were collected from the strong motion network of Taiwan for this earthquake. A lot of near‐field ground motion data were collected. They provide valuable information on the study of ground motion characteristics of pulse‐like near‐field ground motions as well as fault displacement. This study includes: attenuation of ground motion both in PGA and spectral amplitude, principal direction, elastic and inelastic response analysis of a SDOF system subjected to near‐field ground motion collected from this event. The distribution of spectral acceleration and spectral velocity along the Chelungpu fault is discussed. Based on the mode decomposition method the intrinsic mode function of ground acceleration of this earthquake is examined. A long‐period wave with large amplitude was observed in most of the near‐source ground acceleration. The seismic demand from the recorded near‐field ground motion is also investigated with an evaluation of seismic design criteria of Taiwan Building Code. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
We focus here on the rupture directivity effect on the spatial distribution and attenuation characteristics of near-field ground motions during the 2008 MW7.9 Wenchuan earthquake. We examine the difference between the observed ground motions in and opposite the rupture directions and compare them with Next Generation Attenuation-West2 (NGA-West2) ground motion prediction models. The isochrone directivity predictor is used to quantify the band-limited nature of the rupture directivity effect on strong ground motion. Our results show that the observed peak ground velocity (PGV) and spectral accelerations of periods of 1.0 s and longer are significantly amplified in the rupture direction, but de-amplified in the opposite direction affected by rupture directivity effect of this event. In contrast, the effect of rupture directivity on the observed peak ground acceleration (PGA) and periods of shorter than 1.0 s are relatively weak. The rupture directivity of this event shows clear period dependent and band limited characteristics with the strongest effect occurring around the period of 7.5 s.  相似文献   

12.
A method for generating an ensemble of orthogonal horizontal ground motion components with correlated parameters for specified earthquake and site characteristics is presented. The method employs a parameterized stochastic model that is based on a time‐modulated filtered white‐noise process with the filter having time‐varying characteristics. Whereas the input white‐noise excitation describes the stochastic nature of the ground motion, the forms of the modulating function and the filter and their parameters characterize the evolutionary intensity and nonstationary frequency content of the ground motion. The stochastic model is fitted to a database of recorded horizontal ground motion component pairs that are rotated into their principal axes, a set of orthogonal axes along which the components are statistically uncorrelated. Model parameters are identified for each ground motion component in the database. Using these data, predictive equations are developed for the model parameters in terms of earthquake and site characteristics and correlation coefficients between parameters of the two components are estimated. Given a design scenario specified in terms of earthquake and site characteristics, the results of this study allow one to generate realizations of correlated model parameters and use them along with simulated white‐noise processes to generate synthetic pairs of horizontal ground motion components along the principal axes. The proposed simulation method does not require any seed recorded ground motion and is ideal for use in performance‐based earthquake engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
An efficient computational framework is presented for seismic risk assessment within a modeling approach that utilizes stochastic ground motion models to describe the seismic hazard. The framework is based on the use of a kriging surrogate model (metamodel) to provide an approximate relationship between the structural response and the structural and ground motion parameters that are considered as uncertain. The stochastic character of the excitation is addressed by assuming that under the influence of the white noise (used within the ground motion model) the response follows a lognormal distribution. Once the surrogate model is established, a task that involves the formulation of an initial database to inform the metamodel development, it is then directly used for all response evaluations required to estimate seismic risk. The model prediction error stemming from the metamodel is directly incorporated within the seismic risk quantification and assessment, whereas an adaptive approach is developed to refine the database that informs the metamodel development. The ability to efficiently obtain derivative information through the kriging metamodel and its utility for various tasks within the probabilistic seismic risk assessment is also discussed. As an illustrative example, the assessment of seismic risk for a benchmark four‐story concrete office building is presented. The potential that ground motions include near‐fault characteristics is explicitly addressed within the context of this example. The implementation of the framework for the same structure equipped with fluid viscous dampers is also demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Recent studies have shown that the vertical component of ground motion can be quite destructive on a variety of structural systems. Development of response spectrum for design of buildings subjected to vertical component of earthquake needs ground motion prediction equations (GMPEs). The existing GMPEs for northern Iranian plateau are proposed for the horizontal component of earthquake, and there is not any specified GMPE for the vertical component of earthquake in this region. Determination of GMPEs is mostly based on regression analyses on earthquake parameters such as magnitude, site class, distance, and spectral amplitudes. In this study, 325 three-component records of 55 earthquakes with magnitude ranging from M w 4.1 to M w 7.3 are used for estimation on the regression coefficients. Records with distances less than 300 km are selected for analyses in the database. The regression analyses on earthquake parameters results in determination of GMPEs for peak ground acceleration and spectral acceleration for both horizontal and vertical components of the ground motion. The correlation between the models for vertical and horizontal GMPEs is studied in details. These models are later compared with some other available GMPEs. According to the result of this investigation, the proposed GMPEs are in agreement with the other relationships that were developed based on the local and regional data.  相似文献   

15.
<正>Ground motion records are often used to develop ground motion prediction equations(GMPEs) for a randomly oriented horizontal component,and to assess the principal directions of ground motions based on the Arias intensity tensor or the orientation of the major response axis.The former is needed for seismic hazard assessment,whereas the latter can be important for assessing structural responses under multi-directional excitations.However,a comprehensive investigation of the pseudo-spectral acceleration(PSA) and of GMPEs conditioned on different axes is currently lacking.This study investigates the principal directions of strong ground motions and their relation to the orientation of the major response axis, statistics of the PSA along the principal directions on the horizontal plane,and correlation of the PSA along the principal directions on the horizontal plane.For these,three sets of strong ground motion records,including intraplate California earthquakes,inslab Mexican earthquakes,and interface Mexican earthquakes,are used.The results indicate that one of the principal directions could be considered as quasi-vertical.By focusing on seismic excitations on the horizontal plane,the statistics of the angles between the major response axis and the major principal axis are obtained;GMPEs along the principal axes are provided and compared with those obtained for a randomly oriented horizontal component;and statistical analysis of residuals associated with GMPEs along the principal directions is carried out.  相似文献   

16.
Study on the severest real ground motion for seismic design and analysis   总被引:1,自引:0,他引:1  
How to select the adequate real strong earthquake ground motion for seismic analysis and design of trucures is an essential problem in earthquake engineering research and practice.In the paper the concept of the severest design ground motion is proposed and a method is developed for comparing the severity of the recorded strong ground motions.By using this method the severest earthquake ground motions are selected out as seismic inputs to the structures to be designed from a database that consists of more than five thousand significant strong ground moton records collected over the world.The selected severest ground motions are very likely to be able to drive the structures to their critical response and thereby result in the highest damage potential.It is noted that for different structures with diffferent predominant natural periods and at different sites where structures are located the severest design ground motions are usually different.Finally.two examples are illustrated to demonstrate the rationality of the concept and the reliability of the selected design motion.  相似文献   

17.
Seismic hazard assessment is carried out by utilizing deterministic approach to evaluate the maximum expected earthquake ground motions along the Western Coastal Province of Saudi Arabia. The analysis is accomplished by incorporating seismotectonic source model,determination of earthquake magnitude(Mmax), set of appropriate ground motion predictive equations(GMPE), and logic tree sequence. The logic tree sequence is built up to assign weight to ground motion scaling relationships. Contour maps of ground acceleration are generated at different spectral periods. These maps show that the largest ground motion values are emerged in northern and southern regions of the western coastal province in Saudi Arabia in comparison with the central region.  相似文献   

18.
The JMA (Japan Meteorological Agency) seismic intensity scale has been used in Japan as a measure of earthquake ground shaking effects since 1949. It has traditionally been assessed after an earthquake based on the judgment of JMA officials. In 1996 the scale was revised as an instrumental seismic intensity measure (IJMA) that could be used to rapidly assess the expected damage after an earthquake without having to conduct a survey. Since its revision, Japanese researchers have developed several ground motion prediction equations (GMPEs) for IJMA using Japanese ground motion data. In this paper, we develop a new empirical GMPE for IJMA based on the strong motion database and functional forms used to develop similar GMPEs for peak response parameters as part of the PEER (Pacific Earthquake Engineering Research Center) Next Generation Attenuation (NGA) project. We consider this relationship to be valid for shallow crustal earthquakes in active tectonic regimes for moment magnitudes ( M ) ranging from 5.0 up to 7.5–8.5 (depending on fault mechanism) and rupture distances ranging from 0 to 200 km. A comparison of this GMPE with relationships developed by Japanese researchers for crustal and shallow subduction earthquakes shows relatively good agreement among all of the relationships at M 7.0 but relatively poor agreement at small magnitudes. Our GMPE predicts the highest intensities at small magnitudes, which together with research on other ground motion parameters, indicates that it provides conservative or upwardly biased estimates of IJMA for M <5.5. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号