首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of 21 flares of importance 1 or greater, observed on 15 days, all were found to lie adjacent to a neutral line in the longitudinal component of photospheric magnetic fields. In most of these cases, the flare consisted of two or more segments separated by the neutral line and located in areas of strong field and high-longitudinal field gradient. In some cases, the flare segments extended into areas of weak-magnetic field and low-field gradient, but maintained an orientation adjacent to a neutral line.Optical and magnetic field records of higher resolution were obtained on 6 July 1965. These observations reveal an excellent correlation between the size, shape, and intensity of the H fine structures and the longitudinal component of the photospheric magnetic fields, except in the vicinity of the neutral line. Sections of the neutral line are marked by long fibrils lying perpendicular to the neutral line or by small filaments lying along the neutral line.The development of a flare of importance 1 in this region appeared to be more precisely related to the neutral line than was found for the flares and magnetic fields observed with lower resolution. The two major segments of this flare lengthened in directions approximately parallel to the neutral line, while simultaneously drifting perpendicularly away from the neutral line. The initial rate of drift systematically varied from 1 to 12 km/sec at a series of positions approximately parallel to the neutral line and corresponding to increasing distance from strong fields. The rate of drift was also observed to decelerate throughout the life of the flare.  相似文献   

2.
An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
  1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
  2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
  3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
  4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
  5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
  6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
  7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
  8. No unusual velocities are observed in the photosphere at flare time.
  相似文献   

3.
4.
The energy source of a flare is the magnetic field in the corona. A topological model of the magnetic field is used here for interpreting the recently discovered drastic changes in magnetic field associated with solar flares. The following observational results are self‐consistently explained: (1) the transverse field strength decreases at outer part of active regions and increases significantly in their centers; (2) the center‐of‐mass positions of opposite magnetic polarities converge towards the magnetic neutral line just after flares onset; (3) the magnetic flux of active regions decreases steadily during the course of flares. For X‐class flares, almost 50% events show such changes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Frances Tang 《Solar physics》1985,102(1-2):131-145
Chromospheric flares are the footpoints of closed coronal field lines. In this paper we present different flare morphologies from observations and examine the implied coronal field configurations above the flaring region. Flares are grouped according to the number of ribbons, from unresolved compact point-like flare to four-ribbon flares. Quiet region flares having characteristics all their own are also presented here.We find that compact, unresolved point-like flares have two distinct footpoints when viewed in offband H. The footpoints of some of the compact flares also show increased separation as a function of time.Unlike large two-ribbon flares, the ribbons of many small and/or short-lived two-ribbon flares usually have no measurable separation of ribbons.Multiple-ribbon (three or more ribbon) flares consist of two or more pairs of two-ribbons, or two or more sets of field lines. Parity of the ribbons in multiple-ribbon flares, or the lack of it, depends on the magnetic makeup of the locale of the ribbons.Flares in old quiet regions resulting from sudden filament eruptions show discrete small patches of emissions reflecting the spottiness of decayed and dispersed field of quiet region.  相似文献   

6.
We study the association of type III bursts related to H flares in different magnetic environments in the period 1970–1981. Special attention is paid to flares which partly cover a major spot umbra (Z-flares). In particular we consider the location of the spots in the active regions and the magnetic field intensities of spots covered by a ribbon. The association rate with type III bursts decreases to 17% when the flare is located inside the bipolar pattern of a large active region, compared with an association rate of 54% when the flare is situated outside it. The association rate increases with the magnetic field intensity of the spot covered by H emission; this is most clearly revealed for the flares occurring outside the bipolar pattern of active regions. Ninety-three percent of the flare-associated type III burst were accompanied by 10 cm radio bursts. For the most general case in which a flare is developing anywhere in an active region, the association with type III bursts generation increases with the increasing magnetic field intensity of the main spot of the group.  相似文献   

7.
For more than a decade there has been growing conviction that the burst of energy from a solar flare is first stored in magnetic fields and is then released rapidly by magnetic field annihilation (magnetic merging). There has also been recognition that magnetic merging may be responsible for the energy release manifested in auroral phenomena at the Earth. The most substantial evidence that magnetic merging does indeed occur in the Earth's magnetosphere and causes the auroral phenomena is provided by recent observations, in the magnetotail, of very rapid (500 km s–1) tailward, then earthward, flow of plasma during magnetospheric substorms. The observations, made with the Vela and IMP satellites, reveal also that the component of the tail magnetic field perpendicular to the tail neutral sheet changes polarity at the time of the reversal of plasma flow. These features are interpreted as indicative of passage of a magnetic neutral line, at which magnetic merging is proceeding, past the observing satellite. This paper describes an example of such observations made with IMP 6. It is anticipated that such systematic measurements of the plasma, energetic particles and magnetic field in the neighborhood of the passing neutral line on many such occasions will provide a general understanding of the magnetic merging process which can then be applied to studies of solar flares and other astrophysical phenomena.Work performed under the auspices of the U.S. Energy Research and Development Administration.  相似文献   

8.
P. A. Sturrock 《Solar physics》1982,113(1-2):13-30
This article is a very brief review and comparison of the observational properties of flares and theoretical concepts of models of flares, especially the concepts of magnetic topology and its evolution. We examine the environmental aspects of flare behavior. Some of these aspects must be consequences of unknown processes occurring below the photosphere. Other aspects involve structures--such as filaments--that are closely related to flares. We then examine properties of flares to try to distinguish the different phases of energy release that can occur in the course of a flare. Finally we offer a schematic scenario and attempt to interpret these phases in terms of this scenario.  相似文献   

9.
In this paper, we analyze the relationship between photospheric magnetic fields and chromospheric velocity fields in a solar active region, especially evolving features of the chromospheric velocity field at preflare sites. It seems that flares are related to unusually distributed velocity field structures, and initial bright kernels and ribbons of the flares appear in the red-shifted areas (i.e., downward flow areas) close to the inversion line of H Dopplergrams with steep gradients of the velocity fields, no matter whether the areas have simple magnetic structure or a weak magnetic field, or strong magnetic shear and complex structure of the magnetic fields. The data show that during several hours prior to the flares, while the velocity field evolves, the sites of the flare kernels (or ribbons) with red-shifted features come close to the inversion line of the velocity field. This result holds regardless of whether or not the flare sites are wholly located in blue-shifted areas (i.e., upward flow areas), or are far from the inversion line of the Doppler velocity field (V = 0 line), or are partly within red-shifted areas. There are two cases favourable for the occurrence of flares, one is that the gulf-like neutral lines of the magnetic field (B = 0 line) occur in the H red-shifted areas, the other is that the gulf-like inversion lines of the H Doppler velocity field (V = 0 line) occur in the unipolar magnetic areas. These observational facts indicate that the velocity field and magnetic field have the same effect on the process of flare energy accumulation and release.  相似文献   

10.
The active region NOAA 6555 had several locations of highly sheared magnetic field structure, yet, only one of them was the site for all the five X-class flares during its disk passage in March 1991. The pre-flare observations of high-resolution H filtergrams, vector magnetograms and H Dopplergrams of the 2B/X5.3 flare on 25 March 1991 show that the flaring site was characterized by a new rising emerging flux region (EFR) near the highly sheared magnetic field configuration. The polarity axis of the emerging flux was nearly perpendicular to the pre-existing magnetic neutral line. The location of the EFR was the site of initial brightening in H. The post-flare magnetograms show higher magnetic shear at the flare location compared to the post-flare magnetograms, which might indicate that the EFR was sheared at the time of its emergence. As the new EFR coincided with the occurrence of the flare, we suggest that it might have triggered the observed flare. Observations from Big Bear Solar Observatory and Marshall Space Flight Center also show that there was emergence of new flux at the same location prior to two other X-class flares. We find that out of five observed X-class flares in NOAA 6555, at least in three cases there are clear signatures of flare-related flux emergence. Therefore, it is concluded that EFRs might play an important role in destabilizing the observed sheared magnetic structures leading to large X-class flares of NOAA 6555.  相似文献   

11.
Observations of radio emission at 3.3 mm wavelength associated with magnetic fields in active regions are reported. Results of more than 200 regions during the years 1967–1968 show a strong correlation between peak enhanced millimeter emission, total flux of the longitudinal component of photospheric magnetic fields and the number of flares produced during transit of active regions. For magnetic flux greater than 1021 maxwells flares will occur and for flux of 1023 maxwells the sum of the H flare importance numbers is about 40. The peak millimeter enhancement increases with magnetic flux for regions which subsequently flared. Estimates of the magnetic energy available and the correlation with flare production indicate that the photospheric fields and probably chromospheric currents are responsible for the observed pre-flare heating and provide the energy of flares.This work was supported in part by NASA Contract No. NAS2-7868 and in part by Company funds of The Aerospace Corporation.  相似文献   

12.
We analyze large-scale H-alpha movies of the large spot group of Sept. 13–26, 1963, together with radio, ionospheric and magnetic field data as well as white light pictures. The evolution of the group and associated magnetic fields is followed, and the positions of solar flares relative to the fields are noted, along with their morphology. Although the magnetic field is deformed in time, characteristic field structures may be traced through the deformation as the seat of recurrent homologous flares.We find that most flares are homologous, and some are triggered by disturbances elsewhere in the region. We note events produced by surges falling back to the surface, and one flare initiated by a bright bead seen to fly across the region. In almost every case of an isolated type III radio burst, a corresponding H-alpha brightening could be found, but not all flares produced bursts. Flares close to the sunspots are most likely to produce radio bursts. Flare surface waves in the region all travel out to the west, because of more open magnetic field structure there. In one case (Sept. 25) a wave is turned back by the closed field structure to the east.In almost all cases the time association of radio or ionospheric events is with the beginning of the flare or with the flash phase.Several morphological classes of flares are noted as recurrent types.  相似文献   

13.
In this paper we present a quantitative evaluation of the shear in the magnetic field along the neutral line in an active region during an epoch of flare activity. We define shear as the angular difference in the photosphere between the potential magnetic field, which fits the boundary conditions imposed by the observed line-of-sight field, and the observed magnetic field. For the active region studied, this angular difference (shear) is non-uniform along the neutral line with maxima occurring at the locations of repeated flare onsets. We suggest that continued magnetic evolution causes the field's maximum shear to exceed a critical value of shear, resulting in a flare around the site of maximum shear. Evidently, the field at the site of the flare must relax to a state of shear somewhat below the critical value (but still far from potential), with subsequent evolution returning the field to the critical threshold. We draw this inference because several flares occurred at sites of maximum photospheric shear which were persistent in location.NOAA, Boulder, Colorado.  相似文献   

14.
We analyze the changes that projection effects produce in the evaluation of magnetic shear in off-disk center active regions by comparing angular shear calculated in image plane and heliographic coordinates. We describe the procedure for properly evaluating magnetic shear by transforming the observed vector magnetic field into the heliographic system and then apply this procedure to evaluate magnetic shear along the magnetic neutral line in an active region that was observed on 1984 April 24 at a longitude offset of -45°. In particular, we show that the number of critically sheared pixels along an east-west directed segment of the neutral line in the leader sunspot group changes from 16 in the image plane magnetogram to 14 in the heliographic magnetogram. We also show that the critical shear as calculated in the image plane served as a good predictor for the location of flaring activity since the flare ribbons of the great flare of April 24 bracketed the inversion line where the critical shear was located. These results indicate that for this particular region, projection effects did not significantly affect the evaluation of critical shear.  相似文献   

15.
From a large number of SOHO/MDI longitudinal magnetograms, three physical measures including the maximum horizontal gradient, the length of the neutral line, and the number of singular points are computed. These measures are used to describe photospheric magnetic field properties including nonpotentiality and complexity, which is believed to be closely related to solar flares. Our statistical results demonstrate that solar flare productivity increases with nonpotentiality and complexity. Furthermore, the relationship between the flare productivity and these measures can be well fitted with a sigmoid function. These results can be beneficial to future operational flare forecast models.  相似文献   

16.
Joshi  Anita  Chandra  Ramesh  Uddin  Wahab 《Solar physics》2003,217(1):173-186
We present H CCD observations of three small-to-medium-size two-ribbon flares observed in the giant AR 9433 on 24 April 2001. Flare observations at other associated wavelengths (e.g., soft X-rays (SXR), hard X-rays (HXR), microwaves (MW)) obtained from archives are also presented and compared. We have tested the Neupert effect for the most energetic third flare. The flare observations are in agreement with the thick-target model. In the case of this flare the HXR emitting electrons appears to be the heating source of SXR and H emissions. The flares are also studied in EUV and UV emissions using TRACE data. We discuss the complexity of the magnetic field using SOHO/MDI magnetograms. The flares are observed to occur in both (f/p) polarity regions in highly sheared magnetic field with emerging flux regions and MMFs.  相似文献   

17.
Haimin Wang 《Solar physics》1992,140(1):85-98
This paper studies the evolution of vector magnetic fields in the active region Boulder No. 6233 during an 11-hour observing period and its relationship to an X-3 flare on August 27, 1990.We observed the evolution of magnetic fields, which includes magnetic shear build-up, directly in high-resolution vector magnetograph movies. The magnetic shear is observed to be built up in two ways: (1) shear motion between two poles of opposite magnetic polarities and (2) direct collision of two poles of opposite polarities. When two magnetic elements of opposite polarities are canceling, the field lines are observed to turn from direct connection (potential) to a sheared configuration during the process.An X-3 flare occurred at 2100 UT. The vector magnetic structure showed an unexpected pattern of changes during and after the flare. The shear (defined as the angle between the measured transverse field and the calculated potential field) in the area covering two major footpoints increased rapidly coinciding with the burst of GOES X-ray flux. While the flare faded away in about one hour, the high shear status dropped slowly for the remainder of the observing period. Immediately after the flare, new flux emerged more rapidly and the flow speed of several magnetic elements increased near the flare footpoints.In this active region and a few other flare-productive regions we have studied recently, we always find rapid and complicated flow motions near the sites where flares occur. Photospheric flows appear to be another important factor for the production of flares.  相似文献   

18.
The role of the electric currents distributed over the volume of an active region on the Sun is considered from the standpoint of solar flare physics. We suggest including the electric currents in a topological model of the magnetic field in an active region. Typical values of the mutual inductance and the interaction energy of the coronal electric currents flowing along magnetic loops have been estimated for the M7/1N flare on April 27, 2006. We show that if these currents actually make a significant contribution to the flare energetics, then they must manifest themselves in the photosphericmagnetic fields. Depending on their orientation, the distributed currents can both help and hinder reconnection in the current layer at the separator during the flare. Asymmetric reconnection of the currents is accompanied by their interruption and an inductive change in energy. The reconnection of currents in flares differs significantly from the ordinary coalescence instability of magnetic islands in current layers. Highly accurate measurements of the magnetic fields in active regions are needed for a quantitative analysis of the role of distributed currents in solar flares.  相似文献   

19.
A solar flare on June 15, 1973 has been observed with high spatial and temporal resolution by the S-054 grazing-incidence X-ray telescope on Skylab. Both morphological and quantitative analyses are presented. Some of the main results are: (a) the overall configuration of the flare is that of a compact region with a characteristic size of the order of 30 at the intensity peak, (b) this region appears highly structured inside with complex systems of loops which change during the event, (c) a brightening over an extended portion of the active region precedes the flare onset, (d) the impulsive phase indicated by the non-thermal radio emission is a period during which a rapid brightening occurs in loop structures, (e) the X-ray emission is centered over the neutral line of longitudinal magnetic field, and the brightest structures at the flare onset bridge the neutral line, (f) loop systems at successively increasing heights form during the decay phase, finally leading to the large loops observed in the postflare phase, (g) different parts of the flare show distinctly different light curves, and the temporal development given by full disk detectors is the result of integrating the different intensity vs time profiles.The implications of these observations for mechanisms of solar flares are discussed. In particular, the flux profiles of different regions of the flare give strong evidence for continued heating during the decay phase, and a multiplicity of flare volumes appears to be present, in all cases consisting of loops of varying lengths.On leave from Arcetri Astrophysical Observatory, Florence, Italy.  相似文献   

20.
An analysis of 20 flares of spotless regions observed at Yunnan Observatory during the peak years of Cycle 21 shows 1) the fraction of flares produced in spotless regions is about 3%, 2) their Carrington longitudes show a tendency to drift eastward, 3) the majority of spotless flares are low-energy flares, 4) the background conditions for producing spotless flares are the same as for flares in general, namely, there must be local magnetic structures of opposite polarities. The spotless flares occur on the sides or in the vicinity of the local neutral line.The quiescent dark filaments floating on the neutral line are activated a few hours and one or two days before the flare, the filament nearest to the flare position first enlarges, accompanied by brightening of plages. A few minutes before the flare, or during the flare, this filament rapidly weakens, even vanishes. Meanwhile, visible fibrils become less inclined to the main filament showing pressure force is transformed into shear force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号