首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Accretion onto a supermassive black hole in Active Galactic Nuclei (AGN), Seyfert galaxies and quasars is often accompanied by winds which are powerful enough to affect the AGN mass budget, and whose observational appearance bears an imprint of processes which are happening within the central parsec around the black hole (BH). One example of such a wind is the partially ionized gas responsible for X-ray and UV absorption (‘warm absorbers’). Here we perform 3D calculations of transfer of polarized light in 0.1–10 keV range from hydrodynamical model of warm absorber flow and show that such gas will have a distinct signature when viewed in polarized X-rays and it will be detectable by future dedicated X-ray polarimetry space missions, such as the NASA Gravity and Extreme Magnetism SMEX, GEMS.  相似文献   

2.
Large-format ultraviolet image sensors have been and are actively being developed for a variety of space-borne astronomy missions. The detector, which historically is one of the most problematic parts of any astronomical spacecraft, plays a critical role in the overall capability of the instrument. There are numerous detector systems with none being ideal for all applications. This paper presents an overview of UV image sensors that are currently available and associated technologies that are undergoing further development. Special attention is given to physical processes responsible for the inherent strengths and weaknesses of a few important UV detectors. Technological advances that are likely to impact the performance of future image sensors are also discussed.An Invited Review for Experimental AstrophysicsThis research was supported in part by contract NAS5-30131 from the National Aeronautics and Space Administration and and by a grant from the Wisconsin Alumni Research Foundation  相似文献   

3.
Selected key problems in cool-star astrophysics are reviewed, with emphasis on the importance of new ultraviolet missions to tackle the unresolved issues.UV spectral signatures are an essential probe of critical physical processes related to the production and transport of magnetic energy in astrophysical plasmas ranging, for example, from stellar coronae, to the magnetospheres of magnetars, and the accretion disks of protostars and Active Galactic Nuclei. From an historical point of view, our comprehension of such processes has been closely tied to our understanding of solar/stellar magnetic activity, which has its origins in a poorly understood convection-powered internal magnetic dynamo. The evolution of the Sun's dynamo, and associated magnetic activity, affected the development of planetary atmospheres in the early solar system, and the conditions in which life arose on the primitive Earth. The gradual fading of magnetic activity as the Sun grows old likewise will have profound consequences for the future heliospheric environment. Beyond the Sun, the magnetic activity of stars can influence their close-in companions, and vice versa.Cool star outer atmospheres thus represent an important laboratory in which magnetic activity phenomena can be studied under a wide variety of conditions, allowing us to gain insight into the fundamental processes involved. The UV range is especially useful for such studies because it contains powerful diagnostics extending from warm (∼ 104 K) chromospheres out to hot (1–10 MK) coronae, and very high-resolution spectroscopy in the UV has been demonstrated by the GHRS and STIS instruments on HST but has not yet been demonstrated in the higher energy EUV and X-ray bands. A recent example is the use of the hydrogen Lyα resonance line—at 110 000 resolution with HST STIS—study, for the first time, coronal winds from cool stars through their interaction with the interstellar gas. These winds cannot be detected from the ground, for lack of suitable diagnostics; or in the X-rays, because the outflowing gas is too thin.A 2m class UV space telescope with high resolution spectroscopy and monitoring capabilities would enable important new discoveries in cool-star astronomy among the stars of the solar neighborhood out to about 150 pc. A larger aperture facility (4–6 m) would reach beyond the 150 pc horizon to fainter objects including young brown dwarfs and pre-main sequence stars in star-forming regions like Orion, and magnetic active stars in distant clusters beyond the Pleiades and α Persei. This would be essential, as well, to characterize the outer atmospheres of stars with planets, that will be discovered by future space missions like COROT, Kepler, and Darwin.Deceased October 23, 2005  相似文献   

4.
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (< 15keV). Moreover, measurements with mirror test samples for new missions like ROSITA and XEUS have been carried out at PANTER. Here we report on an extension of the energy range, enabling calibrations of hard X-ray optics over the energy range 15–50 keV. Several future X-ray astronomy missions (e.g., Simbol-X, Constellation-X, XEUS) have been proposed, which make use of hard X-ray optics based on multilayer coatings. Such optics are currently being developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV). PACS: 95.55.Ka, 95.55.Aq, 41 50.+h, 07.85.Fv  相似文献   

5.
Cosmic radiation is an important problem for human interplanetary missions. The “Radiation Exposure and Mission Strategies for Interplanetary Manned Missions–REMSIM” study is summarised here. They are related to current strategies and countermeasures to ensure the protection of astronauts from radiation during interplanetary missions, with specific reference to: radiation environment and its variability; radiation effects on the crew; transfer trajectories and associated fluences; vehicle and surface habitat concepts; passive and active shielding concepts; space weather monitoring and warning systems.  相似文献   

6.
Continuous access to the UV domain has been considered of importance to astrophysicists and planetary scientists since the mid-sixties. However, the future of UV missions for the post-HST era is believed by a significant part of astronomical community to be less encouraging. We argue that key science problems of the coming years will require further development of UV observational technologies. Among these hot astrophysical issues are: the search for missing baryons, revealing the nature of astronomical engines, properties of atmospheres of exoplanets as well as of the planets of the Solar System etc. We give a brief review of UV-missions both in the past and in the future. We conclude that UV astronomy has a great future but the epoch of very large and efficient space UV facilities seems to be a prospect for the next decades. As to the current state of the UV instrumentation we think that this decade will be dominated by the HST and coming World Space Observatory-Ultraviolet (WSO-UV) with a 1.7 m UV-telescope onboard. The international WSO-UV mission is briefly described. It will allow high resolution/high sensitivity imaging and high/low resolution spectroscopy from the middle of the decade.  相似文献   

7.
SciMeasure, in collaboration with Emory University and the Jet Propulsion Laboratory, has developed a very versatile CCD controller for use in adaptive optics, optical interferometry, and other applications requiring high-speed readout rates and/or low read noise. The overall architecture of this controller system will be discussed and its performance using both EEV CCD39 and MIT/LL CCID-19 detectors will be presented. This controller is used in the adaptive optics system, developed by JPL, for the 200′′ Hale telescope at Palomar Mountain. Early diffraction-limited science results, recently achieved by the AO system, are presented. We gratefully acknowledge the financial support of NASA through SBIR contracts NAS8–97195 and NAS8–98081. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Planetary systems are angular momentum reservoirs generated during star formation. Solutions to three of the most important problems in contemporary astrophysics are needed to understand the entire process of planetary system formation: The physics of the ISM. Stars form from dense molecular clouds that contain ∼ 30% of the total interstellar medium (ISM) mass. The structure, properties and lifetimes of molecular clouds are determined by the overall dynamics and evolution of a very complex system – the ISM. Understanding the physics of the ISM is of prime importance not only for Galactic but also for extragalactic and cosmological studies. Most of the ISM volume (∼ 65%) is filled with diffuse gas at temperatures between 3000 and 300 000 K, representing about 50% of the ISM mass. The physics of accretion and outflow. Powerful outflows are known to regulate angular momentum transport during star formation, the so-called accretion–outflow engine. Elementary physical considerations show that, to be efficient, the acceleration region for the outflows must be located close to the star (within 1 AU) where the gravitational field is strong. According to recent numerical simulations, this is also the region where terrestrial planets could form after 1 Myr. One should keep in mind that today the only evidence for life in the Universe comes from a planet located in this inner disk region (at 1 AU) from its parent star. The temperature of the accretion–outflow engine is between 3000 and 10 7 K. After 1 Myr, during the classical T Tauri stage, extinction is small and the engine becomes naked and can be observed at ultraviolet wavelengths. The physics of planet formation. Observations of volatiles released by dust, planetesimals and comets provide an extremely powerful tool for determining the relative abundances of the vaporizing species and for studying the photochemical and physical processes acting in the inner parts of young planetary systems. This region is illuminated by the strong UV radiation field produced by the star and the accretion–outflow engine. Absorption spectroscopy provides the most sensitive tool for determining the properties of the circumstellar gas as well as the characteristics of the atmospheres of the inner planets transiting the stellar disk. UV radiation also pumps the electronic transitions of the most abundant molecules (H 2, CO, etc.) that are observed in the UV.Here we argue that access to the UV spectral range is essential for making progress in this field, since the resonance lines of the most abundant atoms and ions at temperatures between 3000 and 300 000 K, together with the electronic transitions of the most abundant molecules (H 2, CO, OH, CS, S 2, CO 2 +, C 2, O 2, O3, etc.) are at UV wavelengths. A powerful UV-optical instrument would provide an efficient mean for measuring the abundance of ozone in the atmosphere of the thousands of transiting planets expected to be detected by the next space missions (GAIA, Corot, Kepler, etc.). Thus, a follow-up UV mission would be optimal for identifying Earth-like candidates.  相似文献   

9.
Summary. Substantial progress in the field of the Local Interstellar Medium has been largely due to recent launches of space missions, mostly in the UV and X–ray domains, but also to ground-based observations, mainly in high resolution spectroscopy. However, a clear gap seems to remain between the wealth of new data and the theoretical understanding. This paper gives an overview of some observational aspects, with no attempt of completeness or doing justice to all the people involved in the field. As progress rarely evolves in straight paths, we can expect that our present picture of the solar system surroundings is not definitive. Received 30 October 1998  相似文献   

10.
For conventional radiation detectors fabricated from compound semi-conductors, the wide disparity between the transport properties of the electron and holes, means that detector performances are limited by the carrier with the poorest mobility-lifetime product (μτ). Finite drift lengths introduce an energy dependent depth term into the charge collection process, which effectively limit maximum detection volume to tens of mm3 – entirely unsuitable for the detection of gamma-rays. The recent introduction of the coplanar-grid charge-sensing techniques has overcome this problem by essentially discarding the carrier with the poorest transport properties, thus permitting high spectral resolution and high detection efficiency. For example, energy resolutions of 2% full-width half-maximum at 662 keV have been demonstrated with coplanar-grid CdZnTe detectors of volumes up to 2 cm3. Further improvements in detector performance and yield are being pursued through refinements in electrode design and material quality. Because coplanar-grid CdZnTe detectors can operate at room temperature, they are ideally suited for applications requiring portability, small size, or low power consumption such as planetary space missions. Other potential applications include well logging, medical diagnostics, and gamma-ray astronomy. We discuss the feasibility and design of a solid state gamma-ray detector based on CdZnTe and compare its performance to a large volume Ge detector. As will be shown, a significant improvement can be made if T1Br is used as the detection medium.  相似文献   

11.
Replicated nickel optics has been used extensively in x-ray astronomy, most notably for the XMM/Newton mission. The combination of relative ease of fabrication and the inherent stability of full-shell optics, make them an attractive approach for medium-resolution, high-throughput applications. MSFC has been developing these optics for use in the hard-x-ray region. Efforts at improving their angular resolution, particularly for the very-thin-wall shells required to meet the weight budgets of future missions, are described together with the prospects for future significant improvements.  相似文献   

12.
The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 − 6. We have also validated numerical simulation algorithms for larger Fresnel interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 − 8 for arrays such as the 3.6 m one we propose. A dynamic range of 10 − 8 allows detection of objects at contrasts as high as than 10 − 9 in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.  相似文献   

13.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R>55000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering the performance of the instruments.  相似文献   

14.
The announced missions to the Saturn and Jupiter systems renewed the space community interest in simple design methods for gravity assist tours at planetary moons. A key element in such trajectories are the V-Infinity Leveraging Transfers (VILT) which link simple impulsive maneuvers with two consecutive gravity assists at the same moon. VILTs typically include a tangent impulsive maneuver close to an apse location, yielding to a desired change in the excess velocity relative to the moon. In this paper we study the VILT solution space and derive a linear approximation which greatly simplifies the computation of the transfers, and is amenable to broad global searches. Using this approximation, Tisserand graphs, and heuristic optimization procedure we introduce a fast design method for multiple-VILT tours. We use this method to design a trajectory from a highly eccentric orbit around Saturn to a 200-km science orbit at Enceladus. The trajectory is then recomputed removing the linear approximation, showing a Δv change of <4%. The trajectory is 2.7 years long and comprises 52 gravity assists at Titan, Rhea, Dione, Tethys, and Enceladus, and several deterministic maneuvers. Total Δv is only 445 m/s, including the Enceladus orbit insertion, almost 10 times better then the 3.9 km/s of the Enceladus orbit insertion from the Titan–Enceladus Hohmann transfer. The new method and demonstrated results enable a new class of missions that tour and ultimately orbit small mass moons. Such missions were previously considered infeasible due to flight time and Δv constraints.  相似文献   

15.
In the framework of future space missions to Ganymede, a pre-study of this satellite is a necessary step to constrain instrument performances according to the mission objectives. This work aims at characterizing the impact of the solar UV flux on Ganymede’s atmosphere and especially at deriving some key physical parameters that are measurable by an orbiter. Another objective is to test several models for reconstructing the solar flux in the Extreme-UV (EUV) in order to give recommendations for future space missions.Using a Beer–Lambert approach, we compute the primary production of excited and ionized states due to photoabsorption, neglecting the secondary production that is due to photoelectron impacts as well as to precipitated suprathermal electrons. Ions sputtered from the surface are also neglected. Computations are performed at the equator and close to the pole, in the same conditions as during the Galileo flyby. From the excitations, we compute the radiative relaxation leading to the atmospheric emissions. We also propose a simple chemical model to retrieve the stationary electron density. There are two main results: (i) the modelled electron density and the one measured by Galileo are in good agreement. The main atmospheric visible emission is the atomic oxygen red line at 630 nm, both in equatorial and in polar conditions, in spite of the different atmospheric compositions. This emission is measurable from space, especially for limb viewing conditions. The OH emission (continuum between 260 and 410 nm) is also probably measurable from space. (ii) The input EUV solar flux may be directly measured or reconstructed from only two passbands solar observing diodes with no degradation of the modelled response of the Ganymede’s atmosphere. With respect to these results, there are two main conclusions: (i) future missions to Ganymede should include the measurement of the red line as well as the measurement of OH emissions in order to constrain the atmospheric model. (ii) None of the common solar proxies satisfactorily describes the level of variability of the solar EUV irradiance. For future atmospheric planetary space missions, it would be more appropriate to derive the EUV flux from a small radiometer rather than from a full-fledged spectrometer.  相似文献   

16.
In this summary of the conference Space Astronomy: the UV Window to the Universe, held in El?Escorial, Spain, May 28 to June 1, 2007, I identify the important scientific questions posed by the speakers and the corresponding discoveries that future ultraviolet space instruments should enable. The science objectives described by the various speakers naturally fall into groups according to the needed instrumental requirements: wavelength coverage, spectral resolution, sensitivity, rapid access to targets, monitoring, and signal/noise. Although most of the science objectives presented during the conference require UV spectra in the 1,170–3,200 Å range, there are important science objectives that require spectra in the 912–1,170 Å range and at shorter wavelengths. I identify the limitations of present instruments for meeting these requirements. To avoid the upcoming UV dark age, important work must be done to properly build the World Space Observatory (WSO) and to plan future space missions.  相似文献   

17.
We present scientific program construction principles and a time allocation scheme developed for the World Space Observatory—Ultraviolet (WSO-UV) mission, which is an international space observatory for observation in UV spectral range 100–300 nm. The WSO-UV consists of a 1.7 m aperture telescope with instrumentation designed to carry out high resolution spectroscopy, long-slit low resolution spectroscopy and direct sky imaging. The WSO-UV Ground Segment is under development by Spain and Russia. They will coordinate the Mission and Science Operations and provide the satellite tracking stations for the project.  相似文献   

18.
ISSIS is the Imaging and Slitless Spectroscopy Instrument for the World Space Observatory-Ultraviolet (WSO-UV) mission. ISSIS is a multipurpose instrument designed to carry out high resolution (<0.1 arcsec) imaging in the far UV with fields of view ≥2×2 arcmin2. ISSIS has two acquisition channels: the High Sensitivity Channel (HSC) and the Channel for Surveys (CfS). The HSC is equipped with an MCP-type detector to guarantee high sensitivity in the 1150–1750 ? range and high rejection of lower energy radiation. The CfS is equipped with a large CCD detector (4k×4k) to obtain images from the far UV to the red (1150–8500 ?); the CfS is implemented to allow observing UV bright sources such as reflection nebulae or nearby massive star forming regions. The design drivers and the current status of the instrument are described in this contribution.  相似文献   

19.
The GraF instrument using a Fabry-Perot interferometer cross-dispersed with a grating was one of the first integral-field and long-slit spectrographs built for and used with an adaptive optics system. We describe its concept, design, optimal observational procedures and the measured performances. The instrument was used in 1997–2001 at the ESO3.6 m telescope equipped with ADONIS adaptive optics and SHARPII+camera. The operating spectral range was 1.2–2.5 μm. We used the spectral resolution from 500 to 10 000 combined with the angular resolution of 0.1″–0.2″. The quality of GraF data is illustrated by the integral field spectroscopy of the complex0.9″ × 0.9″ central region of η Car in the1.7 μm spectral range at the limit of spectral and angular resolutions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In 2009, the Centre National d??Etudes Spatiales (CNES) carried out an assessment study on a ??Fresnel telescope?? concept based on a two-spacecraftformation flying configuration. This concept uses a binary Fresnel zone plate, and the principle of diffraction focusing, which allows high resolution optical imaging for astrophysics. In addition to CNES, the Laboratoire d??Astrophysique de Toulouse Tarbes (LATT) was deeply involved at two levels: through Research & Technology (R&T) studies to simulate and validate on a test bench the Fresnel concept performance, and through active participation in the CNES team for the optical aspects and to define the astrophysical fields of Fresnel-based space missions. The study was conducted within the technical limitations that resulted from a compromise between the R&T state of the art and the potential scientific domains of interest. The main technical limitations are linked to the size of the primary Fresnel array and to its usable spectral bandwidth. In this framework, the study covers ambitious architectures, correlating the technology readiness of the main critical components with the time-scale and programmatic horizons. The possible scientific topics arise from this range of missions. In this paper, I present a mission launched by a Soyuz, dedicated to astrophysics in the Ultra Violet (UV) band: 120 to 300 nm using a 4-m Fresnel array. It could be competitive in the next fifteen years, whereas a 10-m aperture mission in different bands; UV, visible or Infra Red (IR) (up to 6 ??m) could be achievable in the future. Larger missions, using a primary array larger than 20 m, request technologies not yet available but that will probably be based on new inflatable structures with membranes, as already tested in the USA for other ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号