首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
During the Abruzzo earthquake (6.IV.2009, MW = 6.3), the village of Castelnuovo, lying on an elliptical hill about 60 m high, underwent an intensive damage (IMCS = 9–10), that could be partly ascribed to the topographic amplification and to the presence of an underground cavity network. To verify these hypotheses, the seismic response of the hill was carefully investigated adopting both 2D and 3D finite difference numerical models. Analyses were carried out using a detailed geotechnical model, defined on the basis of a comprehensive field investigation (boreholes, DH, HVSR, ERT) and accurate laboratory tests (RC-TS). The reference input motion was reproduced considering the time history of the mainshock recorded at an accelerometric station close to the epicenter, conveniently deconvoluted to the bedrock and scaled in amplitude to the site of Castelnuovo. The results of the numerical analyses, expressed in terms of distribution of the amplification factor of peak acceleration and Housner intensity, proved that the topographic effects significantly influenced the ground motion at surface, whereas the role of cavities seemed to be negligible.  相似文献   

2.
The Horizontal-to-Vertical Spectral Ratio from earthquake (HVSR) and from ambient noise (HVN) recordings realistically indicate the fundamental frequency of soil response but, for the majority of the worldwide examined sites, they do not provide reliable amplification curves as calculated by the earthquake standard Spectral Ratio (SSR). Given the fact that HVSR and especially HVN can be easily obtained, it is challenging to search for a meaningful correlation with SSR amplification functions for the entire frequency band and to use the results for the SSR estimate at a further site where only noise measurements are available. To this aim we used recordings from 75 sites worldwide and we applied a multivariate statistical approach (canonical correlation analysis) to investigate and quantify any correlation among spectral ratios. The canonical correlation between SSR and HVN is then used to estimate the expected SSR at each site by a weighted average of the SSR values measured at the other sites; the weights are properly set to account more for sites with similar behaviour in terms of the canonical correlation results between HVN and SSR. This procedure, repeated for all sites in turn, constitutes the basis of a cross validation. The comparison between the inferred and the original SSR highlights the improvements of site response estimation with respect to the use of ambient noise techniques. The goodness and limitations of the reconstruction procedure are explained by specific geological settings.  相似文献   

3.
Nakamura (Q Rep Railway Tech Res Inst 30:25–33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site’s MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.  相似文献   

4.
In this study, two different historical structures built in Trabzon have been processed by ambient vibrations and seismic refraction measurements. One of the investigated historical structures is the Atatürk Pavilion built in the nineteenth century, and the other one is Hagia Sophia which was built in the thirteenth century. These two buildings are among the most important historical buildings in Trabzon and are very important for the tourism of the city. In order to determine peak/s frequency and amplitude from the horizontal-to-vertical spectral ratios (HVSRs), we have performed several measurements of ambient vibrations both inside (at different floors) and outside (on the ground) of structures. We have also conducted seismic prospecting to evaluate the vertical 1D and 2D profile of longitudinal and shear seismic waves, Vp and Vs, respectively. To this purpose, we have performed seismic refraction tomography and MASW. Ambient vibrations and seismic measurements were compared with each other. The results show that average predominant frequencies and HVSR amplitudes of inside and outside of Atatürk Pavilion are 4.0 Hz, 7.8 Hz and 2.6, 2.3, respectively. The Vp values vary from 300 to 2070 m/s, and the Vs for maximum effective depth is up to 790 m/s in Atatürk Pavilion. On the other hand, average predominant frequencies and HVSR amplitudes of inside and outside of Hagia Sophia and its tower are 4.7, 4.4 and 2.4 Hz and 1.6, 1.8 and 6.9, respectively. Vp values range from 450 to 2200 m/s, and Vs for maximum effective depth is also up to 1000 m/s in Hagia Sophia. The frequency values (F0?=?Vs/4 h) calculated from the velocities up to the maximum effective depth for Atatürk Pavilion are in good agreement with the predominant frequency values determined from ambient vibrations. Atatürk Pavilion and Hagia Sophia soils have been classed according to Eurocode 8 by using VS30 values. The class was defined as “B.” Moreover, the bedrock in studied area is basalt. The high Vp and Vs values are also compatible with the lithology. The HVSR curves measured at the Hagia Sophia show the presence of clear peaks when compared to the Atatürk Pavilion. At the same time, there are marked velocity changes in the Vs sections calculated in both areas. As a result, in both areas there are significant impedance contrasts in the subsoil. However, this impedance contrast is more evident in Hagia Sophia. This could be also compatible with a lithological transition. The possible soil–structure interaction was investigated by using all the results and evaluated in terms of resonance risk. It is thought that the probability of resonance risk at Atatürk Pavilion is low according to the ambient vibrations measurements. However, resonance risk should be taken into consideration at Hagia Sophia site since the predominant frequency values are very close to each other. Finally, this site should be investigated in detail and necessary precautions should be taken against the risk of resonance.  相似文献   

5.
This research focuses on the evaluation of soil conditions for seismic stations in southern and eastern Romania, their influence on stochastic finite-fault simulations, and the impact of using them on the seismic hazard assessment. First, the horizontal-to-vertical spectral ratios (HVSR) are evaluated using ground motions recorded in 32 seismic stations during small magnitude (M W  ≤ 6.0) Vrancea seismic events. Most of the seismic stations situated in the southern part of Romania exhibit multiple HVSR peaks over a broad period range. However, only the seismic stations in the eastern-most part of Romania have clear short-period predominant periods. Subsequently, stochastic finite-fault simulations are performed in order to evaluate the influence of the soil conditions on the ground motion amplitudes. The analyses show that the earthquake magnitude has a larger influence on the computed ground motion amplitudes for the short- and medium-period range, while the longer-period spectral ordinates tend to be influenced more by the soil conditions. Next, the impact of the previously evaluated soil conditions on the seismic hazard results for Romania is also investigated. The results reveal a significant impact of the soil conditions on the seismic hazard levels, especially for the sites characterized by long-period amplifications (sites situated mostly in southern Romania), and a less significant influence in the case of sites which have clear short predominant periods.  相似文献   

6.
On 31 October and 1 November 2002, the Basso Molise area (Southern Italy) was struck by two earthquakes of moderate magnitude (M L = 5.4 and 5.3). The epicentral area showed a high level of damage, attributable both to the high vulnerability of existing buildings and to site effects caused by the geological and geomorphological settings. Specifically, the intensity inside the town of San Giuliano di Puglia was two degrees higher than in neighbouring towns. Also, within San Giuliano di Puglia, the damage varied notably. The site response in the city was initially evaluated from horizontal-to-vertical spectral ratios (HVSR) from a limited number of strong motion recordings of the most severe aftershocks. Several microtremor measurements were also available. Both data sets indicated the simultaneous presence of two amplification peaks: one around 6 Hz, attributed in previous studies to the strong, shallow impedance contrast among landfill/clay and calcarenites, and one at 2 Hz related to the first S-wave arrivals and predominantly seen only on one receiver component. Further studies performed on weak-motion recordings also showed strong amplification on the vertical receiver component, thus indicating an underestimation of the amplification by the HVSR technique. Additionally, a 2D-model of the geology of the sub-surface was developed, reproducing the flower-shaped structure generated during the late orogenic transpressive regime. The numerical (finite-difference hybrid) simulation reproduced the two peaks of the observed data at slightly higher frequencies. The model also confirmed that the borders of the flower structure define a boundary between amplification levels, with higher amplification inside.  相似文献   

7.
Ground improvement works are commonly required to overcome poor underlying soils in conjunction with infrastructure and housing development. An extensively employed and popular improvement technique is to impart mechanical compaction to the ground in an effort to achieve adequate strength and favourable load-deformation behaviour (stiffness) for the construction of civil infrastructure, including buildings and roads. This paper describes the study of a passive ambient vibration (often also known as microtremors) HVSR based method for assessing compacted ground. Two methods to control this compaction process at a very large site were employed: (a) strictly controlled rolling compaction (b) visually monitored (by naked eye) rolling compaction. The key features of the measured HVSR curves have been studied and analysed to infer useful insights about the compaction achieved by the two methods. Furthermore, the fitting of these measured HVSR curves by trial-and-error forward modelling forms the basis for inferring the shear wave velocity (Vs) profile and layer thicknesses of the compacted ground. It is shown in this paper that the process of analysing and interpreting the HVSR curves, as well as the forward modelling of the HVSR curves reveal useful information about the quality and consistency of the compacted ground.  相似文献   

8.
Twenty six sites were instrumented in the city of Vartholomio following the December 2, 2002 Ms 6.0 earthquake. Thirty weak events from the aftershock sequence as well as microtremors were used to identify amplifications due to geological site effects. Horizontal-to-vertical spectral ratios (HVSR—Nakamura estimates) and weak events ratios were calculated and the singular spectrum analysis (SSA) method was used. The results showed that the effects of SSA on the stability of the frequency peak and amplitude distribution of HVSR for both weak motion and microtremors. The data analysis confirms the role of near surface geology in causing locally significant variations of the predominant frequencies and amplitudes of ground shaking as already inferred from the distribution of damages. The site response spectra exhibited significant peaks within the range of 1.5–2.6 Hz and the amplification factor did not exceed 6.5. Finally the parts of the HVSR ratios from ~0.2 up to 10 Hz were used, in order to create an automatic optimal zonation of the study area using a genetic algorithm. This procedure resulted in the division of the city into 2 main zones.  相似文献   

9.
Microtremor Measurements for the Microzonation of Dinar   总被引:3,自引:0,他引:3  
v--vThe geotechnical site conditions in Dinar town located in western Turkey were investigated after the 1995 Dinar earthquake based on borings, in situ penetration tests, seismic wave velocity measurements, and microtremor records. The variation of damage distribution within the town was evaluated with respect to 23 district damage ratios calculated, based on the detailed damage survey conducted by the General Directorate of Disaster Affairs. Site amplifications were estimated from microtremor spectral ratios and microzonation was performed using a GIS methodology. The results of in situ penetration tests and seismic wave velocity measurements as well as the damage distribution were compared with the amplification zonation obtained from microtremor records. The results indicate the applicability of microtremor spectral ratios for assessing the local site conditions and site amplifications.  相似文献   

10.
During its history, several significant earthquakes have shaken the Lower Tagus Valley (Portugal). These earthquakes were destructive; some strong earthquakes were produced by large ruptures in offshore structures located southwest of the Portuguese coastline, and other moderate earthquakes were produced by local faults. In recent years, several studies have successfully obtained strong-ground motion syntheses for the Lower Tagus Valley using the finite difference method. To confirm the velocity model of this sedimentary basin obtained from geophysical and geological data, we analysed the ambient seismic noise measurements by applying the horizontal to vertical spectral ratio (HVSR) method. This study reveals the dependence of the frequency and amplitude of the low-frequency (HVSR) peaks (0.2–2 Hz) on the sediment thickness. We have obtained the depth of the Cenozoic basement along a profile transversal to the basin by the inversion of these ratios, imposing constraints from seismic reflection, boreholes, seismic sounding and gravimetric and magnetic potentials. This technique enables us to improve the existing three-dimensional model of the Lower Tagus Valley structure. The improved model will be decisive for the improvement of strong motion predictions in the earthquake hazard analysis of this highly populated basin. The methodology discussed can be applied to any other sedimentary basin.  相似文献   

11.
The 2010 Mentawai earthquake (magnitude 7.7) generated a destructive tsunami that caused more than 500 casualties in the Mentawai Islands, west of Sumatra, Indonesia. Seismological analyses indicate that this earthquake was an unusual “tsunami earthquake,” which produces much larger tsunamis than expected from the seismic magnitude. We carried out a field survey to measure tsunami heights and inundation distances, an inversion of tsunami waveforms to estimate the slip distribution on the fault, and inundation modeling to compare the measured and simulated tsunami heights. The measured tsunami heights at eight locations on the west coasts of North and South Pagai Island ranged from 2.5 to 9.3 m, but were mostly in the 4–7 m range. At three villages, the tsunami inundation extended more than 300 m. Interviews of local residents indicated that the earthquake ground shaking was less intense than during previous large earthquakes and did not cause any damage. Inversion of tsunami waveforms recorded at nine coastal tide gauges, a nearby GPS buoy, and a DART station indicated a large slip (maximum 6.1 m) on a shallower part of the fault near the trench axis, a distribution similar to other tsunami earthquakes. The total seismic moment estimated from tsunami waveform inversion was 1.0 × 1021 Nm, which corresponded to Mw 7.9. Computed coastal tsunami heights from this tsunami source model using linear equations are similar to the measured tsunami heights. The inundation heights computed by using detailed bathymetry and topography data and nonlinear equations including inundation were smaller than the measured ones. This may have been partly due to the limited resolution and accuracy of publically available bathymetry and topography data. One-dimensional run-up computations using our surveyed topography profiles showed that the computed heights were roughly similar to the measured ones.  相似文献   

12.
The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the Wenchuan area. In this regard, a total of 602 recordings from 96 aftershocks of the Wenchuan earthquake with magnitudes of M3.7-M6.5 were selected as a dataset. These recordings were obtained from 28 stations at a hypocenter distance ranging from 30 km to 150 km. The inversion results have been verified as reliable by comparing the site response at station 62WUD using the Generalized Inversion Technique (GIT) and the Standard Spectral Ratio method (SSR). For all 28 stations, the site predominant frequency F p and the average site amplification in different frequency bands of 1.0–5.0 Hz, 5.0–10.0 Hz and 1.0–10.0 Hz have been calculated based on the inversion results. Compared with the results from the horizontal-to-vertical spectral ratio (HVSR) method, it shows that the HVSR method can reasonably estimate the site predominant frequency but underestimates the site amplification. The linear fitting between the average site amplification for each frequency band and the V s20 (the average uppermost-20 m shear wave velocity) shows good correlation. A distance measurement called the asperity distance D Aspt is proposed to reasonably characterize the source-to-site distance for large earthquakes. Finally, the inversed site response is used to identify the soil nonlinearity in the main shock and aftershocks of Wenchuan earthquake. In ten of the 28 stations analyzed in the main shock, the soil behaved nonlinearly, where the ground motion level is apparently beyond a threshold of PGA > 300 cm/s2 or PGV > 20 cm/s, and only one station coded 51SFB has evidence of soil nonlinear behavior in the aftershocks.  相似文献   

13.
On 11 May 2011, a M w ?=?5.1 earthquake shook the town of Lorca (SE Spain) causing a disproportionately large damage for its magnitude. In order to contribute to knowledge of the behavior of the active faults present in the region and define the parameters which control their motion, we made a detailed study of the rupture process of this earthquake from inversion of body waves at regional and teleseismic distances. Ground motion displacements obtained in this way are in agreement with near-field strong motion data and GPS observations recorded in Lorca. We have obtained a partly bilateral rupture propagating to WSW (238°, 54°, 59°) with 27 cm of maximum slip and shallow focus (4 km). The fault plane orientation corresponds to that of the Cejo de los Enamorados Fault located NE of the Lorca town and parallel to the Alhama de Murcia Fault. The distribution of slip on the fault plane can explain the lack of any observed surface rupture as we found that the rupture started at 4-km depth along a plane dipping at 54°, with motion propagating upward to stop at 1.5 km below the surface. The strong motion and GPS data recorded near the epicenter are in agreement with the maximum slip on the fault. Directivity effects and the extreme shallowness of the rupture could explain the considerable damage that the earthquake caused in the town of Lorca.  相似文献   

14.
Using the WKBJ approximation method we calculate the synthetic teleseismograms of P and PP waves to match the observed ones of six large Chinese earthquakes with known focal mechanisms: Tibet earthquake of July 14, 1973; Haicheng earthquake of February 4, 1975; Songpan earthquakes of August 16, 1976, August 21, 1976 and August 23, 1976 and Nignhe earthquake of November 15, 1976. The focal mechanism of the Tibet earthquake is discussed to examine the technique used in the calculation. We note that the amplitude ratios of PP and P waves (A PP/A P) have different characteristics for dip—slip events and strike—slip events within certain epicentral distances. We calculate the synthetic teleseismograms of P and PP waves for the strike—slip and dip—slip events with fault angles of 330°, 240° and 0°, focal depths of 8 km, 17 km and 24 km, at the assumed station with an azimuth of 310° and epicentral distances from 40°; to 80°. The diagrams of maximum amplitude ratios of PP and P waves (A PP/A P) versus distances are given. The possibility to use the (A PP/A P) values to give an approximate estimation for the focal mechanism type is discussed. This work may be useful for determining the focal mechanism type for those earthquakes which have only few records such as the Chinese earthquakes from the 1930s to 1960s. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 150–160, 1991.  相似文献   

15.
Local site effect microzonation of Lorca town (SE Spain)   总被引:1,自引:0,他引:1  
Local site effect assessment based on subsurface ground conditions is often the key to evaluate urban seismic hazard. The site effect evaluation in Lorca town (south-eastern Spain) started with a classification of urban geology through the geological mapping at scale 1:10,000 and the use of geotechnical data and geophysical surveys. The 17 geological formations identified were classified into 5 geological/seismic formations according to their seismic amplification capacity obtained from ambient vibration measurements as well as from simultaneous strong motion records. The shear-wave velocity structure of each geological/seismic formation was evaluated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. Nakamura’s method was applied to determine a predominant period distribution map. The spectral amplification factors were fourfold the values recorded in a reference hard-rock site. Finally, the capability of this study for explaining the damage distribution caused by the May 11th, 2011 Lorca destructive earthquake (Mw \(=\) 5.2) was examined. The methods used in this work are of assistance to evaluate ground amplification phenomena in urban areas of complex geology as Lorca town due to future earthquakes with applicability on urban seismic risk management.  相似文献   

16.
通过布置于龙门山断裂带中段、龙门山山前玉皇观区域的地震观测台站阵列接收地震数据,研究该区域的地震动放大效应和地下地质结构.观测阵列共10台宽频带地震仪,分布在玉皇观河口冲积扇区域.分别采用参考场址谱比法(RSSR)和HV谱比法(HVSR)计算64个高信噪比近震数据的振幅谱比函数,结果显示在玉皇观区域具有较明显的地震动放大效应,并且局部场址效应显著.以S06场址为例,建立近地表地震地质模型,通过SH波放大效应正演模拟研究该场址的地震动放大模式.RSSR与HVSR的结果表明,两者所计算的场址放大效应主频一致,但是HVSR的放大峰值却比RSSR的放大峰值大一倍左右,表明HVSR的结果可能包含了波场在近地表低速层之下传播路径的改造作用.另外,采用27个远震P波的接收函数计算了该区域地壳上地幔S波速度结构.接收函数研究结果显示玉皇观地区的莫霍面深度为44 km,沉积盖层、结晶地壳和上地幔的S波速度分别为2.5 km·s~(-1)、3.5 km·s~(-1)和4.5 km·s~(-1).观测阵列台站之间的接收函数反演结果一致性较好,说明本研究区域范围内地形地貌等近地表结构因素的相对变化对接收函数的影响不大.  相似文献   

17.
—?In this paper we study the seismic response of flat sedimentary basins and carry out numerical experiments to determine the extent to which we could go using the Horizontal to Vertical Spectral Ratio (HVSR) for a given site. The HVSR has been used by many researchers to characterize local conditions in terms of the dynamic response of the soil, and one of its variants, that proposed by NAKAMURA (1989) in which records of microtremors are used, is one of the most applied in recent years. We study the response of different configurations under incident waves coming from an explosive source using the Indirect Boundary Element Method (IBEM), and we investigate two cases: low- and high-velocity contrast. We compute the seismic response using the HVSR technique at various locations in the free surface of the basins, and compare it with the response calculated with the horizontal Sediment to Bedrock Spectral Ratio (SBSR) and with the Horizontal Component (HC) of the transfer function for the displacement at the same locations. The comparison shows that, in general, HVSR cannot provide the predominant period of a site due to the fact that this technique cannot predict accurately the Spectral amplification levels. On the other hand, the HVSR provides an erroneous response in the sedimentary basins which have a low-impedance contrast, with respect to bedrock, and with shape ratios like the one studied here, whereas it can reasonably well predict the fundamental local frequency when there is a high-impedance contrast, except in the center of the basin.  相似文献   

18.
The site response at 15 stations in the Adana-Ceyhan region (Southern Turkey) is calculated from the recordings of aftershocks of June 27, 1998 Adana-Ceyhan earthquake (MS=6.2) by using the Standard Spectral Ratio (SSR) and the Horizontal-to-Vertical Spectral Ratio (HVSR) methods. While the two methods are in good harmony at a few stations in determining the site effects, they show differences on the estimated amplifications or on the site resonance frequencies at most stations. It was not clear which one of the two methods underestimates or overestimates the amplification values. We observe that at some stations, where the local site conditions are rather complex, the vertical component records are strongly influenced from the local soil conditions. Thus, the HVSR method fails at these stations. The SSR method underestimates the amplifications at some stations since the rock site, selected as reference site, has its own site response and/or the path correction we applied, considering the geometrical spreading factor only, is insufficient. At the sites where high intensity values were observed, we found high amplifications. The fundamental soil frequencies characterize the damage properties observed in the Adana-Ceyhan earthquake. The fundamental soil frequency is nearly at 1.1 Hz at the Ceyhan site, where severe damage was observed in the 5–6 story buildings, while the fundamental soil frequency is between 3–6 Hz at the Adana site, where damage was in the low-story buildings. Therefore, in addition to inefficient construction practices, it is clear that the resonance effects have also contributed to the observed damage.  相似文献   

19.
Distribution of parameters characterizing soil response during the 1999 Chi-Chi, Taiwan, earthquake (M w = 7.6) around the fault plane is studied. The results of stochastic finite-fault simulations performed in Pavlenko and Wen (2008) and constructed models of soil behavior at 31 soil sites were used for the estimation of amplification of seismic waves in soil layers, average stresses, strains, and shear moduli reduction in the upper 30 m of soil, as well as nonlinear components of soil response during the Chi-Chi earthquake. Amplification factors were found to increase with increasing distance from the fault (or, with decreasing the level of “input” motion to soil layers), whereas average stresses and strains, shear moduli reduction, and nonlinear components of soil response decrease with distance as ~ r ?1 . The area of strong nonlinearity, where soil behavior is substantially nonlinear (the content of nonlinear components in soil response is more than ~40–50% of the intensity of the response), and spectra of oscillations on the surface take the smoothed form close to E(f) ~ f ?n , is located within ~20–25 km from the fault plane (~ 1/4 of its length). Nonlinearity decreases with increasing distance from the fault, and at ~40–50 km from the fault (~ 1/2 of the fault length), soil response becomes virtually linear. Comparing soil behavior in near-fault zones during the 1999 Chi-Chi, the 1995 Kobe (M w = 6.8), and the 2000 Tottori (Japan) (M w = 6.7) earthquakes, we found similarity in the behavior of similar soils and predominance of the hard type of soil behavior. Resonant phenomena in upper soil layers were observed at many studied sites; however, during the Chi-Chi earthquake they involved deeper layers (down to ~ 40–60 m) than during lesser-magnitude Kobe and Tottori earthquakes.  相似文献   

20.
Site effects for 11 selected locations were determined in the capital city of Costa Rica. We used a strong motion network made of eight K2 and three SSA accelerographs. The network recorded more than 60 earthquakes in the magnitude range from 2 to 5 during a period of nine months. The site effects were determined using the sediment-to-bedrock spectral ratio (SBSR) and the horizontal-to-vertical spectral ratio (HVSR) techniques and a time window 4 s beginning from the S-wave arrival. The result suggests that the amplification in the capital city is to be in the range from 2.0 to 3.0. The fundamental frequencies were found to be high in the southern and eastern part of the study area and low in the northern and western part. A possible topographic effect was also observed for one of the stations located nearby a river canyon. The results from earthquake data were compared with the ones obtained from noise data. The horizontal-to-vertical noise ratio (HVNR) technique was used to estimate the site effects using ambient noise. The fundamental frequencies were found to correlate very well between both sets of data; on the other hand, the amplitude given by the noise was observed to be always lower than the one derived from the earthquake data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号