首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlled rocking steel braced frames (CRSBFs) are low‐damage self‐centring lateral force resisting systems. Previous studies have shown that designing the energy dissipation (ED) and post‐tensioning (PT) in CRSBFs using a response modification factor of R=8 can prevent collapse of structures during earthquakes beyond the design level. However, designers have unique control over the hysteretic behaviour of the system, even after the response modification factor is selected. Additionally, recent studies have suggested that CRSBFs could also be designed using R>8 while still satisfying performance limits. This paper examines how the response modification factor and the design of the ED and PT influence the collapse performance of CRSBFs with three and six storeys where collapse occurs because of over‐rotation of the base rocking joint. In addition, the influence of using an additional rocking joint above the base to mitigate higher‐mode forces is evaluated for a 12‐storey frame. A total of 18 different designs are considered for the three buildings using different ED and PT design parameters, including different response modification factors. A suite of 44 ground motions is scaled until at least 50% of the records cause collapse, and fragility curves are generated using the truncated incremental dynamic analysis curves. The results from two different assessment methodologies show that the parameters selected have a marked influence on the collapse performance of a CRSBF. Nevertheless, even CRSBFs designed using R>8 or without supplemental ED can have acceptably low probabilities of collapse, provided that the frame members are designed to remain elastic. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
A simple relationship is proposed in this paper to construct damage‐based inelastic response spectra including the effect of ground motion duration that it can be used for damage control in seismic design of structures. This relation is established for three groups of ground motions with short‐duration, moderate‐duration, and long‐duration ranges. To develop the model, the duration effect is included in the cyclic ductility of structures by an energy‐based method, and then strength reduction factors are computed based on this modified ductility (named ). The strength reduction factors were calculated for 44 stiffness‐degrading oscillators having vibration periods between 0.05 and 4.0 s, four ultimate ductility capacities, and five damage levels subjected to 296 earthquake records. The results showed that ductility capacity, damage level, and ground motion duration are effective parameters in the energy dissipation of structures, which affect the spectra. The values of short‐period oscillators (e.g., low‐rise structures) under short‐duration records are generally greater than those under moderate‐duration and long‐duration records. Residual analysis has been made in terms of magnitude and distance to examine the validity of the proposed simple expression. Finally, the introduced spectra were compared with three previously published proposals. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Probabilistic seismic analysis of structures involves the construction of seismic demand models, often stated as probabilistic models of structural response conditioned on a seismic intensity measure. The uncertainty introduced by the model is often a result of the chosen intensity measure. This paper introduces the concept of using fractional order intensity measures (IMs) in probabilistic seismic demand analysis and uses a single frame integral concrete box‐girder bridge class and a seismically designed multispan continuous steel girder bridge class as case studies. The fractional order IMs considered include peak ground response and spectral accelerations at 0.2 and 1.0 s considering a single degree of freedom system with fractional damping, , as well as a linear single degree of freedom system with fractional response, . The study reveals the advantage of fractional order IMs relative to conventional IMs such as peak ground acceleration, peak ground velocity, or spectral acceleration at 0.2 and 1.0 s. Metrics such as efficiency, sufficiency, practicality, and proficiency are measured to assess the optimal nature of fractional order IMs. The results indicate that the proposed fractional order IMs produce significant improvements in efficiency and proficiency, whereas maintaining practicality and sufficiency, and thus providing superior demand models that can be used in probabilistic seismic demand analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Scenario‐based earthquake simulations at regional scales hold the promise in advancing the state‐of‐the‐art in seismic risk assessment studies. In this study, a computational workflow is presented that combines (i) a broadband Green's function‐based fault‐rupture and ground motion simulation—herein carried out using the “UCSB (University of California at Santa Barbara) method”, (ii) a three‐dimensional physics‐based regional‐scale wave propagation simulation that is resolved at  Hz, and (iii) a local soil‐foundation‐structure finite element analysis model. These models are interfaced with each other using the domain reduction method. The innermost local model—implemented in ABAQUS—is additionally enveloped with perfectly matched layer boundaries that absorb outbound waves scattered by the structures contained within it. The intermediate wave propagation simulation is carried out using Hercules , which is an explicit time‐stepping finite element code that is developed and licensed by the CMU‐QUAKE group. The devised workflow is applied to a  km region on the European side of Istanbul, which was modeled using detailed soil stratigraphy data and realistic fault rupture properties, which are available from prior microzonation surveys and earthquake scenario studies. The innermost local model comprises a chevron‐braced steel frame building supported by a shallow foundation slab, which, in turn, rests atop a three‐dimensional soil domain. To demonstrate the utility of the workflow, results obtained using various simplified soil‐structure interaction analysis techniques are compared with those from the detailed direct model. While the aforementioned demonstration has a limited scope, the devised workflow can be used in a multitude of ways, for example, to examine the effects of shallow‐layer soil nonlinearities and surface topography, to devise site‐ and structure‐specific seismic fragilities, and for calibrating regional loss models, to name a few.  相似文献   

5.
We present deterministic ground motion simulations that account for the cyclic multiaxial response of sediments in the shallow crust. We use the Garner Valley in Southern California as a test case. The multiaxial constitutive model is based on the bounding surface plasticity theory in terms of total stress and is implemented in a high‐performance computing finite‐element parallel code. A major advantage of this model is the small number of free parameters that need to be calibrated given a shear modulus reduction curve and the ultimate soil strength. This, in turn, makes the model suitable for regional‐scale simulations, where geotechnical data in the shallow crust are scarce. In this paper, we first describe a series of numerical experiments designed to verify the model implementation. This is followed by a series of idealized large‐scale simulations in a 35 26 4.5 km domain that encompasses the Garner Valley downhole array site, which is an instrumented and well‐characterized site in Southern California. Material properties were extracted from the Southern California Earthquake Center Community velocity model, CVM‐S4.26, considering its optional geotechnical layer, while the modulus reduction curves and soil strength were selected empirically to constrain the nonlinear soil model parameters. Our nonlinear simulations suggest that peak ground displacements within the valley increase relative to the linear case, while peak ground accelerations can increase or decrease, depending on the frequency content of the excitation. The comparisons of our simulations against hybrid three‐dimensional–one‐dimensional site response analyses suggest the inadequacy of the latter to capture the complexity of fully three‐dimensional simulations.  相似文献   

6.
Proposals are developed to update Tables 11.4‐1 and 11.4‐2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7‐10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight‐line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30‐m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic‐uncertainty limits implied by the NGA estimates with the exceptions being the mid‐period site coefficient, Fv, for site class D and the short‐period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

7.
8.
Earthquake‐resilient steel frames, such as self‐centering frames or frames with passive energy dissipation devices, have been extensively studied during the past decade, but little attention has been paid to their column bases. The paper presents a rocking damage‐free steel column base, which uses post‐tensioned high‐strength steel bars to control rocking behavior and friction devices to dissipate seismic energy. Contrary to conventional steel column bases, the rocking column base exhibits monotonic and cyclic moment–rotation behaviors that are easily described using simple analytical equations. Analytical equations are provided for different cases including structural limit states that involve yielding or loss of post‐tensioning in the post‐tensioned bars. A step‐by‐step design procedure is presented, which ensures damage‐free behavior, self‐centering capability, and adequate energy dissipation capacity for a predefined target rotation. A 3D nonlinear finite element (FE) model of the column base is developed in abaqus . The results of the FE simulations validate the accuracy of the moment–rotation analytical equations and demonstrate the efficiency of the design procedure. Moreover, a simplified model for the column base is developed in OpenSees . Comparisons among the OpenSees and abaqus models demonstrate the efficiency of the former and its adequacy to be used in nonlinear dynamic analysis. A prototype steel building is designed as a self‐centering moment‐resisting frame with conventional or rocking column bases. Nonlinear dynamic analyses show that the rocking column base fully protects the first story columns from yielding and eliminates the first story residual drift without any detrimental effect on peak interstory drifts. The study focuses on the 2D rocking motion and, thus, ignores 3D rocking effects such as biaxial bending deformations in the friction devices. The FE models, the analytical equations, and the design procedure will be updated and validated to cover 3D rocking motion effects after forthcoming experimental tests on the column base. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Correlation in spectral accelerations for earthquakes in Europe   总被引:1,自引:0,他引:1  
The shape of a uniform hazard spectrum has been criticized to be unrealistic for a site where the spectral ordinates of the uniform hazard spectrum at different periods are governed by different scenario events and conservative for long‐return‐period earthquake shaking. The conditional mean spectrum considering epsilon (CMS‐ε) takes into account the correlation of spectral demands (represented by values of ε) at different periods, to address these issues. This paper proposes new prediction models for the correlation coefficient of ε(T1) and ε(T2), a key component for developing a CMS, using Pan‐European earthquake records from a European ground motion database. Epsilon (ε) for each record is computed using the 2005 Ambraseys ground‐motion prediction equation. The model can be used to develop CMS for European sites, and it can be incorporated in the European seismic standards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Precast concrete walls with unbonded post‐tensioning provide a simple self‐centering system. Yet, its application in seismic regions is not permitted as it is assumed to have no energy dissipation through a hysteretic mechanism. These walls, however, dissipate energy imparted to them because of the wall impacting the foundation during rocking and limited hysteretic action resulting from concrete nonlinearity. The energy dissipated due to rocking was ignored in previous experimental studies because they were conducted primarily using quasi‐static loading. Relying only on limited energy dissipation, a shake table study was conducted on four single rocking walls (SRWs) using multiple‐level earthquake input motions. All walls generally performed satisfactorily up to the design‐level earthquakes when their performance was assessed in terms of the maximum transient drift, maximum absolute acceleration, and residual drift. However, for the maximum considered earthquakes, the walls experienced peak lateral drifts greater than the permissible limits. Combining the experimental results with an analytical investigation, it is shown that SRWs can be designed as earthquake force‐resisting elements to produce satisfactory performance under design‐level and higher‐intensity earthquake motions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The self‐centering rocking steel frame is a seismic force resisting system in which a gap is allowed to form between a concentrically braced steel frame and the foundation. Downward vertical force applied to the rocking frame by post‐tensioning acts to close the uplifting gap and thus produces a restoring force. A key feature of the system is replaceable energy‐dissipating devices that act as structural fuses by producing high initial system stiffness and then yielding to dissipate energy from the input loading and protect the remaining portions of the structure from damage. In this research, a series of large‐scale hybrid simulation tests were performed to investigate the seismic performance of the self‐centering rocking steel frame and in particular, the ability of the controlled rocking system to self‐center the entire building. The hybrid simulation experiments were conducted in conjunction with computational modules, one that simulated the destabilizing P‐Δ effect and another module that simulated the hysteretic behavior of the rest of the building including simple composite steel/concrete shear beam‐to‐column connections and partition walls. These tests complement a series of quasi‐static cyclic and dynamic shake table tests that have been conducted on this system in prior work. The hybrid simulation tests validated the expected seismic performance as the system was subjected to ground motions in excess of the maximum considered earthquake, produced virtually no residual drift after every ground motion, did not produce inelasticity in the steel frame or post‐tensioning, and concentrated the inelasticity in fuse elements that were easily replaced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This study uses instrumented buildings and models of code‐based designed buildings to validate the results of previous studies that highlighted the need to revise the ASCE 7 Fp equation for designing nonstructural components (NSCs) through utilizing oversimplified linear and nonlinear models. The evaluation of floor response spectra of a large number of instrumented buildings illustrates that, unlike the ASCE 7 approach, the in‐structure and the component amplification factors are a function of the ratio of NSC period to the supporting building modal periods, the ground motion intensity, and the NSC location. It is also shown that the recorded ground motions at the base of instrumented buildings in most cases are significantly lower than design earthquake (DE) ground motions. Because ASCE 7 is meant to provide demands at a DE level, for a more reliable evaluation of the Fp equation, 2 representative archetype buildings are designed based on the ASCE 7‐16 seismic provisions and exposed to various ground motion intensity levels (including those consistent with the ones experienced by instrumented buildings and the DE). Simulation results of the archetype buildings, consistent with previous numerical studies, illustrate the tendency of the ASCE 7 in‐structure amplification factor, [1 + 2(z/h)] , to significantly overestimate demands at all floor levels and the ASCE 7 limit of to in many cases underestimate the calculated NSC amplification factors. Furthermore, the product of these 2 amplification factors (that represents the normalized peak NSC acceleration) in some cases exceeds the ASCE 7 equation by a factor up to 1.50.  相似文献   

13.
14.
A new hybrid ductile‐rocking seismic‐resistant design is proposed which consists of a code‐designed buckling‐restrained braced frame (BRBF) that yields along its height and also partially rocks on its foundation. The goal of this system is to cost‐effectively improve the performance of BRBFs, by reducing drift concentrations and residual deformations, while taking advantage of their large ductility and their reliable limit on seismic forces and accelerations along a building's height. A lock‐up device ensures that the full code‐compliant lateral strength can be achieved after a limited amount of column uplift, and supplemental energy dissipation elements are used to reduce the rocking response. This paper outlines the mechanics of the system and then presents analyses on rocking frames with both ductile and elastic braces in order to highlight the large higher mode demands on elastic rocking frames. A parametric study using nonlinear time‐history analysis of BRBF structures designed according to the proposed procedure for Los Angeles, California is then presented. This study investigates the system's seismic response and the effect of different energy dissipation element properties and allowable base rotation values before the lock‐up is engaged. Finally, the effect of vertical mass modeling on analysis results was investigated. These studies demonstrated that the hybrid ductile‐rocking system can in fact improve the global peak and residual deformation response as well as reduce brace damage. This enhanced performance could eliminate the need for expensive repairs or demolition that are otherwise to be expected for conventional ductile fixed base buildings that sustain severe damage.  相似文献   

15.
Post‐tensioned (PT) self‐centering moment‐resisting frames (MRFs) have recently been developed as an alternative to welded moment frames. The first generation of these systems incorporated yielding energy dissipation mechanisms, whereas more recently, PT self‐centering friction damped (SCFR) moment‐resistant connections have been proposed and experimentally validated. Although all of these systems exhibited good stiffness, strength and ductility properties and stable dissipation of energy under cyclic loading, questions concerning their ultimate response still remained and a complete design methodology to allow engineers to conceive structures using these systems was also needed. In this paper, the mechanics of SCFR frames are first described and a comprehensive design procedure that accounts for the frame behavior and the nonlinear dynamics of self‐centering frames is then elaborated. A strategy for the response of these systems at ultimate deformation stages is then proposed and detailing requirements on the beams in order to achieve this response are outlined. The proposed procedure aims to achieve designs where the interstory drifts for SCFR frames are similar to those of special steel welded moment‐resisting frames (WMRFs). Furthermore, this procedure is adapted from current seismic design practices and can be extended to any other PT self‐centering steel frame system. A six‐story building incorporating WMRFs was designed and a similar building incorporating SCFR frames were re‐designed by the proposed seismic design procedure. Time‐history analyses showed that the maximum interstory drifts and maximum floor accelerations of the SCFR frame were similar to those of the WMRF but that almost zero residual drifts were observed for the SCFR frame. The results obtained from the analyses confirmed the validity of the proposed seismic design procedure, since the peak drift values were similar to those prescribed by the seismic design codes and the SCFR frames achieved the intended performance level under both design and maximum considerable levels of seismic loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This paper experimentally investigates the application of damage avoidance design (DAD) philosophy to moment‐resisting frames with particular emphasis on detailing of rocking interfaces. An 80% scale three‐dimensional rocking beam–column joint sub‐assembly designed and detailed based on damage avoidance principles is constructed and tested. Incremental dynamic analysis is used for selecting ground motion records to be applied to the sub‐assembly for conducting a multi‐level seismic performance assessment (MSPA). Analyses are conducted to obtain displacement demands due to the selected near‐ and medium‐field ground motions that represent different levels of seismic hazard. Thus, predicted displacement time histories are applied to the sub‐assembly for conducting quasi‐earthquake displacement tests. The sub‐assembly performed well reaching drifts up to 4.7% with only minor spalling occurring at rocking beam interfaces and minor flexural cracks in beams. Yielding of post‐tensioning threaded bars occurred, but the sub‐assembly did not collapse. The externally attached energy dissipators provided large hysteretic dissipation during large drift cycles. The sub‐assembly satisfied all three seismic performance requirements, thereby verifying the superior performance of the DAD philosophy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil‐footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking‐isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self‐centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   

18.
Self‐centering reinforced concrete frames are developed as an alternative of traditional seismic force‐resisting systems with better seismic performance and re‐centering capability. This paper presents an experimental and computational study on the seismic performance of self‐centering reinforced concrete frames. A 1/2‐scale model of a two‐story self‐centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self‐centering capacity subjected to earthquakes; the self‐centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self‐centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self‐centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Release of nitrogen compounds into groundwater, particularly those compounds from excessive agricultural fertilization, is a major concern in an aquifer recharge. Among the nitrogen compounds, ammonium ( ) is a common one. In order to assess the risk of agricultural fertilizer contamination to an aquifer through infiltration, adsorption onto a loamy agricultural soil profile (0–0.60 m depth) was studied using a soil column experiment and modelling simulation. The soil used in the experiment was drawn from an agricultural field in Xinzhen, Fangshan district, Beijing, China, and reconstituted in laboratory soil columns. Column experiments were conducted using bromide (conservative tracer) and ‐bearing aqueous solutions. The ammonium concentrations in the soil water samples were measured, and their values were plotted as the breakthrough curves. The chemical's soil–water distribution coefficients (Kd) were calculated using breakthrough curves. Then the retardation factor (R) in saturated soil was calculated. For the ‐bearing aqueous solutions, the strongest adsorption occurred at the soil depth of 0.30–0.45 m. The convection–dispersion equation model and chemical non‐equilibrium model in Hydrus‐1D were used to simulate transport in the loamy soil. The two‐site chemical non‐equilibrium model in Hydrus‐1D was best to simulate transport through the soil column. Parameter sensitivity study was conducted to investigate the influences of solute transport by Kd, the fraction of exchange sites assuming to be in equilibrium with the solution phase (f), the longitudinal dispersivity (λ), and the first‐order rate coefficients (ω). The sensitivity analysis results indicate Kd is the most critical parameter.  相似文献   

20.
Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte Carlo simulations of run‐off generation over a soil with a spatially heterogenous saturated hydraulic conductivity (Ks) to derive an expression for an aerially averaged saturated hydraulic conductivity ( ) that depends on the rainfall rate, the statistical properties of Ks, and the spatial correlation length scale associated with Ks. The proposed method for determining is tested by simulating run‐off on synthetic topography over a wide range of spatial scales. Results provide a simplified expression for an effective saturated hydraulic conductivity that can be used to relate a distribution of small‐scale Ks measurements to infiltration and run‐off generation over larger spatial scales. Finally, we use a hydrologic model based on to simulate run‐off and debris flow initiation at a recently burned catchment in the Santa Ana Mountains, CA, USA, and compare results to those obtained using an infiltration model based on the Soil Conservation Service Curve Number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号