首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss a geographic information system (GIS)‐based methodology for rock slope instability assessment based on geometrical relationships between topographic slopes and structural discontinuities in rocks. The methodology involves (a) regionalization of point observations of orientations (azimuth and dip) of structural discontinuities in rocks in order to generate a digital structural model (DStM), (b) testing the kinematical possibility of specific modes of rock slope failures by integrating DStMs and digital elevation model (DEM)‐derived slope and aspect data and (c) computation of stability scenarios with respect to identified rock slope failure modes. We tested the methodology in an area of 90 km2 in Darjeeling Himalaya (India) and in a small portion (9 km2) within this area with higher density of field structural orientation data. The results of the study show better classification of rock slope instability in the smaller area with respect to known occurrences of deep‐seated rockslides than with respect to shallow translational rockslides, implying that structural control is more important for deep‐seated rockslides than for shallow translational rockslides. Results of scenario‐based analysis show that, in rock slopes classified to be unstable, stress‐induced rock slope instability tends to increase with increasing level of water saturation. The study demonstrates the usefulness of spatially distributed data of orientations of structural discontinuities in rocks for medium‐ to small‐scale classification of rock slope instability in mountainous terrains. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Strong motion records taken during earthquakes in Turkey are used to calculate Newmark displacements in slopes. These displacements are then utilized in developing a novel displacement-based methodology to select the seismic coefficient which is used to calculate pseudostatic safety factor. In the first step of the study, calculated Newmark displacements are evaluated in three different categories which are as follows: using all data, using data for different earthquake magnitude (M) ranges with and without distance constraint and using data for different peak acceleration (amax) ranges. For all categories, different equations are obtained to assign slope displacements as a function of the ratio of yield acceleration to peak acceleration. The results show that categorization of data is an important issue, because the displacements are earthquake magnitude and peak acceleration dependent. In the second step, equations obtained for different peak acceleration ranges are used to propose charts linking upper bound slope displacements (D), seismic coefficients (kh) and pseudostatic safety factors (PSF), which are three important parameters of a pseudostatic approach. This enables the kh values be chosen based on the allowable displacements, instead of the current applications based on judgement and expertise. The results show that kh values for any allowable displacement should be based on anticipated amax values, while use of high PSF values results in lower displacements. Extensive comparison with solutions from the literature is also made. The methodology is best suited for earthquake triggered shallow landslides in natural slopes, consisting of materials which do not lose strength during dynamic loading.  相似文献   

3.
We used the 3D continuum-scale reactive transport models to simulate eight core flood experiments for two different carbonate rocks. In these experiments the core samples were reacted with brines equilibrated with pCO2 = 3, 2, 1, 0.5 MPa (Smith et al., 2013 [27]). The carbonate rocks were from specific Marly dolostone and Vuggy limestone flow units at the IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project in south-eastern Saskatchewan, Canada. Initial model porosity, permeability, mineral, and surface area distributions were constructed from micro tomography and microscopy characterization data. We constrained model reaction kinetics and porosity–permeability equations with the experimental data. The experimental data included time-dependent solution chemistry and differential pressure measured across the core, and the initial and final pore space and mineral distribution. Calibration of the model with the experimental data allowed investigation of effects of carbonate reactivity, flow velocity, effective permeability, and time on the development and consequences of stable and unstable dissolution fronts.The continuum scale model captured the evolution of distinct dissolution fronts that developed as a consequence of carbonate mineral dissolution and pore scale transport properties. The results show that initial heterogeneity and porosity contrast control the development of the dissolution fronts in these highly reactive systems. This finding is consistent with linear stability analysis and the known positive feedback between mineral dissolution and fluid flow in carbonate formations. Differences in the carbonate kinetic drivers resulting from the range of pCO2 used in the experiments and the different proportions of more reactive calcite and less reactive dolomite contributed to the development of new pore space, but not to the type of dissolution fronts observed for the two different rock types. The development of the dissolution front was much more dependent on the physical heterogeneity of the carbonate rock. The observed stable dissolution fronts with small but visible dissolution fingers were a consequence of the clustering of a small percentage of larger pores in an otherwise homogeneous Marly dolostone. The observed wormholes in the heterogeneous Vuggy limestone initiated and developed in areas of greater porosity and permeability contrast, following pre-existing preferential flow paths.Model calibration of core flood experiments is one way to specifically constrain parameter input used for specific sites for larger scale simulations. Calibration of the governing rate equations and constants for Vuggy limestones showed that dissolution rate constants reasonably agree with published values. However the calcite dissolution rate constants fitted to the Marly dolostone experiments are much lower than those suggested by literature. The differences in fitted calcite rate constants between the two rock types reflect uncertainty associated with measured reactive surface area and appropriately scaling heterogeneous distribution of less abundant reactive minerals. Calibration of the power-law based porosity–permeability equations was sensitive to the overall heterogeneity of the cores. Stable dissolution fronts of the more homogeneous Marly dolostone could be fit with the exponent n = 3 consistent with the traditional Kozeny–Carman equation developed for porous sandstones. More impermeable and heterogeneous cores required larger n values (n = 6–8).  相似文献   

4.
— A series of experiments was conducted where rock core specimens were cyclically loaded to 50?MPa uniaxial stress while P waveforms were pulsed along the core axis. Some of these specimens were intact while others were prepared with a single through-going tensile fracture oriented perpendicular to the core axis. Recorded data was processed to determine Q, velocity and fracture closure. Results indicated that Q was constant over the studied bandwidth and Q for the fractured specimens decreased relative to the intact specimens as fracture stress decreased. Observed variations in static fracture stiffness among the tested specimens did not result in corresponding variations in Q. Velocity results showed similar trends. This work was done to provide comparative data for related field studies examining the feasibility of using attenuation measurements in comparable frequency bands to indicate the potential for roof failure during excavation in fractured rock masses.  相似文献   

5.
—The West Bohemian seismoactive region is situated near the contact of the Moldanu bian, Bohemian and Saxothuringian units in which a large volume is occupied by granitoid massifs. The spatial distribution of P-wave velocities and the rock fabric of five representative samples from these massifs were studied. The P-wave velocities were measured on spherical samples in 132 independent directions under hydrostatic pressure up to 400 MPa, using the pulse-transmission method. The pressure of 400 MPa corresponds to a depth of about 15 km in the area under study. The changes of P-wave velocity were correlated with the preferred orientations of the main rock fabric elements, i.e., rock forming minerals and microcracks. The values of the P-wave velocity from laboratory measurements on granite samples fit the velocity model used by seismologists in the West Bohemian seismoactive region.  相似文献   

6.
Glaciers and slope movements may act simultaneously to erode and modify glaciated slopes. Undercutting by glaciers can destabilize slopes but the extent to which slope failure may progress prior to subsequent glacier withdrawal has not hitherto been considered. The traditional view has been that the buttressing effect of ice prevents slope movement. The problem with this view is that ice is one‐third the density of rock and flows under low applied stress. Consequently, failed slopes may move into the glacier if they exert a stress in excess of the resistance provided by the glacier. Slope movement rate depends on ice rheology and other factors influencing driving and resisting stresses. Simple viscous equations are used to investigate these variables. The equations predict that small (<125 000 m3) ice‐contact rockslides can deform ice at several mm/year, increasing to several m/year for very large (>108 m3) rockslides. To test these estimates, field evidence is presented of slope movements in glaciated valleys of New Zealand; narrowing or squeezing of glaciers adjacent to unstable rock slopes is demonstrated and considered to be the result of slope movement. For one site, geomorphic mapping and slope movement monitoring data show that movement rates are of similar order of magnitude to those predicted by the viscous equations; closer agreement could be achieved with the application of modelling techniques that can more realistically model the complex slope geometries and stability factors encountered, or by obtaining additional empirical data to calibrate the models. This research implies that, while the concept of glacial debuttressing – the reduction of slope support from withdrawal of glaciers – is valid, complete debuttressing is not a prerequisite for the movement of ice‐contact rock slopes. These slope movements may contribute to the erosional processes of glaciers and the evolution of glaciated slopes in a previously unrecognized way. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This study addresses the influence of landslide dams on surface water drainage and groundwater flow. In the study area of Scanno Lake and Sagittario River (Central Italy), a limestone rockslide‐avalanche formed a lake, which has an outlet that is occasionally active, showing infiltration into the rockslide dam. Several springs are present at the lake's base and are partly fed by seepage through the rockslide debris. Piezometric surveys, discharge measurements, pumping tests and chemical analyses are tools used to build a conceptual model of the groundwater flow and to evaluate the flow through the rockslide debris. Seasonal water isotopic signatures validate the assumed model, showing a mixing of infiltration recharge and groundwater seepage throughout the rockslide debris. Various recharge areas have been found for springs, pointing out those directly fed by the rockslide debris aquifer. Hypotheses about seasonal groundwater mixing between the regional carbonate aquifer and the rockslide debris aquifer are supported by isotope results. Seasonal changes in groundwater table level due to recharge and surface losses from seasonal outlet have been correlated with isotopic groundwater composition from the rockslide debris aquifer and the downstream springs; this relationship highlights the role of the rockslide dam body on the hydrodynamics of the studied area. Relationships between surface waters and groundwater in the area have been completely understood on the basis of water isotopic fingerprinting, finally obtaining a complete evaluation of groundwater renewable resources and its regimen. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Understanding how the strength of basaltic rock varies with the extrinsic conditions of stress state, pressure and temperature, and the intrinsic rock physical properties is fundamental to understanding the dynamics of volcanic systems. In particular it is essential to understand how rock strength at high temperatures is limited by fracture. We have collated and analysed laboratory data for basaltic rocks from over 500 rock deformation experiments and plotted these on principal stress failure maps. We have fitted an empirical flow law (Norton’s law) and a theoretical fracture criterion to these data. The principal stress failure map is a graphical representation of ductile and brittle experimental data together with flow and fracture envelopes under varying strain rate, temperature and pressure. We have used these maps to re-interpret the ductile–brittle transition in basaltic rocks at high temperatures and show, conceptually, how these failure maps can be applied to volcanic systems, using lava flows as an example.  相似文献   

9.
The essence of performance-based design of gravity earth-retaining structures lies in the estimation of the residual (i.e. permanent) displacements after a seismic event. The accomplishment of this task however can be very complicated due to two interacting phenomena: the coupled sliding and tilting rigid body motion of the wall on an inelastic base and the formation of failure surfaces in the soil backfill. In this study a large number of fully non-linear, time-history analyses of gravity retaining walls (GRW) were performed using advanced numerical modelling. Different types of soil parameters and varying wall geometry within a practical range were investigated. The influence of different ground motion parameters was discussed and the results were compared with some of the most common limit equilibrium Newmark׳s sliding block procedures, including the recommendations by Eurocode 8, Part 5 [20]. Lastly, some recommendations for fast preliminary assessment of the seismic permanent displacements of GRW were provided.  相似文献   

10.
This paper analyses the results of the peak particle velocity measurements, at the trial, construction and quarry blasting carried out in sediment rock deposits comprising mainly limestone and dolomite. The tests are divided into 3 groups depending on different geological strength index (GSI) values in these rock groups. Based on the results of seismic measurements the empirical relationships between peak particle velocity and scaled distance were established for each group. In order to establish a useful relationship between peak particle velocity and scaled distance, a simple regression analysis was conducted with the Blastware software program from Instantel. The established relationships and the results of those analyses are presented in this paper.  相似文献   

11.
Data provided by accelerometric networks are important for seismic hazard assessment. The correct use of accelerometric signals is conditioned by the station site metadata quality (i.e., soil class, VS30, velocity profiles, and other relevant information that can help to quantify site effects). In France, the permanent accelerometric network consists of about 150 stations. Thirty-three of these stations in the southern half of France have been characterized, using surface-wave-based methods that allow derivation of velocity profiles from dispersion curves of surface waves. The computation of dispersion curves and their subsequent inversion in terms of shear-wave velocity profiles has allowed estimation of VS30 values and designation of soil classes, which include the corresponding uncertainties. From a methodological point of view, this survey leads to the following recommendations: (1) perform both active (multi-analysis surface waves) and passive (ambient vibration arrays) measurements to derive dispersion curves in a broadband frequency range; (2) perform active acquisitions for both vertical (Rayleigh wave) and horizontal (Love wave) polarities. Even when the logistic contexts are sometimes difficult, the use of surface-wave-based methods is suitable for station-site characterization, even on rock sites. In comparison with previous studies that have mainly estimated VS30 indirectly, the new values here are globally lower, but the EC8-A class sites remain numerous. However, even on rock sites, high frequency amplifications may affect accelerometric records, due to the shallow relatively softer layers.  相似文献   

12.
An important task in seismic hazard assessment is estimation of the intensity and frequency of extremely strong earthquake effects, in particular, peak ground velocities (PGV). Earlier, a method was proposed to evaluate PGV values based on the magnitude of displacements of rock blocks (Rodkin et al., 2012). In this study, this method is used to analyze field data on the source zones of the August 19, 1992, MS = 7.3 Susamyr earthquake and the January 3, 1911, Mw = 7.9 Kemin earthquake, and estimate maximum ground shaking at the upper construction site of the Upper Naryn series of hydropower plants, Kyrgyz Republic. It is shown that the resulting estimates are consistent with data obtained through other techniques. Therefore, the new approach can be recommended to estimate earthquake effects.  相似文献   

13.
Correlations between longitudinal velocities and rock mechanic parameters such as fracture frequencies and “Rock Quality Designation” (RQD) values have been studied, based upon velocity data from various rock types and different geographical locations. The dispersion of values at different sites studied is on average ± 0.8 cracks per meter and for the RQD values ± 3.5%. Within sites the dispersion of individual values relative to the average for the site is ± 1.0 – 2.0 cracks per meter and ± 2 – 6% for the RQD values. The deviations are rather moderate, especially when considering the variation of rock type involved in the studies: amphibolite, granite, gneiss, meta-anorthosite, pegmatite, porphyry, quartzite, and mylonite. The studies thus confirmed earlier assumptions that there is a strong correlation between longitudinal velocity and fracturing and that the velocities can be used to give rather accurate predictions of the quality of rock masses for construction purposes. The accuracy of the predictions increases if the velocity level of the more competent rock is taken into account. The correlation between velocity and fracturing is related to jointed but unweathered igneous and metamorphic rock and cannot be applied without introducing serious errors to a site where the rocks present a higher degree of alteration and weathering. Comparisons between rock permeability and longitudinal velocity proved that a more reliable general correlation is not likely to be found. By comparing the elastic moduli Edyn, μ, and k with ø, Vp/V8, and k/μ, indications have been obtained where the optimum rock conditions for a certain site are to be encountered. This has been verified by a similar comparison where the elastic moduli have been replaced by fracturing values. The value of the longitudinal velocity as a means to evaluate rock quality increases if the position of the velocity in the range of the Poisson's ratio has been established. The average relationships between longitudinal velocities and the corresponding elastic moduli proved to be: The values from each site differ from the average values with about ± 2 GPa for Edyn and about ± 1 GPa for μ and k. It was confirmed that in igneous and metamorphic rocks longitudinal velocities ≤ 4000 m/s generally indicate rock masses where heavier tunnel support will be needed. This velocity limit corresponds to an average fracture frequency of about 10 cracks per meter and a RQD value of about 65 %. The prediction of the tunnel reinforcements needed at a particular site will, however, be improved if the general velocity level of the more competent rock is considered.  相似文献   

14.
CO2 saturations are estimated at Sleipner using a two-step imaging workflow. The workflow combines seismic tomography (full-waveform inversion) and rock physics inversion and is applied to a two-dimensional seismic line located near the injection point at Sleipner. We use baseline data (1994 vintage, before CO2 injection) and monitor data that was acquired after 12 years of CO2 injection (2008 vintage). P-wave velocity models are generated using the Full waveform inversion technology and then, we invert selected rock physics parameters using an rock physics inversion methodology. Full waveform inversion provides high-resolution P-wave velocity models both for baseline and monitor data. The physical relations between rock physics properties and acoustic wave velocities in the Utsira unconsolidated sandstone (reservoir formation) are defined using a dynamic rock physics model based on well-known Biot–Gassmann theories. For data prior to injection, rock frame properties (porosity, bulk and shear dry moduli) are estimated using rock physics inversion that allows deriving physically consistent properties with related uncertainty. We show that the uncertainty related to limited input data (only P-wave velocity) is not an issue because the mean values of parameters are correct. These rock frame properties are then used as a priori constraint in the monitor case. For monitor data, the Full waveform inversion results show nicely resolved thin layers of CO2–brine saturated sandstones under intra-reservoir shale layers. The CO2 saturation estimation is carried out by plugging an effective fluid phase in the rock physics model. Calculating the effective fluid bulk modulus of the brine–CO2 mixture (using Brie equation in our study) is shown to be the key factor to link P-wave velocity to CO2 saturation. The inversion tests are done with several values of Brie/patchiness exponent and show that the CO2 saturation estimates are varying between 0.30 and 0.90 depending on the rock physics model and the location in the reservoir. The uncertainty in CO2 saturation estimation is usually lower than 0.20. When the patchiness exponent is considered as unknown, the inversion is less constrained and we end up with values of exponent varying between 5 and 20 and up to 33 in specific reservoir areas. These estimations tend to show that the CO2–brine mixing is between uniform and patchy mixing and variable throughout the reservoir.  相似文献   

15.
16.
The Multichannel Analysis of Surface Waves (MASW) is an increasingly used technique for recognition of a shallow geological structure and estimation of geotechnical parameters, e.g., S-wave velocity, layer density, layer thickness, shear modulus, estimated P-wave velocity, and estimated Poisson ratio. MASW surveys were carried out in two limestone quarries in the southern part of Poland. The experimental areas are characterised by a simple geological structure: consolidated Triassic limestone. Measurement profiles were arranged as a shapely six-pointed star. For each survey line, 12 geophones with 2-meter (Deposit 1) and 3-meter (Deposit 2) spacing were applied. The research allowed to compare P- and S-wave velocity changes with the main crack systems in the studied rock masses.  相似文献   

17.
计算岩石波速空间平均的极限近似模型   总被引:2,自引:2,他引:0       下载免费PDF全文
本文在传统的岩石波速空间平均模型(Voight模型,Ruess模型,Hill模型和几何平均模型)的基础上,提出了一种极限近似模型.在这种模型中,它是利用作者提出的一个基于Hill模型(即代数平均模型)和几何平均模型的递推关系式,并利用这个关系式计算求出模型的极限近似值,该值介于Hill模型和几何平均模型之间,是具有典型代表意义的一个值.  相似文献   

18.
Landslides and rockfalls are key geomorphic processes in mountain basins. Their quantification and characterization are critical for understanding the processes of slope failure and their contributions to erosion and landscape evolution. We used digital photogrammetry to produce a multi‐temporal record of erosion (1963–2005) of a rock slope at the head of the Illgraben, a very active catchment prone to debris flows in Switzerland. Slope failures affect 70% of the study slope and erode the slope at an average rate of 0.39 ± 0.03 m yr¯¹. The analysis of individual slope failures yielded an inventory of ~2500 failures ranging over 6 orders of magnitude in volume, despite the small slope area and short study period. The slope failures form a characteristic magnitude–frequency distribution with a rollover and a power‐law tail between ~200 m³ and 1.6 × 106 m³ with an exponent of 1.65. Slope failure volume scales with area as a power law with an exponent of 1.1. Both values are low for studies of bedrock landslides and rockfall and result from the highly fractured and weathered state of the quartzitic bedrock. Our data suggest that the magnitude–frequency distribution is the result of two separate slope failure processes. Type (1) failures are frequent, small slides and slumps within the weathered layer of highly fractured rock and loose sediment, and make up the rollover. Type (2) failures are less frequent and larger rockslides and rockfalls within the internal bedded and fractured slope along pre‐determined potential failure surfaces, and make up the power‐law tail. Rockslides and rockfalls of high magnitude and relatively low frequency make up 99% of the total failure volume and are thus responsible for the high erosion rate. They are also significant in the context of landscape evolution as they occur on slopes above 45° and limit the relief of the slope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
To clarify the geological causes of rockslides induced by rainstorms in accretionary complexes, the geology and geomorphology of two large rockslides (volumes > 106 m3) induced by the heavy rainfall of Typhoon Talas in the Shimanto Belt, Kii Mountains, Japan in 2011 are investigated. Our analysis reveals that thrusts with brittle crush zones controlled the occurrence of the rockslides. The properties and distribution of thrusts were poorly constrained before this study. Flooding during the rainstorm removed surface materials along rivers, allowing thorough geological mapping to be performed. Gravitationally deformed slopes were studied using GIS analysis of 1 m digital elevation models (DEMs) and fieldwork, and X‐ray diffraction (XRD) analysis, permeability, and direct shear tests were used to characterize the mineralogy and geotechnical properties of fault gouge. The Kawarabi thrust has a brittle crush zone up to 6 m thick and acts as the sliding surface for both landslides. The thrust dips 34° downslope and is cut by high‐angle faults and joints along one or both sides of each landslide body. Prior to failure, the upper part of the slope contained small scarps, suggesting that the slopes were already gravitationally deformed. The slope instability can be attributed to long‐term river erosion, which has undercut the slope and exposed the thrust at the base of the slope. The groundwater level, monitored in boreholes, suggests that the Kawarabi thrust is a barrier to groundwater flow. The weak and impermeable nature of the thrust played an essential role in the generation of gravitational slope deformation and catastrophic failure during periods of increased rainfall. Thrusts are a common feature of accretionary complexes, including in the Shimanto Belt, and the mechanism of slope failure stated above can be typical of rockslides in accretionary complexes and provide new insights into landslide disaster mitigation.  相似文献   

20.
Electrical conductivity and seismic velocity are studied for plausible pore geometries in the Earth's interior for reliable quantitative analysis of experimental data such as seismic tomography and magnetotelluric explorations. Electrical conductivity of a two-phase system with equilibrium, interfacial energy-controlled phase geometry is calculated for the dihedral angles θ = 40°–100° that are typical for rock–aqueous fluid and θ = 20°–60° for rock–melt systems of lower crust and upper mantle for the case of tetrakaidecahedral grains. Electrical conductivity vs. seismic velocity correlations are acquired by combining of the simulated electrical conductivities with the seismic velocity calculated with the help of equilibrium geometry model Takei [Takei, Y., Effect of pore geometry on VP/VS: From equilibrium geometry to crack. J. Geophys. Res. 107 (2002): 10.1029/2001JB000522.] for the same pore geometries. The results show that electrical conductivity gradually decreases reaching zero when seismic velocities reach seismic velocities of intact rock for rock–melt systems, while for rock–aqueous fluid systems with θ  60° conductivity drops to zero at velocities up to 10% smaller. This can explain the seeming discrepancy of the low seismic velocity region, attributed to the high fluid fraction, and the low electrical conductivity of the same region, which is sometimes faced at collocated electromagnetic and seismic experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号