首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of short-term flooding on soil water content and subsequent tree response were examined in a riparian Eucalyptus camaldulensis forest which was dissected by a series of shallow ephemeral channels, locally known as runners. Twelve isolated plots, each approximately 0.8 ha, were established in three blocks of four treatments. One of the blocks was underlain by a moist, sandy aquifer 2–4 m below the surface. The four treatments were (1) flooding each spring; (2) flooding each summer; (3) flooding each spring plus each summer; (4) control (zero flooding). Depth of water percolation after a summer flooding varied from 1.3 to over 6 m below the surface. Horizontal movement away from the edge of the floodwater ranged from almost zero on some plots to at least 38 m. The extensive horizontal movement was confined within narrow aquifers which occurred under some plots. Trees in plots underlain by a shallow aquifer always had higher xylem pressure potential (XPP, MPa) than other trees, and flooding these plots increased XPP by a non-significant quantity (−0.14 MPa to −0.12 MPa). However, on the other plots, flooding resulted in a statistically significant increase in XPP from −0.45 to −0.10 MPa. The effect of flooding on XPP was evident for between 22.5 and 37.5 m from the floodwater. This was ascribed to root interception and some horizontal movement of water. Increased flood frequency from zero to one to two per year resulted in mean leaf areas of 11.0 cm2, 12.2 cm2 and 13.2 cm2, respectively. Trees in the runner, at 8 or at 38 m from the channels, had mean leaf areas of 12.9 cm2, 13.6 cm2 and 9.9 cm2, respectively. The presence of shallow aquifers increased mean leaf area from 11.5 to 13.3 cm2. Increased flood frequency significantly increased relative growth rate of trees up to 22.5 m from the edge of the floodwater. We conclude that short-term flooding of channels that occupied 15–20% of the forest floor temporarily improved tree moisture status and this increased tree growth rate in up to 70% of the forest.  相似文献   

2.
The purpose of this study is to obtain a better understanding of groundwater contamination processes in an arid environment (precipitation of 50 mm/year) due to cultivation. Additional aims were to study the fate of N, K, and other ions along the whole hydrological system including the soil and vadose zone, and to compare groundwater in its natural state with contaminated groundwater (through the drilling of several wells).

A combination of physical, chemical, and isotopic analyses was used to describe the hydrogeological system and the recharge trends of water and salts to the aquifers. The results indicate that intensive irrigation and fertilization substantially affected the quantity and quality of groundwater recharge. Low irrigation efficiency of about 50% contributes approximately 3.5–4 million m3/year to the hydrological system, which corresponds to 0.65 m per year of recharge in the irrigated area, by far the most significant recharge mechanism.

Two main contamination processes were identified, both linked to human activity: (1) salinization due to circulation of dissolved salts in the irrigation water itself, mainly chloride, sulfate, sodium and calcium, and (2) direct input of nitrate and potassium mainly from fertilizers.

The nitrate concentrations in a local shallow groundwater lens range between 100 and 300 mg/l and in the upper sub-aquifer are over 50 mg/l. A major source of nitrate is fertilizer N in the excess irrigation water. The isotopic compositions of δ15N–NO3 (range of 4.9–14.8‰) imply also possible contributions from nearby sewage ponds and/or manure. Other evidence of contamination of the local groundwater lens includes high concentrations of K (20–120 mg/l) and total organic carbon (about 10 mg/l).  相似文献   


3.
Laboratory culturing experiments with living Globigerina bulloides indicate that Mg/Ca is primarily a function of seawater temperature and suggest that Mg/Ca of fossil specimens is an effective paleotemperature proxy. Using culturing results and a core-top Neogloboquadrina pachyderma calibration, we have estimated glacial–interglacial changes in sea surface temperature (SST) using planktonic Mg/Ca records from core RC11-120 in the Subantarctic Indian Ocean (43°S, 80°E) and core E11-2 in the Subantarctic Pacific Ocean (56°S, 115°W). Our results suggest that glacial SST was about 4°C cooler in the Subantarctic Indian Ocean and 2.5°C cooler in the Subantarctic Pacific. Comparison of SST and planktonic δ18O records indicates that changes in SST lead changes in δ18O by on average 1–3 kyr. The glacial–interglacial temperature change indicated by the Subantarctic Mg/Ca records suggests that temperature accounts for 40–60% of the foraminiferal δ18O change. We have used the Mg/Ca-based SST estimates and δ18O determinations to generate site-specific seawater δ18O records, which suggest that seawater δ18O was on average 1‰ more positive during glacial episodes compared with interglacial episodes.  相似文献   

4.
To examine nitrate persistence, detailed geochemical profiling, using core-squeezed water and piezometer samples, was carried out at five sites in southern Ontario where groundwater is moving downward in silt-rich aquitard sediments at rates of 16 to more than 20 cm year−1. Elevated levels of NO3-N (5–50 mg 1−1) that occur in the shallow groundwater as a result of agricultural activity, were found to be consistently attenuated, generally to very low levels (< 0.05 mg 1−1-N), at the ‘redoxcline’, the horizon marking the boundary between the surficial weathered (brown) sediments and the underlying unweathered (grey) sediments. Tritium dating suggests that groundwater at the redoxcline depths (3–5 m) was recharged between 1970 and 1980, thus the N03 depletion appears to result from biodegradation reactions since no major landuse changes have occurred during this period. The close association of the nitrate depletion zones with the redoxcline, where, in particular, sediment sulphur contents increase abruptly, and where also porewater SO42− levels increase, suggests that the dominant attenuation reaction is autotrophic denitrification using reduced sulphur compounds present in the unweathered sediment as the electron donor. Mass balance calculations suggest that the increase in the downward rate of migration of the redoxcline, owing to added sulphur consumption from NO3 contamination, is only about 1 mm year−1 at these sites. Review of the literature indicates that most silt- and clay-rich sediments have S contents in the same range, or higher, than those investigated here, thus, in most cases where aquifers are overlain by several metres or more of unweathered confining sediments, it is likely that a high degree of protection is afforded from surficial NO3 contamination.  相似文献   

5.
Chemical and isotopic ratio (He, C, H and O) analysis of hydrothermal manifestations on Pantelleria island, the southernmost active volcano in Italy, provides us with the first data upon mantle degassing through the Sicily Channel rift zone, south of the African–European collision plate boundary. We find that Pantelleria fluids contain a CO2–He-rich gas component of mantle magmatic derivation which, at shallow depth, variably interacts with a main thermal (100°C) aquifer of mixed marine–meteoric water. The measured 3He/4He ratios and δ13C of both the free gases (4.5–7.3 Ra and −5.8 to −4.2‰, respectively) and dissolved helium and carbon in waters (1.0–6.3 Ra and −7.1 to −0.9‰), together with their covariation with the He/CO2 ratio, constrain a 3He/4He ratio of 7.3±0.1 Ra and a δ13C of ca. −4‰ for the magmatic end-member. These latter are best preserved in fluids emanating inside the active caldera of Pantelleria, in agreement with a higher heat flow across this structure and other indications of an underlying crustal magma reservoir. Outside the caldera, the magmatic component is more affected by air dilution and, at a few sites, by mixing with either organic carbon and/or radiogenic 4He leached from the U–Th-rich trachytic host rocks of the aquifer. Pantelleria magmatic end-member is richer in 3He and has a lower (closer to MORB) δ13C than all fluids yet analyzed in volcanic regions of Italy and southern Europe, including Mt. Etna in Sicily (6.9±0.2 Ra, δ13C=−3±1‰). This observation is consistent with a south to north increasing imprint of subducted crustal material in the products of Italian volcanoes, whose He and C (but also O and Sr) isotopic ratios gradually evolve towards crustal values northward of the African–Eurasian plate collision boundary. Our results for Pantelleria extend this regional isotopic pattern further south and suggest the presence of a slightly most pristine or ‘less contaminated’, 3He-richer mantle source beneath the Sicily Channel rift zone. The lower than MORB 3He/4He ratio but higher than MORB CO2/3He ratio of Pantelleria volatile end-member are compatible with petro-geochemical evidence that this mantle source includes an upwelling HIMU–EM1-type asthenospheric plume component whose origin, according to recent seismic data, may be in the lower mantle.  相似文献   

6.
Groundwater flow-paths through shallow-perch and deep-regional basaltic aquifers at the Golan Heights, Israel, are reconstructed by using groundwater chemical and isotopic compositions. Groundwater chemical composition, which changes gradually along flow-paths due to mineral dissolution and water–rock interaction, is used to distinguish between shallow-perched and deep-regional aquifers. Groundwater replenishment areas of several springs are identified based on the regional depletion in rainwater δ18O values as a function of elevation (−0.25‰ per 100 m). Tritium concentrations assist in distinguishing between pre-bomb and post-bomb recharged rainwater.

It was found that waters emerging through the larger springs are lower in δ18O than surrounding meteoric water and poor in tritium; thus, they are inferred to originate in high-elevation regions up to 20 km away from their discharge points and at least several decades ago. These results verify the numerically simulated groundwater flow field proposed in a previous study, which considered the geological configuration, water mass balance and hydraulic head spatial distribution.  相似文献   


7.
Experiments [T. Irifune (1994) Nature 370, 131–133; E. Ito et al. (1998) Geophys. Res. Lett. 25, 821–824; A. Kubo, M. Akaogi (2000) Phys. Earth Planet. Int. 121, 85–102] indicate that (Mg,Fe)SiO3 perovskite, commonly believed to be the most abundant mineral in the Earth, is the preferred host phase of Al2O3 in the Earth’s lower mantle. Aiming to better understand the effects of Al2O3 on the thermoelastic properties of the lower mantle, we use atomistic models to examine the chemistry and elasticity of solid solutions within the MgSiO3(perovskite)–Al2O3(corundum)–MgO(periclase) mineral assemblage under conditions pertinent to the lower mantle: low Al cation concentrations, P=25–100 GPa, and T=1000–2000 K. We assess the relative stabilities of two likely substitution mechanisms of Al into MgSiO3 perovskite in terms of reactions involving MgSiO3, MgO, and Al2O3, in a manner similar to the 0 Kelvin calculations of Brodholt [J.P. Brodholt (2000) Nature 407, 620–622] and Yamamoto et al. [T. Yamamoto et al. (2003) Earth Planet. Sci. Lett. 206, 617–625]. We determine the equilibrium composition of the assemblage by examining the chemical potentials of the Al2O3 and MgO components in solid solution with MgSiO3, as functions of concentration. We find that charge coupled substitution dominates at lower mantle pressures and temperatures. Oxygen vacancy-forming substitution accounts for 3–4% of Al substitution at shallow lower mantle conditions, and less than 1% in the deep mantle. For these two pressure regimes, the corresponding adiabatic bulk moduli of aluminous perovskite are 2% and 1% lower than that of pure MgSiO3 perovskite.  相似文献   

8.
The biotic composition, structure, and function of aquatic, wetland, and riparian ecosystem depend largely on the hydrological regime (Poff, N.L., Ward, J.V., 1990. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Can. J. Fisheries Aquat. Sci. 46, 1805–1818; Richter, B.D., Baumgartner, J.V., Wiginton, R., Braun, D.P., 1997 How much water does a river need? Freshwater Biol. 37, 231–249). Available flow data for many rivers in the world can be used to validate these ecological theories. There is a demand for studies that use hydrological indices to establish criteria, which serve to group together regime types at a local level. Once this has been done, these hydrologically similar groups can be used to identify communities of living organisms that are linked to specific aspects of the river's behaviour.

An approach to characterise flow regimes in the river network of the Tagus basin in Spain is presented. The river Tagus (río Tajo) is one of the seven major rivers of the Iberian peninsula. All hydrological data were acquired from the measurements made in the Tagus basin, at 25 gauging stations. Twelve variables were derived for each gauged site to describe variability and predictability of average streamflow conditions, and to describe the frequency, timing and intensity of high flow and low flow extremes.

A hierarchical clustering routine was used to identify similar groups of rivers as defined in terms of similar characteristics of their streamflow regime. The variables were also examined with simple correlations to determine if multicollinearity occurred, in order to reject redundant parameters or to identify similar behaviour trends between pairs of parameters. Some parameters have shown a tendency to increase or decrease along the east–west axis, suggesting that some of the studied characteristics may have a geographical cause.

Cluster analysis, with the values of the 12 parameters, reveals two main groups, each of which splits into two main subdivisions. One of these subgroups contains six rivers with similar characteristics, can be considered to be ‘classic regular rivers’, the stations in this first subgroup are mostly situated geographically close to each other. At the other end, we have found a subgroup, with a high variation of flows over the year and high flood flows; these rivers are highly irregular rivers with great changes. This regular–irregular gradient found between the groups is similar to that observed by others authors (Poff, N.L., Allan J.D., 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76, 606–627), and strong associations have been documented with compositions of populations and probably reflect differences in other similar important environmental factors.  相似文献   


9.
Hydraulic properties of deeply weathered basement rocks and variably weathered sedimentary materials were measured by pumping and slug-test methods. Results from over 200 bores in 13 catchments, and eight pumping-test sites across the eastern and central wheatbelt of Western Australia were analysed. Measurements were made in each of the major lithological units, and emphasis placed on a ubiquitous basal saprolite aquifer. Comparisons were made between alternative drilling and analytical procedures to determine the most appropriate methods of investigation.

Aquifers with an average hydraulic conductivity of 0.55 m day−1 occur in variably weathered Cainozoic sediments and poorly weathered saprolite grits (0.57 m day−1). These aquifers are separated by an aquitard (0.065 m day−1) comprising the mottled and pallid zones of the deeply weathered profile. Locally higher values of hydraulic conductivity occur in the saprolite aquifer, although after prolonged periods of pumping the values decrease until they are similar to those obtained from the slug-test methods. Hydraulic conductivities measured in bores drilled with rotary auger rigs were approximately an order of magnitude lower than those measured in the same material with bores drilled by the rotary air-blast method.

Wheatbelt aquifers range from predominantly unconfined (Cainozoic sediments), to confined (saprolite grit aquifer). The poorly weathered saprolite grit aquifer has moderate to high transmissivities (4–50 m2 day−1) and is capable of producing from less than 5 to over 230 kl day−1 of ground water, which is often of a quality suitable for livestock. Yields are influenced by the variability in the permeability of isovolumetrically weathered materials from which the aquifer is derived.

The overlying aquitard has a low transmissivity (< 1 m2 day−1), especially when deeply weathered, indurated and silicified. The transmissivity of the variably weathered sedimentary materials ranges from less than 0.5 m2 day−1 to over 10 m2 day−1, depending on the texture of the materials and their position within the landscape. Higher transmissivity zones may occur as discrete layers of coarser textured materials. The salinity of the saprolite and sedimentary aquifers ranges from less than 2000 mgl−1 to greater than 250000 mgl−1 (total dissolved solids; TDS), depending on position within the landscape. Secondary soil salinization develops when groundwater discharge occurs from either saprolite or sedimentary aquifers.  相似文献   


10.
In 1995–1998, Han 11 km terrestrial surge of Kuannersuit Glacier, an outlet glacier of the largest ice cap on Disko Island, West Greenland, affected the catchment dramatically. In order to estimate solute fluxes and provenances, bulk meltwaters were sampled at the main subglacial outlet during the initial part of the quiescent phase. The hydrochemistry is significantly influenced by a subglacial basaltic weathering regime with absence of carbonate minerals. The results show that marine and aerosol derived solutes have minimal contribution to the total ion content, whereas sequestration of atmospheric CO2 associated with carbonation of Ca-rich feldspar and reactive volcanic glass is more dominant than previously reported from glacierized catchments. Application of a sampling strategy dividing water samples into four groups to determine the content of dissolved HCO3 and CO32− shows that the cationic equivalent weathering rate range is 683–860 Σmeq+ m−2 a−1 and solute flux ranges between 76 and 98 t km−2 a−1. The crustal denudation rate is estimated to 26 t km−2 a−1, and the transient CO2 drawdown amounts to 8500–13700 kg C km−2 a−1.  相似文献   

11.
Magma degassing at Soufrière Hills Volcano (SHV) is characterised by an almost permanent SO2 flux and a HCl production rate which mainly depends on dome growth rate. Degassing processes have been studied through textural, H2O and halogen analyses of clasts collected between 1995 and 2006 on the dome and in pyroclastic flows and vulcanian eruption deposits. Cl, Br and I are strongly depleted in melts during H2O degassing with no significant Cl–Br–I fractionation, whereas F is almost unaffected. All magmas erupted at SHV have followed a multi-step degassing path from the magma chamber up to a shallow depth ( 1 km, P  20 MPa). From that depth, however, effusive and explosive paths are distinct; vulcanian eruptions are the result of closed system degassing (CSD), while effusive dome growth is the result of CSD up to a very shallow depth (≤ 200 m, P  5–2 MPa) followed by open system degassing (OSD). CSD is modelled using the H2O solubility law, the perfect gas law and partition coefficients of halogens between a rhyolitic melt and H2O vapour (dv − li). Gas loss characteristic of OSD is modelled using a Rayleigh law. Degassing induced crystallisation is introduced through the ratio of crystallisation and degassing rates, which ranges from 150–500. dv − lCl for OSD ranges between 50–300, increasing with melt Cl content. For CSD, the lower effective dv − lCl ( 20) is attributed to kinetic effects.

Dome forming activity has a greater impact on atmospheric chemistry than vulcanian eruptions because OSD is much more efficient at extracting halogens. The model shows that HCl flux is a good proxy for the dome forming eruption rate. Comparison between model and measured gas compositions suggests a high HBr–BrO conversion rate (BrO/Total Br  1/3) in the SHV gas plume.

The degassing behaviour of Cl, Br and I implies similar Cl/Br ( 160) and Br/I ( 90) in initial melts, volcanic clasts and high temperature gases. The low Cl/Br at SHV compared to other island arcs ( 250–300) is attributed to a shallow, pre-eruptive Br enrichment. The almost permanent dome extrusion at SHV since 1995 has likely had a significant regional atmospheric impact because of the very efficient effusive degassing and the high conversion rate of halogens into reactive species within the gas plume.  相似文献   


12.
Geochemical variations in mid-ocean ridge basalts have been attributed to differing proportions of compositionally distinct mantle components in their sources, some of which may be recycled crust. Oxygen isotopes are strongly fractionated by near-surface interactions of rocks with the hydrosphere, and thus provide a tracer of near-surface materials that have been recycled into the mantle. We present here oxygen isotope analyses of basaltic glasses from the mid-Atlantic ridge south of and across the Azores platform. Variations in δ18O in these samples are subtle (range of 0.47‰) and may partly reflect shallow fractional crystallization; we present a method to correct for these effects. Relatively high fractionation-corrected δ18O in these samples is associated with geochemical indices of enrichment, including high La/Sm, Ce/Pb, and 87Sr/86Sr and low 143Nd/144Nd. Our results suggest two first-order conclusions about these enriched materials: (1) they are derived (directly or indirectly) from recycled upper oceanic crustal rocks and/or sediments; and (2) these materials are present in the north Atlantic MORB sources in abundances of less than 10% (average 2–5%). Modeling of variations of δ18O with other geochemical variables further indicates that the enriched component is not derived from incorporation of sediment or bulk altered oceanic crust, from metasomatism of the mantle by hydrous or carbonate-rich fluids, or from partial melting of subducted sediment. Instead, the data appear to require a model in which the enriched component is depleted mantle that has been metasomatized by small-degree partial melts of subducted, dehydrated, altered oceanic crust. The age of this partial melting is broadly constrained to 250 Ma. Reconstructed plate motions suggest that the enriched component in the north Atlantic mantle may have originated by subduction along the western margin of Pangea.  相似文献   

13.
Sediment and biota samples were collected from Msimbazi and Kizinga rivers and from the coastal marine environment of Dar es Salaam during both dry and wet seasons. The samples were analyzed for various organochlorine pesticide residues using GC-ECD and GC-MS. Dieldrin, p,p-DDT, p,p-DDE, p,p-DDD, o,p-DDT and γ-HCH were detected at significantly greater concentrations above the method detection limits. Recoveries of pesticide residues ranged 86.5–120% in sediments and 62–102% in biota. The average concentrations of total DDT in sediments for the two seasons were almost the same. Biota samples showed significant difference in levels of residues depending on mode of feeding and age of analyzed biota. p,p-DDT to total DDT ratios in all matrices indicated recent use of DDT. The levels of residues in sediments suggest possible adverse effects to humans consuming biota that are directly exposed to the sediments. This effect, which is associated with bio-concentration of residues in the tissues of edible aquatic biota, should not affect wildlife. In spite of concern on the adverse effect to humans posed by pesticide residues in sediments, edible biota from the examined water bodies were found to be safe for human consumption.  相似文献   

14.
Two diagenetic manganese nodules from the Peru Basin were investigated by thermal ionization mass spectrometry and high resolution alpha spectrometry for uranium and thorium. The TIMS concentrations for nodule 62KD (63KG) vary as follows: 0.12–1.01 ppb (0.06–0.59) 230Th, 0.51–1.98 ppm (0.43–1.40) 232Th, 0.13–0.80 ppb (0.09–0.49) 234U, and 1.95–13.47 ppm (1.66–8.24) 238U. Both nodules have average growth rates of 110 mm per million years. However, from the variations of excess 230Th with depth we estimate partial accumulation rates which range from 50 to 400 mm per million years. The δ234U dating method cannot be applied due to remobilization of U from the sediment and subsequent incorporation into the nodules' crystal lattice, reflected by decay corrected δ234U values far above the ocean water value. Sections of fast nodule growth are related to those layers having high Mn/Fe ratios (up to 200) and higher densities. As a possible explanation we develop a scenario that describes similar glacial/interglacial trends in both nodules as a record of regional changes of sediment and/or deep water chemistry.  相似文献   

15.
The water-table region (upper 50 cm of the saturated zone) of a 25 m deep phreatic sandstone aquifer, lying under fields irrigated with sewage effluents for up to 22 yrs, was monitored in 1971 and 1984. Average concentrations of NO3, Cl and SO2−4 of up to 225, 307 and 155 mg l−1, respectively, were detected in the upper 50 cm of the saturated region in two research wells in 1984. These concentrations, which are related to effluent and fertilizer input to groundwater, were two to four times higher than those found deep (37–55 m) below the water table in nearby (1000 m distant) production wells. Nitrate data and the estimated transit time through the unsaturated zone (2 m yr−1) support the model suggesting that the major source of nitrate pollution in the past should be related to the oxidation of soil organic matter. The SO2−4/Cl ratio is found to be a useful indicator for the arrival of SO2−4-fertilizers at the groundwater interface. The observations presented in this paper question the suitability of plans for using effluents as a water source for agriculture in regions which are the replenishment areas of phreatic aquifers.  相似文献   

16.
A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, 18O) and chemical (Cl, SO4) composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region – where a pond is located in the stream channel – shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to streamflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow.  相似文献   

17.
In 1989, in a hydrological research programme within a deacidification project in the Gårdsjön area in southwest Sweden, flow paths and residence times of soil water and groundwater in microcatchments were examined to support the interpretation of the hydrochemical changes. Saturated hydraulic conductivity and soil water retention were analysed on more than 100 cylinder samples. The catchments have shallow sandy-silty till soil with a mean depth in the main catchment of 43 cm. Porosity of the mineral soil in the main catchment was high and ranged from 38 to 85%. The samples from the B-horizon had generally higher porosity. Porosity and the content of organic matter were correlated. The soil water retention was relatively high at all tensions, likely owing to the high content of organic matter. Dissolved organic substances were most probably transported from the shallow soil on the steep sides of the catchment down to the valley where it precipitated. The high porosities could be a consequence of long-term weathering, provided that the organic substances present have increased the leaching of the weathering products. Measured values of saturated hydraulic conductivity were close to log-normally distributed with a mean for all samples of 3 × 10−5 m s−1. There was a significant increase in conductivity toward the ground surface with the mean conductivity of the samples in the uppermost 10 cm of the mineral soil of 4 × 10−5 m s−1, which was about 13 times higher than the conductivity of 3 × 10−6 m s−1 at 1 m depth. From the relationship between runoff at the catchment outlet and groundwater levels, the conductivity was estimated to be 15–200 times higher in the upper soil layer than in the deeper ones. In one profile, 44–64% of the yearly lateral flow was estimated to occur above 30 cm depth. The conductivity was correlated with the content of drainable water, which indicated the importance of the largest pores for the saturated hydraulic conductivity.  相似文献   

18.
The upper part of the Huanghe (Yellow River) drainage basin supplies 50–60% of the annual water discharge and only 10% of the total river sediment load, while the middle reaches contribute 30–40% of the water flow and 90% of the annual sediment load, because of severe erosion over the Loess Plateau. Large variations in both annual water discharge and sediment load occur in the Huanghe. Heavy sedimentation in the lower reaches of the channel makes the river bed aggrade several centimetres per year. Of the suspended sediment in the river, 90–95% is deposited in the lower part of the river course and in the coastal shallow water area; less than 5–10% escapes from Laizhou Bay and enters the Central Bohai and/or North Huanghai (Yellow Sea). The active delta complex now propagates seawards at a mean rate of 42 km2 year−1.  相似文献   

19.
We investigated the distribution of naturally occurring geochemical tracers (222Rn, 223Ra, 224Ra, 226Ra, CH4, δ18O, and δ2H) in the water column and adjacent groundwater of Mangueira Lagoon as proxies of groundwater discharge. Mangueira Lagoon is a large (90 km long), shallow (4–5 m deep), fresh, and non-tidal coastal lagoon in southern Brazil surrounded by extensively irrigated rice plantations and numerous irrigation canals. We hypothesized that the annual, intense irrigation for rice agriculture creates extreme conditions that seasonally change groundwater discharge patterns in the adjacent lagoon. We further supposed that dredging of irrigation canals alters groundwater fluxes.

While the activities of 222Rn in shallow groundwater were 2–3 orders of magnitude higher than in surface water, CH4 and radium isotopes were only 1 order of magnitude higher. Therefore, 222Rn appears to be the preferred groundwater tracer in this system. Radon concentrations and conductivities were dramatically higher near the pump house of rice irrigation canals, consistent with a groundwater source. Modeling of radon inventories accounting for total inputs (groundwater advection, diffusion from sediments, and decay of 226Ra) and losses (atmospheric evasion, horizontal mixing and decay) indicated that groundwater advection rates in the irrigation canals (25 cm/d) are over 2 orders of magnitude higher than along the shoreline (0.1 cm/d). Nearly 75% of the total area of the canals is found in the southern half of the lagoon, where groundwater inputs seem to be higher as also indicated by methane and stable isotope trends. In spite of the relatively small area of the canals, we estimate that they contribute nearly 70% of the total (57,000 m3/d) groundwater input into the entire Mangueira Lagoon. We suggest that the dredging of these canals cut through aquitards which previously restricted upward advection from the underlying permeable strata. The irrigation channels may therefore represent an important but previously overlooked source of nutrients and other dissolved chemicals derived from agricultural practices into the lagoon.  相似文献   


20.
Groundwater discharge in alpine headwaters sustains baseflow in rivers originating in mountain ranges of the world, which is critically important for aquatic habitats, run-of-river hydropower generation, and downstream water supply. Groundwater storage in alpine watersheds was long considered negligible, but recent field-based studies have shown that aquifers are ubiquitous in the alpine zone with no soil and vegetation. Talus, moraine, and rock glacier aquifers are common in many alpine regions of the world, although bedrock aquifers occur in some geological settings. Alpine aquifers consisting of coarse sediments have a fast recession of discharge after the recharge season (e.g., snowmelt) or rainfall events, followed by a slow recession that sustains discharge over a long period. The two-phase recession is likely controlled by the internal structure of the aquifers. Spatial extent and distribution of individual aquifers determine the groundwater storage-discharge characteristics in first- and second-order watersheds in the alpine zone, which in turn govern baseflow characteristics in major rivers. Similar alpine landforms appear to have similar hydrogeological characteristics in many mountain ranges across the world, suggesting that a common conceptual framework can be used to understand alpine aquifers based on geological and geomorphological settings. Such a framework will be useful for parameterizing storage-discharge characteristics in large river hydrological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号