首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
From individual ILS data in a homogeneous system, we derived a new sequence of the coordinates of the pole. This was then used in an analysis of the secular polar motion. We found: 1) At a confidence level of 95%, the linear drift of the ILS mean pole over the last 80 years is along 63° 3 longitude West, at an average speed of 0″.00305/yr. 2) The libration of the mean pole is rather regular, with a prominent term of about 30 yr, and detectable terms of 18.6 yr and 9.3 yr. 3) Station Ukiah is drifting northwards at a speed of 0″.00276/yr, while all the other stations are quite stable. Hence the ILS data cannot be taken as showing an anti-clockwise rotation of the Pacific coast at present.  相似文献   

2.
We have measured the right ascension of Geminga at different epochs by comparing the absolute phases between the different γ-ray observations. These values show that the right-ascension component of the proper motion of Geminga is 0.226±0.03 arcsec per year, which is consistent with that of G″, the most probable optical counterpart, thus independently confirming the correspondence between G″ and Geminga.  相似文献   

3.
回顾了作为实用天文学和大地测量学中基本研究课题之一的大气折射映射函数研究的进展。介绍了近几年上海天文台发展的大气折射母函数方法 ,以及由此导出的大气折射解析解。对如今广泛地应用在空间测量技术中的几种映射函数做出评述 ;分析了NMF模型的优点和不足之处。介绍了由大气折射母函数方法引出的大气延迟新连分式映射函数和天文大气折射的映射函数方法。利用VLBI实验中高度截止角与基线长度重复率的关系、探空气球 (radiosonde)观测资料、PRARE资料比较了各种映射函数的结果。特别指出了映射函数方法对天文大气折射和光学波段测距精度的改进。讨论了大气折射计算中的主要误差源。  相似文献   

4.
The orbit of Cosmos 268 rocket (1969-20B) has been determined at 28 epochs during its 342-day life, with the aid of the PROP5 orbit refinement program. All available observations were used, including 16 from the Hewitt camera at Malvern, 28 from the 200-mm camera at Meudon, 56 from the kinetheodolite at the Cape Observatory, 700 visual observations from volunteer observers, 500 US Navy observations and 200 British radar observations. The orbits are of very good accuracy for such a high-drag satellite, most of the values of inclination having standard deviations less than 0.002°. The most accurate orbits are those utilizing photographic observations, and the best of these has standard deviations of 0.00001 in eccentricity and 0.0001° in inclination.

The values of inclination obtained, after correction to allow for the effects of other perturbing forces, have been analysed to determine zonal wind speeds in the upper atmosphere at heights a little above perigee (230–250 km) averaged over latitudes up to about 25°. The results show a clear distinction between the wind at night (21 to 03 hr local time), which is west-to-east with an average speed of 140 ± 50 m/sec, and the wind by day (08 to 17 hr), which is east-to-west with an average speed of 110 ± 50 m/sec.  相似文献   


5.
严豪健 《天文学进展》2000,18(2):104-113
回顾了作为实用天文学和大地测量学中基本研究课题之一的大气折射函数研究的最新进展;介绍了近几年发展的大气折射母函数方法。对如今广泛地应用在空间测量技术中的几种映射函数,如CfA2.2、MTT等模型作出评述;特别分析了NMF模型的优点和不足之处。还介绍了由大气折射母函数方法引出的大气延迟新连分式映射函数和天文大气折射的映射函数方法,利用VLBI实验中高度截止角与基线长变化的关系和探空气球(radios  相似文献   

6.
《Astroparticle Physics》1995,3(4):311-320
We report data taken by the LVD Experiment during a live-time period of 11 556 h. We have measured the muon intensity at slant depths of standard rock from about 3000 hg/cm2 to about 20 000 hg/cm2. This is an exclusive study, namely our data include only events containing single muons. This interval of slant depth extends into the region where the dominant source of underground muons seen by LVD is the interaction of atmospheric neutrinos with the rock surrounding LVD. The interesting result is that this flux is independent of slant depth beyond a slant depth of about 14 000 hg/cm2 of standard rock. Due to the unique topology of the Gran Sasso Laboratory the muons beyond about 14 000 hg/cm2 of standard rock are at a zenithal angle near 90°. Hence we have, for this fixed angle, a muon flux which is independent of slant depth. This is direct evidence that this flux is due to atmospheric neutrinos interacting in the rock surrounding LVD. The value of this flux near 90° is (8.3 ± 2.6) × 10−13 cm−2 s−1 sr−1, which is the first reported measurement at a zenithal angle near 90° and for slant depths between 14 000 and 20 000 hg/cm2. Our data cover over five decades of vertical intensity, and can be fit with just three parameters over the full range of our experiment. This is the first time a single experiment reports the parameters of a fit made to the vertical intensity over such a large range of standard rock slant depth. The results are compared with a Monte Carlo simulation which has as one of the two free parameters γπκ, the power index of the differential energy spectrum of the pions and kaons in the atmosphere. This comparison yields a value of 2.75 ± 0.03 for γπκ, where the error includes the systematic uncertainties. Our data are compared to other measurements made in our slant depth interval. We also report the value of the muon flux in Gran Sasso at θ = 90° as a function of the azimuthal angle.  相似文献   

7.
We imaged Mercury in sodium D1 and D2 emission for 6 days during the period 13–20 November 1997 using a 10×10-arc s aperture image slicer coupled to a high-resolution spectrograph. We corrected the sodium images for smearing by the terrestrial atmosphere by computing the actual seeing function from surface reflection images, and used this function to correct the sodium images. During the period of observation, large daily changes took place in both the total amount of sodium and its distribution over the planet. Total sodium increased by a factor of about 3 during this period. The sodium emission was brightest at longitudes near the subsolar longitude in the range 130–150°, with excess sodium at northern latitudes on some days, and excess sodium at southern latitudes on other days. There are no obviously outstanding geologic features at this longitude. The rapid changes observed during this period suggest a connection with solar activity, since the planet itself is apparently geologically inactive. The F10.7 cm solar flux during this period varied only slightly, with an increase of about 15%, probably insufficient to account for the observed changes. However, there were a number of coronal mass ejection (CME) events, some of which were directed towards the general area of Mercury. We suggest that the changes in the visible neutral sodium atmosphere might be a result of the effect of CMEs on Mercury.  相似文献   

8.
Time-dependent calculations of trace constituent distributions require as input the dissociating radiation field as a function of altitude and solar zenith angle. An isotropic, spherical, multiple scattering model of the radiation field has been developed to determine the radiation field at twilight. Comparison of the spherical model with a plane parallel model at twilight shows that: (1) for solar zenith angles less than 92°, plane parallel solutions for the source function are suitable if the initial deposition of solar energy is calculated for a spherical atmosphere; (2) for solar zenith angles greater than 92°, the plane parallel radiation field can be several orders of magnitude smaller than that calculated with the spherical model; (3) at altitudes above 40 km and at all solar zenith angles, the spherical model predicts 10–20% less radiation than the radiation field calculated with the plane parallel model. Calculations of the rate of photodissociation of NO2 in the troposphere and stratosphere show that the spherical model yields significantly higher values at solar zenith angles greater than 92°.  相似文献   

9.
Because of the influence of atmospheric refraction the astronomical observations of the objects with the angles of elevation below 15° are generally avoided, but for the sake of the complete theoretical research the atmospheric refraction under the condition of lower angles of elevation is still worthy to be analyzed and explored. Especially for some engineering applications the objects with low angles of elevation must be observed sometimes. A new idea for determining atmospheric refraction by utilizing the differential method is proposed. A series of observations of the starry sky at different heights are carried out and by starting from the zenith with a telescope with larger field of view, the derivatives of various orders of atmospheric refraction function at different zenith distances are calculated and finally the actually observed values of atmospheric refraction can be found via numerical integration. The method does not depend upon the strict local parameters and complex precise observational instrumentation, and the observational principle is relatively simple. By the end of 2007 a simply constructed telescope with a larger field of view at Xinglong Observing Station was employed to carry out trial observations. The values of atmospheric refraction at the true zenith distances of 44.8° to 87.5° were obtained from the practical observations based on the differential method, and the feasibility of the method of differential measurement of atmospheric refraction was preliminarily justified. Being limited by the observational conditions, the accuracy of the observed result was limited, the maximal accidental error was about 6” and there existed certain systematic errors. The value of the difference between the result obtained at the zenith distance of 84° and that given in the Pulkovo atmospheric refraction table was about 15”. How to eliminate the cumulative error introduced due to the integration model error is the key problem which needs to be solved in future.  相似文献   

10.
The absorption of solar ionizing radiation during twilight is investigated. Ion production rates are obtained as a function of altitude and twilight intensities and altitude profiles of emissions arising from the fluorescence of solar ionizing radiation are calculated for various solar depression angles. For an atmosphere with an exospheric temperature of 750°K, the predicted overhead intensity from fluorescence of the O+(2P2D) lines at 7319–7330 diminishes from 175 R at dusk to 10 R at a solar depression angle of 10°. The predicted overhead intensities from fluorescence of the N2+ Meinel and first negative systems are respectively about 175 R and 20 R at dusk diminishing to respectively 1.5 R and 0.1 R at a solar depression angle of 10°.

It is suggested that a charge transfer reaction of O+2D in N2 is a significant source of N2+ ions. This reaction offers a possible explanation for the high apparent rotational temperatures in the first negative system observed by Broadfoot and Hunten. Other excitation and ionization mechanisms are briefly discussed.  相似文献   


11.
Observations of photons at E ≥ 550 GeV from the Crab Nebula are presented and used to assess the potential of multi-telescope systems for γ-ray astronomy.

The Whipple observatory 10 m and 8 m imaging atmospheric erenkov telescopes have been used to provide a stereoscopic view of air showers to make a more complete measurement of air shower parameters. Here we present a measurement of the spread in the arrival direction of primary γ-rays originating from a point source. The data show that the shower arrival direction can be reconstructed with an accuracy of σ = 0.°14.  相似文献   


12.
Systematic CCD photometry of Comet 1995 O1 (Hale-Bopp) began in early August 1995 shortly after its discovery (IAU Circular 6187) and continued until mid-November 1996. The light curve derived from a 34″ square centered on the nucleus shows clearly and objectively how the inner regions of the comet brightened during this 15 month period. Possible connections between sudden brightenings and reported outbursts are investigated. During the interval August–December 1995, the magnitude of the comet showed strong evidence of a periodicity of 20±5 days with a full amplitude of approximately 0.20 mag. It is noteworthy that this result spans both the period of 18 days suggested by Sekanina (1995, 1996) and the “superperiod” of 22±2 days reported by Jorda et al. (1997). However, in 1996 neither this periodicity nor any other could be detected with certainty in the photometric data.  相似文献   

13.
Focusing on lowering the cut-off elevation in the neutral atmosphere refraction delay correction and on raising the accuracy of the correction, we derive the formulae for calculating the correction for the bending of the light path caused by atmospheric refraction. This is the sort of correction that is given after the principal term in theoretical models of neutral atmospheric refraction delay correction, but is often neglected because it is a small quantity. However, in practice, for a not too low elevation like 15°, this term reaches 1 cm order of magnitude and can not be neglected. Li Yan-xing et al. specially gave a derivation of this correction and a computational method by successive approximation and some calculated values. Yan Hao-jian also proposed a formula of direct calculation but his calculated result was more than 3 times smaller than that of Li Yan-xing, which shows that further study of this correction is called for. Here we give a simple, convenient and reliable formula for calculating the correction.  相似文献   

14.
Observations on artificial satellites have been used to investigate how the air density at heights between 190 and 260 km varies with latitude The Discoverer series of satellites was used because the position of their perigees moved over the latitude range from 80°S to 80°N.

It is concluded that the air density at a fixed height is a function of latitude and is about 30 per cent smaller at the poles than at the equator. This result is applicable to a local time of 14h in the years 1959–1960: it is different from that obtained by Groves who concluded that the density is independent of latitude.  相似文献   


15.
The space geodetic technology requires an accurate model of correction of refraction delay by the neutral atmosphere that varies from one observing station to another, and from one azimuth to the next. It is pointed out that under the present condition the astronomical refraction can not yet be directly determined, any correction model because of its high dependence on the assumed atmospheric distribution, is incapable of achieving the required accuracy or of improving the cut-off altitude. In this paper, based on the special properties of the lower latitude meridian circle at Yunnan Observatory and our experience of determining atmospheric refraction therewith, a new method is proposed for improving the accuracy of refraction delay correction. Namely, the measured data of astronomical refraction of an observing station from near zenith to low altitudes in different azimuths are used to evaluate the refractivities and the parameters of the mapping functions, thereby establishing a model of atmospheric refraction delay correction that varies with the observing station and the azimuth. Since it is unnecessary for the new method to adopt any atmospheric distribution model, application of this new method will improve correction accuracy of refraction delay to better than 1mm at zenith and to centimeters at low altitudes, and improve the cut-off altitude to below 5 degrees.  相似文献   

16.
Recently published laboratory measurements of the isotopic exchange rate constant k(T) between CD4 and H2 are used to calculate f(z)—the isotopic enrichment factor between CH4 and H2—at every level in the outer atmosphere of the giant planets. The variation of f(z) with local vertical velocity, temperature and pressure has been calculated under the assumption that atmospheres are convective and uncertainties have been calculated by error propagation. Considering only the random errors—mainly the uncertainty on k(T)—the f values in the observable upper atmospheres of giant planets (i.e. at z = 0, P = 1 bar) are: f(0) = 1.25 ± 0.05, 1.38 ± 0.06, 1.68 ± 0.09, and 1.61 ± 0.08 for Jupiter, Saturn, Uranus, and Neptune, respectively. Additional systematic errors due to the uncertainty in calculating the vertical velocity in the framework of the mixing length Prandtl theory lead to an overall uncertainty on f(0) of ±0.12, ±0.15, ±0.23, and ±0.21 for each planet, respectively. The D/H ratios in H2 derived from the measured CH3D/CH4 ratios in the upper atmosphere of the four giant planets are then recalculated. Uranus and Neptune seem to be enriched in deuterium with respect to the protosolar nebula but depleted relative to the Standard Mean Oceanic Water on the Earth (SMOW). However calculations based on current interior models of Neptune suggest that ices which formed the core of the planet had a D/H ratio of the order of the SMOW. The deuterium abundance in proto-Uranian ices remains uncertain. The case where water is a major constituent of the fluid envelope of Neptune is discussed. It is shown that the D/H ratio of the planet would then be higher than the value measured in hydrogen. Even in this case, the D/H ratio in proto-Neptunian ices is less than the recently revised value in P/Halley and less than the value measured in water of the Semarkona meteorite. These results suggest that the ices which formed the core of Neptune did not have an interstellar origin. Similarly, the comparison of the most recent determination of the D/H ratio in the atmosphere of Titan with the value of D/H in P/Halley suggests that this atmosphere was not formed by infalling comets but more likely from grains embedded in the sub-nebula of Saturn.  相似文献   

17.
Continuous records of the electron content of the ionosphere, from 1965 to 1970, are used to obtain power spectra covering periods from 30 sec to 2 yr at latitudes of 34°S and 42°S. At periods up to 5 min, amplitudes were less than 0.2 per cent of the total electron content. Variations produced by gravity waves were very common in the range 20–80 min, with no preferred periods. The r.m.s. amplitude per octave A0 was about 1015 electrons/m2, or 0.6 per cent of the mean electron content. The amplitude increased during the day, particularly in winter when periodic components predominated. The cut-off at about 17 min was sharply defined, giving a mean scale height for the neutral atmosphere (at 300 km) of about 43 km in summer, 47 km on winter days and 42 km on winter nights.

From 12 hr to 1 month A0 was about 12 per cent of the mean electron content in both summer and winter at 34°S, and 10 per cent at 42°S. The 24 hr and 27 day peaks were largest just before sunspot maximum, and almost disappeared near sunspot minimum. Variations between 1 and 27 days reflect the random occurrence of ionospheric storms and show no consistent peaks. Day to day and night to night variations were both about 10 per cent of the background content for periods from 2 days to 2 yr, apart from a slight decrease between 1 and 6 months.  相似文献   


18.
The question of the association of quasars with galaxies is re-examined using 785 quasars at |b| 30, δ − 02°30′ in the new Hewitt and Burbidge Catalog (1980) and all galaxies in the “Uppsala General Catalogue of Galaxies” (Nilson, 1973). The results of the two-point cross-correlation function are presented and they show that there are on the average 0.153 ± 0.011 more galaxies within 10'.0 of a QSO than would be expected if the QSOs were distributed randomly. We find the marginal significance of the tendency for correlation between QSOs and galaxies to increase with increasing redshifts z or apparent magnitudes V. The nearest neighbor test has also been taken to analyse the same data as well as get further evidence for the apparent association between QSOs and galaxies.  相似文献   

19.
A precise knowledge of the angular resolution of scintillator arrays used to observe extended air showers (EAS) is of key importance in the search for VHE/UHE γ point sources. Four independent methods have been used to determine the mean resolution for which a value of ΔΘ63 of 0.8°(1.0°) at a proton threshold of 50 (40) TeV has been found for the HEGRA EAS-array.  相似文献   

20.
In this paper we analyse the observational data obtained by the Chinese-made PZT in the two periods 1979 Feb – 1980 May and 1981 Dec – 1983 March. The internal accuracy of single star is found to be mu = ±13.0 ms, mφ = ±0. “144 for the first period, and mu = ±14.6 ms, mφ = ±0.” 152 for the second. Correction of star position is found by the chain method. The systematic error caused by the sealed window of the evacuated chamber and the temperature effect of the plate scale are investigated. Monthly means of time and latitude are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号