首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The early Holocene is characterised by rapid climate change events, which in the North Atlantic region are often associated with changes in thermohaline circulation. Superimposed on this in northwest Europe is localised evidence for human impact on the landscape, although separating climatic and anthropogenic mechanisms for environmental change is often difficult. Biotic and sedimentological evidence from a lacustrine sequence from the Inner Hebrides, Scotland, shows a considerable reduction in inferred local woodland centred upon 8250 cal. yr BP. These data correlate precisely with a distinctive rise in the charcoal:pollen ratio and hence suggest a possible Mesolithic human impact upon the vegetation around this time. A quantitative temperature reconstruction from chironomid analyses from the same sequence, supported by sedimentological data, indicates that the fall in arboreal pollen taxa occurred as climate warmed significantly during the early Holocene. This warming was followed by a significant cold event, with mean July temperatures reduced by 2°C, that lasted for at least 320 years ca. 7790–7470 cal. yr BP. Woodland recovered during this phase suggesting that the vegetation during the 8250 cal. yr BP interval was likely to have been responding to human activity, and not climate, and hence it is possible at specific sites to separate the influence of these key drivers of environmental change. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
High‐resolution loss‐on‐ignition analyses of lacustrine sediment cores from both proglacial and non‐glacial lakes in southern Norway have revealed a specific pattern characterised by a significant, two‐peaked reduction of the loss‐on‐ignition values in the basal half of the cores. In non‐glacier‐fed lakes, the loss‐on‐ignition variations are interpreted to reflect mainly lake productivity and hence variability in surface summer air temperature. Sediments deposited in proglacial lakes, however, reflect mainly the glacier activity in the lake catchment. Bulk AMS radiocarbon dates from the core sequences and the loss‐on‐ignition curve pattern suggest that this event correlates with the ‘8200 cal. yr BP event’ recorded in the GRIP and GISP2 Greenland ice‐cores, termed the Finse event in southern Norway. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Sedimentary pollen, charcoal and plant macrofossil analyses with high resolution and precision suggest a strong shift in vegetation composition during the early to mid‐Holocene transition in the upper mountain belt. At Piano mire (1439 m above sea level (a.s.l.), Ticino, Switzerland) forests were dominated by Abies alba during the early Holocene (prior to ca. 8000 cal. a BP). Abrupt collapses of A. alba at ca. 7800–7400 cal. a BP enabled the expansion of the light‐demanding pioneer Betula. Afterwards A. alba populations regained their previous abundance in the forests. Within the dating uncertainties of our record we assume that a unique combination of wet and cold years between 8400 and 7500 cal. a BP led to repeated lethal disadvantages for Abies. Our record of Abies oscillations is in good biostratigraphic agreement with the record that has been used to define the Misox cold event (Pian di Signano, 1540 m a.s.l.), which has been previously correlated with the 8200 cal. a BP event. Given the age estimates of the Abies collapses in our well‐dated record, our results suggest that additional efforts are needed to understand the linkage between the Misox and the 8200 cal. a BP event. They imply a high sensitivity of mountain vegetation far below the tree line (~800 m) to Holocene climatic changes of about 2°C in annual air temperature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The Northern Hemisphere cooling event 8200 years ago is believed to represent the last known major freshwater pulse into the North Atlantic as a result of the final collapse of the North American Laurentide ice sheet. This pulse of water is generally believed to have occurred independently of orbital variations and provides an analogue for predicted increases in high‐latitude precipitation and ice melt as a result of anthropogenically driven future climate change. The precise timing, duration and magnitude of this event, however, are uncertain, with suggestions that the 100‐yr meltwater cooling formed part of a longer‐term cold period in the early Holocene. Here we undertook a multiproxy, high‐resolution investigation of a peat sequence at Dooagh, Achill Island, on the west coast of Ireland, to determine whether the 8200‐year cold event impacted upon the terrestrial vegetation immediately ‘downwind’ of the proposed changes in the North Atlantic. We find clear evidence for an oscillation in the early Holocene using various measures of pollen, indicating a disruption in the vegetation leading to a grassland‐dominated landscape, most probably driven by changes in precipitation rather than temperature. Radiocarbon dating was extremely problematic, however, with bulk peat samples systematically too young for the North Atlantic event, suggesting significant contamination from downward root penetration. The sustained disruption to vegetation over hundreds of years at Dooagh indicates the landscape was impacted by a long‐term cooling event in the early Holocene, and not the single century length 8200‐year meltwater event proposed in many other records in the North Atlantic region. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Geochemical (element analysis, molecular analysis of organic compounds), physical, palynological, mineralogical and sedimentary facies analysis were performed to characterise the sedimentary record in Fuentillejo maar‐lake in the Central Spanish Volcanic Field of Campo de Calatrava, in order to reconstruct the palaeoenvironmental and palaeoclimatic processes which controlled vegetation patterns and deposition of different sedimentary facies. The upper 20 m of core FUENT‐1 show variations in clastic input, water chemistry, vegetation and organic fraction sources in the lake throughout the Late Pleistocene and Holocene. The temporal framework provided by 14C accelerator mass spectrometry dating allows assigning the sequence to the last 50 cal. ka BP. Arid phases identified in the FUENT‐1 sequence are correlated to Heinrich events (HE) and to stadials of the Dansgaard/Oeschger (D/O) cycles. Siliciclastic facies with high magnetic susceptibility values, high Juniperus pollen content, a low Paq index (aquatic macrophysics proxy index), a decrease in the relative percentage of the n‐C27 and an increase in the n‐C31 alkanes are indicative of arid and colder climatic events related to HE 2, HE 1 and the Younger Dryas (YD). Similar short cold and arid phases during the Holocene were identified at 9.2–8.6, 7.5–7 and 5.5–5 cal. ka BP. In dolomite–mud facies, the pollen data show an increase in the herbs component, mainly – Chenopodiaceae, Artemisia and Ephedra – steppe taxa; a low Paq index, a decrease in the relative percentage of the n‐C27 alkane and an increase in the n‐C31 alkane are also observed. This facies was probably the result of lower lake levels and more saline–alkaline conditions, which can be interpreted as linked to arid–warm periods. These warm and arid phases were more frequent during Marine Isotope Stage (MIS) 3 and the interstadials of MIS 2. HE 4, HE 2, HE 1 and the YD in core FUENT‐1 were immediately followed by increases of warm steppe pollen assemblages that document rapid warming similar to the D/O cycles but do not imply increasing humidity in the area. Fuentillejo hydrology is controlled by changes in the atmospheric and oceanic systems that operated on the North Atlantic region at millennial scale during the last 50 cal. ka BP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
7.
We present a high‐resolution record of lacustrine sedimentation spanning ca. 30 000 to 9000 cal. a BP from Onepoto maar, northern North Island, New Zealand. The multi‐proxy record of environmental change is constrained by tephrochronology and accelerator mass spectrometric 14C ages and provides evidence for episodes of rapid environmental change during the Last Glacial Coldest Period (LGCP) and Last Glacial–Interglacial Transition (LGIT) from northern New Zealand. The multi‐proxy palaeoenvironmental record from Onepoto indicates that the LGCP was cold, dry and windy in the Auckland region, with vegetation dominated by herb and grass in a beech forest mosaic between ca. 28 500 and 18 000 cal. a BP. The LGCP was accompanied by more frequent fires and influx of clastic sediment indicating increased erosion during the LGCP, with a mid‐LGCP interstadial identified between ca. 25 000 and 23 000 cal. a BP. Rapid climate amelioration at ca. 18 000 cal. a BP was accompanied by increased terrestrial biomass exemplified by the expansion of lowland podocarp forest, especially Dacrydium cupressinum. Increasing biomass production is reversed briefly by LGIT perturbations which are apparent in many of the proxies that span ca. 14 000–10 500 cal. a BP, suggesting generally increased wetness and higher in situ aquatic plant productivity with reduced terrestrial organic matter and terrigenous detrital influx. Furthermore, conditions at that time were probably warmer and frosts rare based on the increasing importance of Ascarina. The subsequent early Holocene is characterised by podocarp conifer forest and moist mild conditions. Postglacial sea‐level rise breached the crater rim and deposited 36 m of estuarine mud after ca. 9000 cal. a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号