首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
For long time the western-central Mexico has been affected by oblique subduction caused by Farallon plate beneath North America. As result, smaller plates (e.g. Cocos Plate), several fault systems outlining crustal blocks (e.g. Michoacán block) and magmatic arcs (e.g. Paleocene-Early Oligocene magmatism and the Trans-Mexican Volcanic Belt) were developed. Still, no paleomagnetic data are available for Oligocene and Miocene. The principal aim of this study is to evaluate whether the tectonic rotations and relative motions of these blocks occurred before the Miocene. Here, we report a detailed rock-magnetic and paleomagnetic results from Tecalitlan area, located in the Michoacán block. Sixteen sites (about 150 oriented samples) were collected including one radiometrically dated diabase dike (35.0 ± 1.8 Ma). Rock-magnetic experiments permitted identification of magnetic carriers and assessment of the paleomagnetic stability. Continuous susceptibility measurements vs temperature in most cases yield reasonably reversible curves with Curie points close to that of magnetite. Reliable paleomagnetic directions were obtained for 12 sites. Inclination I and declination D of the mean paleomagnetic direction obtained in this study are I = 33.1°, D = 345.0°, and Fisherian statistical parameters are k = 25, α95 = 8.9°. The corresponding mean paleomagnetic pole position is Plat = 75.7°, Plong = 166.6°, K = 31, A95 = 8.0°. The mean inclination is in reasonably good agreement with the expected value, as derived from reference poles for the stable North America. Magnetic declination is not significantly different from that expected which is in disagreement with a counterclockwise tectonic rotation of about 20° previously reported for the studied area. Based on paleomagnetic results obtained in this study compiled with those currently available from the Michoacán Block, we propose a simple model suggesting that sometime in Eocene epoch the convergence vector of the Farallon plate relative to North America plate was normal to the trench before reaching an actual oblique convergence.  相似文献   

2.
Archaeomagnetism in Greece has continuously developed during the last decades. Numerous studies have provided high quality data and accurate secular variation curves for the direction and intensity of the geomagnetic field have been constructed. The Greek Secular Variation Curves (SVCs) cover the last 8 millennia for intensity and 6 millennia for direction. The coverage of the archaeological periods remains uneven, with several gaps, mostly in the directional dataset, with only two results for periods older than 2500 B.C. In the present contribution, the first archaeomagnetic results from Neolithic settlements in northern Greece are presented. For the present study, samples were collected from three different archaeological sites: burnt structures in Avgi (Kastoria) and Vasili (Farsala) and one oven from Sosandra (Aridaia). The natural remanent magnetization (NRM) grouping of all specimens indicated that the majority of the samples were burnt in situ, providing thus a reliable direction of the ancient field. Magnetic cleaning (both alternating-field and thermal) revealed the presence of one stable component of magnetisation. Rock magnetic experiments (acquisition of isothermal remanent magnetization (IRM), thermal demagnetisation of the IRM, thermomagnetic curves) have been performed on pilot samples indicating that low coercivity magnetic minerals such as magnetite or Timagnetite are prevailing. The mean directions (declination D, inclination I and parameters of the Fisherian statistics), which arose from the three sites are as follows: Sosandra: D = 343°, I = 55.6°, ??95 = 4.8°; Avgi: D = 10.1°, I = 53.4°, ??95 = 4.2° and Vasili: D = 357.5°, I = 43.1°, ??95 = 4.1°. The obtained data are in a very good agreement with results from Neolithic Bulgaria. This study represents the beginning of an effort to fill the gaps of the Greek secular variation curves and their extension to the Neolithic period.  相似文献   

3.
本文对"鲁科一井"(CCSD-LK-Ⅰ)768.9~1112.3m之间的上白垩统沉积岩样品进行了岩石磁学、磁化率各向异性(AMS)以及天然剩磁组分的研究.在此基础上,分析了利用特征剩磁(ChRM)和黏滞剩磁(VRM)方向恢复岩芯原始方位的可行性.三轴等温剩磁热退磁曲线、磁滞回线、反向场退磁曲线、一阶反转曲线等岩石磁学测量结果表明,沉积岩的主要载磁矿物为磁铁矿和赤铁矿.335块样品的AMS测量结果表明磁化率椭球主轴的最大轴K1和中间轴K2与水平面夹角较小,最小轴K3接近垂直于水平面分布,说明沉积岩保留了原始沉积磁组构特征.系统热退磁实验表明,多数样品在25~350℃和500~690℃温度段分别获得VRM和ChRM分量.利用ChRM偏角方向,并考虑构造旋转量校正,对VRM偏角方向进行恢复,Fisher统计得到DVRM=-1.3°,IVRM=59.6°,与当地现代地磁场方向(D=-6.7°,I=53.9°)基本一致.用ChRM偏角方向对磁化率主轴K1偏角方向进行校正,校正的结果为:D_(ch_K1)=349.2°,I_(ch_K1)=-0.7°.本文研究结果对于地质勘探中利用古地磁学方法恢复钻孔岩芯原始方位具有一定参考意义.  相似文献   

4.
We present results of paleomagnetic and sedimentological studies carried out on three cores Lmor1, Lmo98-1, Lmor98-2 from bottom sediments of Lake Moreno (south-western Argentina), and integrate them with data from our previous studies. Measurements of directions (declination D and inclination I) and mass specific intensity of natural remanent magnetization (NRM intensity), magnetic susceptibility (specific, χ and volumetric, κ), isothermal remanent magnetization (IRM), saturation of isothermal remanent magnetization (SIRM), and back field remanent coercivity (B0CR) were performed. The stability of the NRM was investigated using alternating-field demagnetization. The results show that these sediments meet the criteria required to construct a reliable paleomagnetic record. The cores were correlated very well based on magnetic parameters, such as χ and NRM intensity, as well as with lithological features. Tephra layers were identified from the lithological profiles and magnetic susceptibility logs. We obtained the D and I logs of the characteristic remanent magnetization for the cores as a function of shortened depth. The data from the three cores were combined to form a composite record using the Fisher method. A comparison between stacked inclination and declination records of Lake Moreno and those obtained in previous works on Lake Escondido and Lake El Trébol shows good agreement. This agreement made it possible to transform the stacked curves into time series spanning the interval 12–20 kyr. The results obtained improved our knowledge of SV and the behaviour of the geomagnetic field and also allowed us to determine the range of past inclination variations from −70° to −45° for the southern hemisphere, where data are scarce.  相似文献   

5.
Naturally disaggregated specularite-bearing sandstone from the Triassic Moenkopi Formation, artificially deposited in controlled magnetic fields of ~5 × 10?2 mT, acquires a stable remanent magnetization that has systematic errors in inclination and declination. Inclinations about 12° shallower than the applied fields are produced by deposition on a horizontal surface in still water. Deposition from flowing water on a surface inclined 6–10° results in inclination errors of as much as 20°. Water flowing obliquely to the applied field results in declination errors of about 10°, with declinations systematically rotated toward the upstream direction of current flow. These experimental results indicate that specularite-bearing sediment responds to the earth's field in a manner similar to magnetite-bearing sediment, and support observational evidence for a primary magnetization of depositional origin in specularite in red beds of the Moenkopi Formation.  相似文献   

6.
Mio-Pliocene hypabyssal rocks of the Combia event in the Amagá basin (NW Andes-Colombia), contain a deformational record of the activity of the Cauca-Romeral fault system, and the interaction of terranes within the Choco and northern Andean blocks. Previous paleomagnetic studies interpreted coherent counterclockwise rotations and noncoherent modes of rotation about horizontal axes for the Combia intrusives. However, rotations were determined from in-situ paleomagnetic directions and the existing data set is small. In order to better understand the deformational features of these rocks, we collected new paleomagnetic, structural, petrographic and magnetic fabric data from well exposed hypabyssal rocks of the Combia event. The magnetizations of these rocks are controlled by a low-coercivity ferromagnetic phase. Samples respond well to alternatingfield demagnetization isolating a magnetization component of moderate coercivity. These rocks do not have ductile deformation features. Anisotropy of magnetic susceptibility and morphotectonic analysis indicate that rotation about horizontal axes is consistently to the south-east, suggesting the need to apply a structural correction to the paleomagnetic data. The relationships between magnetic foliations and host-rock bedding planes indicate tectonic activity initiated before ~10 Ma. We present a mean paleomagnetic direction (declination D = 342.8°, inclination I = 12.1°, 95% confidence interval α95 = 12.5°, precision parameter k = 8.6, number of specimens n = 18) that incorporates structural corrections. The dispersion S = 27° of site means cannot be explained by secular variation alone, but it indicates a counterclockwise rotation of 14.8° ± 12.7° relative to stable South America. Paleomagnetic data within a block bounded by the Sabanalarga and Cascajosa faults forms a more coherent data set (D = 336.5°, I = 17.4°, α95 = 11.7°, k = 12.5, n = 14), which differs from sites west of the Sabanalarga fault and shows a rotation about a vertical axis of 20.2° ± 10.7°. Deformation in the Amagá basin may be tentatively explained by the obduction of the Cañas Gordas terrane over the northwestern margin of the northern Andean block. However, it can also be related to the local effects of the Cauca-Romeral fault system.  相似文献   

7.
Southwest Tarim (hereafter SW Tarim) is one of afew areas that well developed Cretaceous marinesedimentary rocks in China [1]. The Cretaceous marinesediments are stretched in front area along the Tian-shan and Kunlun Mountains. Toward the center ofTarim Basin, the Cretaceous sediments are buried bygreat thickness of Tertiary and Quaternary sedimentswith little exposure. Compared with the Cretaceousterrestrial strata of north Tarim, the Cretaceous marinestrata of SW Tarim continue and d…  相似文献   

8.
New results from the La Lieude Formation now complete the magneto-stratigraphic coverage of the Permian redbeds preserved in the Lodève Basin of southern France. The majority of the samples yield reversed polarity, with a mean of declination D = 187.4°, inclination I = ?0.5° (Fisherian statistics k = 44.2, ??95 = 5.6°, n = 16). Together with previously published results, these data indicate that the entire basin lies within the Permo-Carboniferous Reversed Superchron (PCRS). But the stratigraphically highest sample exhibits normal polarity, suggesting that the transition marking the end of the PCRS may be close. The unusual behaviour of the geodynamo that generates superchrons prompts one to ask if there are concomitant influences on the morphology of the field. The intersecting palaeomeridian method offers a means of pursuing this question. An updated analysis suggests that there are currently no compelling reasons for adding significant higher-order terms to the geocentric axial dipole (GAD) model for the Late Permian.  相似文献   

9.
The reconstruction of the tectonic evolution of the oceanic crust, including the recognition of ancient oceanic plumes and the differentiation between multiple and single oceanic arcs, relies on the paleogeographic analysis of accreted oceanic fragments found in orogenic belts. Here we present paleomagnetic and gravity data from Cretaceous oceanic basaltic and gabbroic rocks, the continental metamorphic basement, and their associated cover from northwestern Colombia. Based on regional scale tectonic reconstructions and geochemical constraints, such rocks have been interpreted as remnants of an oceanic large igneous province formed in southern latitudes, which was accreted to the sialic continental margin during the Late Cretaceous. Gravity analyses suggest the existence of a coherent high density segment separated by major suture zones from a lower density material related to the continental crust and/or thick sedimentary sequences trapped during collision. A characteristic paleomagnetic direction in Early and Late Cretaceous oceanic volcano-plutonic rocks, revealing a southeastern declination (D) and a negative inclination (I), may be interpreted in two different ways: (1a primary magnetization (tilt-corrected direction D = 130.3°, I = -23.3°, k = 23.4, α95 = 26.4°), suggesting clockwise rotation around 130°, and magnetization acquired in southern latitudes (range of 4°S to 21°S); or (2) a remagnetization event during a reverse interval of the Earth’s magnetic field in the Cenozoic (in situ direction D = 128.7°, I = -6.2°, k = 23.1, α95 = 26.1°), suggesting a counter-clockwise rotation around 50°. The first scenario seems more plausible, as it is consistent with previous paleomagnetic studies at other localities; it is compatible with a southern paleogeography for this block, and when integrated with other regional geological and paleomagnetic studies, supports a southern Pacific origin of a major oceanic block, formed as a part of a broader Cretaceous plateau that may have extended south or southwest of Galapagos. After its initial accretion, this block was subsequently fragmented due to the oblique SW-NE approach to the continental margin during the Late Cretaceous.  相似文献   

10.
The paleosecular variation (PSV) and polarity transitions are two major features of the Earth’s magnetic field. Both PSV and reversal studies are limited when age of studied units is poorly constrained. This is a case of Central and western Mexico volcanics. Although many studies have been devoted to these crucial problems and more than 200 paleomagnetic directions are available for the last 5 Ma, only few sites were dated directly. This paper presents new paleomagnetic results from seventeen independent cooling units in the Michoacán-Guanajuato Volcanic Field (MGVF) in western Mexico. Twelve sites are directly dated by 40Ar/39Ar or K-Ar methods and span from 2.78 to 0.56 Ma. The characteristic paleodirections are successfully isolated for 15 lava flows. The mean paleodirection (inclination I and declination D) obtained in this study is I = 28.8°, D = 354.9°, and Fisherian statistical parameters are k = 28, α95 = 7.3°, N=15, which corresponds to the mean paleomagnetic pole position Plat = 83.9°, Plong = 321.6°, K = 34, A95 = 6.6°. The paleodirections obtained in present study compiled with those, previously reported from the MGVF, are practically undistinguishable from the expected Plio-Quaternary paleodirections. The paleosecular variation is estimated through the study of the scatter of the virtual geomagnetic poles giving SF = 15.9 with SU =21.0 and SL = 12.7 (upper and lower limits respectively). These values agree reasonably well with the recent statistical Models. The oldest sites analyzed (the Santa Teresa and Cerro Alto) yield normal polarity magnetizations as expected for the cooling units belonging to the Gauss geomagnetic Chron. The interesting feature of the record comes from lava flows dated at about 2.35 Ma with clearly defined normal directions. This may point out the possible existence of a normal polarity magnetization in the Matuyama reversed Chron older than the Reunion and may be correlated to Halawa event interpreted as the Cryptochron C2r.2r-1. Another important feature of the geomagnetic record obtained from the MGVF is the evidence of fully reversed geomagnetic field within Bruhnes Chron, at about 0.56 Ma corresponding to the relative paleointensity minimum of global extent found in marine sediments at about 590 ka.  相似文献   

11.
The Mt. Stuart Batholith is a composite pluton of Late Cretaceous age that intrudes the crystalline North Cascades terrane of northwestern Washington. Its paleomagnetic direction (D=10.0°, I=45.5°; α95=4.9°) is markedly different from the direction expected for Cretaceous rocks from northwestern Washington (D=330.5°, I=73.0°), which means that the Mt. Stuart Batholith either has moved relative to the North American interior, or has been tilted through a substantial angle, or both, since it acquired its magnetism. Either tilt or translation are possible, geometrically, but translation is more likely, because: (1) local geology apparently does not support tilt in the required direction; (2) it probably is not possible for a panel of rock the size of the Mt. Stuart Batholith to tilt through the necessary angle (ca. 35°) after its deeper parts have cooled sufficiently to retain remanent magnetization; (3) the sense of paleomagnetic discordance found in the Mt. Stuart Batholith (clockwise-rotation of declination, flattened inclination) is identical to that found in nearly every other allochthonous terrane in the western North American Cordillera, including every other Cretaceous batholith studied except the Sierra Nevada.  相似文献   

12.
A total of 120 samples from 12 sites were collected from two flanks of a fold. Stepwise thermal demagnetization has successfully revealed characteristic magnetization components from the rocks in each case. A well-defined component determined from red fine-grained sandstone is clustered in the northeasterly direction with shallow upward inclination (D = 29.3°,I= -19.2°,k = 283.7, α95 = 7.3°. tilt-corrected). The pole position (39.5°N, 247.3°E,dp = 4.0°,dm = 7.6°) derived from this component is close to the Permian pole for the Yangtze Block, indicating that the red fine-grained sandstone has been overprinted. The red mudstone reveals two characteristic components Component A with lower unblocking temperature, characterized by northerly declination and moderate to steep inclination corresponds to a pole position overlay with the present North Pole. Component B (D = 129.1°,I=-23.6°,k = 44.6, α95 = 7.8°, tilt-corrected) with higher unblocking temperature, passes fold test, and yields a pole position (39.5°S, 185.l°E,dp = 4.4°,dm = 8.3°) different from the other poles for the Yangtze Block. It is therefore suggested that component B was probably a primary magnetization and the Yangtze Block was situated at low latitudes in the Southern Hemisphere in the Middle Cambrian.  相似文献   

13.
Palaeomagnetic and mineral magnetism measurements have been carried out on two cores from Lake Vuokonjarvi in Finnish Karelia. The sediment probably covers 5000 years of continuous deposition at a mean sedimentation rate of about 0.8 mm/yr.The magnetic declination exhibits fluctuations of similar amplitude(~20°) and character to those recorded in northern England and northern Ireland. Magnetic inclination variations are of higher amplitude(~15°) than those found in Britain. Matching the palaeomagnetic patterns with the dated British master curves permits an estimate of the rate of deposition of the Finnish sediments, which is suggested to be more reliable than estimates from radiocarbon dating of the Vuokonjarvi sediment.The stable natural remanence is shown to be carried by fine-grained magnetite and titanomagnetite grains and to have grown by post-depositional alignment during a period of the order of 100 years. Laboratory dehydration of the sediment results in loss of around 40% of the stable natural remanence. Such behaviour is also found in lake sediments from central and southern Europe and should be considered in interpreting palaeomagnetic data from dried out lake sections and ocean cores.  相似文献   

14.
Samples of Upper Devonian sedimentary ironstones from the eastern Hindukush, Chitral (Pakistan), give a characteristic palaeomagnetic direction: declination D = 318°, inclination I = ?6.5°; believed to represent the primary magnetization direction. The samples come from an area which lies north of a major ophiolite zone that recent workers suggest is the southwestern continuation of the Indus Suture. As the present palaeomagnetic results are in fair agreement with palaeomagnetic data from the Siberian platform but not with data from Gondwanaland they can be taken as additional evidence that this suture does indeed constitute the main collision zone between the Gondwanic Indian subcontinent and Asia. The palaeomagnetic data presented here from the Devonian of Chitral suggests additionally: (1) in excess of 100° of counterclockwise rotation of the area, associated most likely with the formation of the regional Hindukush-Pamir-Karakoram syntaxial bend; (2) more than 2000 km of crustal shortening between Chitral and the Siberian platform due to the northward indentation of the Indian Gondwanaland fragment subsequent to collision.  相似文献   

15.
山西吉县沃曲桃园下三叠统刘家沟组红层的古地磁研究   总被引:5,自引:1,他引:5  
本文对鄂尔多斯盆地东南缘一个背斜剖面的早三叠世红层样品进行了古地磁研究.对逐步热退磁矢量序列进行主成分分析以及各磁组分的解阻温度谱分析,估计了携磁矿物.分离出4种磁成分:镜铁矿携带的沉积或沉积后剩磁;赤铁矿携带的化学剩磁;等温剩磁和粘滞剩磁.特征剩磁(最高解阻温度Tu≥670℃)通过倒转检验、(递增)褶皱检验,平均方向为偏角D=-25°,倾角I=41°,相应的极位置为65°N、356°E.  相似文献   

16.
Abstract We carried out paleomagnetic measurements and K–Ar dating on Neogene andesitic lavas and sills of the Shigarami Formation in North Fossa Magna, central Japan. The Shigarami Formation is distributed in the axial part of the Komiji Syncline in the folding zone of the southwestern North Fossa Magna. Results of the present study indicate that the Komiji Syncline was formed shortly after 4.42 ± 0.12 Ma during the Pliocene. The sedimentary rocks of the Shigarami Formation consist of shallow marine and fluvial deposits. Intrusions of andesitic sills are found in the shallow marine deposits and two andesitic lava flows are present in the fluvial deposits. Oriented samples were taken from the sills at four sites and from the lavas at three sites. The samples produced stable remanent magnetization through stepwise alternating field and thermal demagnetizations. Results of a positive fold test indicate that the stable remanent magnetizations concentrate around a mean reversed polarity of declination = 169.0°, inclination = ?58.5° and 95% confidence limit = 9.0° after corrections have been made according to the direction of the bedding of the sedimentary rocks. Four fresh samples were selected for K–Ar dating from the samples used for paleomagnetic measurements. The groundmass of three samples taken from the sills yield ages of 4.42 ± 0.12, 4.49 ± 0.22 and 4.69 ± 0.13 Ma, whereas the one taken from the lower lava has an age of 5.91 ± 0.26 Ma. We believe that the Komiji Syncline was formed after the emplacement of lavas and sills in the area, because the descending Miocene strata were folded concordantly with the Shigarami Formation. The Pliocene and Pleistocene strata rest unconformably on the folded strata. The deformation might have progressed during the Pliocene, then slowed down in the Early Pleistocene. Our results suggest that the northwestward motion of the Philippine Sea Plate and the collision of the Tanzawa Block affected not only the South Fossa Magna, but also the North Fossa Magna.  相似文献   

17.
 Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525–570  °C Curie temperatures, and maghemite with 610°–640  °C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence directions from 45 sites (267 samples) yield an overall mean of D=348°, I=53° for the Bishop tuff. A correlation is found in two of the three profiles between density and remanence inclination. A mean remanence direction based on 13 localities together with data from uncompacted xenoliths and data from the ash-fall tuff at Lake Tecopa is: D=353°, I=54°, k=172, α95=2.9°, N=15. Received: 11 July 1995 / Accepted: 29 February 1996  相似文献   

18.
Paleomagnetic results from the northern arm of Sulawesi show that the arm has been subjected to a clockwise rotation of more than 90° and that its rotational motion began no later than the middle Miocene. The mean direction showing a normal polarity at the Eocene to the early Miocene isD = 98.0° andI = 6.9°. A declination value ofD = 50.1° obtained from Miocene rocks indicates a transition stage of the rotational motion. The datum from Plio-Pleistocene volcanics isD = ?4.6° andI = ?9.3°. This suggests that the rotational motion terminated before the initiation of volcanic activity during the Plio-Pleistocene.  相似文献   

19.
We have obtained additional evidence for the Early Carboniferous paleomagnetic field for cratonic North America from study of the Barnett Formation of central Texas. A characteristic magnetization of this unit was isolated after thermal demagnetization at four sites (36 samples) out of eight sites (65 samples) collected. The mean direction of declination = 156.3°, inclination = 5.8° (N = 4 ,k = 905 , α95 = 3.0°), corresponds to a paleomagnetic pole position at lat. = 49.1°N,long. = 119.3°E (dp = 1.5° , dm = 3.0°). Field evidence suggests that characteristic magnetization was acquired very early in the history of the rock unit whereas the rejected sites are comprised of weakly magnetized limestones dominated by secondary components near the present-day field direction. Comparison of the Barnett pole with other Early Carboniferous (Mississippian) paleopoles from North America shows that it lies close to the apparent polar wander path for stable North America and that the divergence of paleopoles from the Northern Appalachians noted previously for the Devonian persisted into the Early Carboniferous. We interpret this difference in paleopoles as further evidence for the Northern Appalachian displaced terrain which we refer to here as Acadia, and the apparent coherence of Late Carboniferous paleopoles as indicating a large (~1500 km) motion of Acadia with respect to stable North America over a rather short time interval in the Carboniferous.  相似文献   

20.
Gogorza  C.S.G.  Di Tommaso  I.  Sinito  A.M.  Jackson  B.  Nuñez  H.  Creer  K.  Vilas  J.F. 《Studia Geophysica et Geodaetica》1998,42(1):12-29
The preliminary results of paleomagnetic and radiocarbon dating of late pleistocene-holocene sediments from two lakes of south-western Argentina (41°S, 71.5°W) are presented. The magnetic susceptibility, intensity and direction of the natural remanent magnetisation were measured. The stability of the natural remanent magnetisation was investigated by alternating field demagnetisation. The magnetic parameters allowed the cores within each lake to be correlated. 13 C analysis, total organic content measurements and C 14 dating were carried out. A model of sedimentation is suggested. Using this model and the correlation, curves of variations of magnetic inclination and declination in time are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号