首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bjørnøya has a very thin cover of unconsolidated Quaternary sediments. Glacial erratics of local origin are spread throughout the lowland areas, and glacial striae indicate glacial movement which was centred middle of the island. No traces of the Barents Sea ice sheet have been observed on Bjørnøya, nor has there been any postglacial emergence of the island. Lake cores date the deglaciation of the lowlands to ca 10,000 BP, and peat deposits on high mountains show that these were deglaciated before 8700 bp.  相似文献   

2.
The upper Bashkirian-Moscovian Kapp KIre Formation is well-exposed in coastal cliff sections along the west coast of Bjørnøya, Svalbard. It is composed of stacked cycles of nixed siliciclastics and carbonates in the lower Bogevika Member and of cyclic shelf carbonates in the overlying Efuglvika Member. The uppermost Kobbebukta Member consists of shelf carbonates and syntectonic conglomerates and sandy turbidites. The shift in cycle types reflects an overall transgression of the region during the Moscovian combined with renewed tectonic activity and uplift of eastern Bjørnøya during the late Moscovian. Twelve carbonate facies and 6 siliciclastic facies are distinguished. The carbonate facies range from intertidal dolomitic mudstones with pseudomorphs after gypsum to subwavebase, intensely bioturbated wackestones. Most carbonates are deeper subtidal facies and shallow marine carbonate facies are only common in the transgressive part of mixed siliciclastic-carbonate cycles of the Bogevika Member. Incorporating the effects of high amplitude, high frequency glacioeustacy and active extensional tectonism, a dynamic model is developed to explain the spatial variability of facies observed within the Kapp Kke Formation. Observations from Bjørnøya are placed within the context of the regional structural and stratigraphic framework so that significance of the study to ongoing exploration efforts in the Barents Sea can be evaluated. Most important, our observations suggest that dolomitized, porous carbonate buildups are most likely to be found in the upper Moscovian succession in areas where accommodation space increased temporarily due to local tectonism.  相似文献   

3.
Guillemots Uria spp. account for ca. 70% of the total harvest of prey taken by seabirds breeding in the Barents Sea region. This paper presents guillemot chick diet data collected recently at four localities (Finnmark, Murman, Bjørnøya and Spitsbergen) and collates all the data found by the authors in the literature and in the archives of Tromsø Museum, the Norwegian Polar Institute and Kandalaksha State Nature Reserve. Guillemots consume a wide variety of prey and, in comparison to the harvest by predatory fish and marine mammals, their impact on the Barents Sea ecosystem is considered to be minimal. We point out the need for more systematic collection of data from different regions and at different times of the year before a final impact assessment can be made.  相似文献   

4.
The eastern part Svalbard archipelago and the adjacent areas of the Barents Sea were subject to extensive erosion during the Late Weichselian glaciation. Small remnants of older sediment successions have been preserved on Edgeeya, whereas a more complete succession on Kongsøya contains sediments from two different ice-free periods, both probably older than the Early Weichselian. Ice movement indicators in the region suggest that the Late Weichselian ice radiated from a centre east of Kong Karls Land. On Bjørnøya, on the edge of the Barents Shelf, the lack of raised shorelines or glacial striae from the east indicates that the western parts of the ice sheet were thin during the Late Weichselian. The deglaciation of Edgeøya and Barentsøya occurred ca 10,300 bp as a response to calving of the marine-based portion of the ice sheet. Atlantic water, which does not much influence the coasts of eastern Svalbard today, penetrated the northwestern Barents Sea shortly after the deglaciation. At that time, the coastal environment was characterised by extensive longshore sediment transport and deposition of spits at the mouths of shallow palaeo-fjords.  相似文献   

5.
A total of 276 driftwood samples from Wijdefjorden on the northern coast of Spitsbergen were den-drochronologically analysed and compared with results from a similar study on driftwood from Isfjorden. The composition and origin of the driftwood from the two places differ. Whereas Larix is almost absent in the Isfjorden driftwood, it comprises 25% of the Wijdefjorden collection. The Isfjorden driftwood has its main origin in the White Sea region and the dates of the driftwood concentrate around the period from 1950 to 1979, with only a few dates from the period 1910 to 1950. The Wijdefjorden driftwood has two main origins: Siberia and the White Sea region. The dates of the White Sea components of the Wijdefjorden driftwood are concentrated mainly in the period 1910-1950. The dates of the Siberian (Yenisey) components of the Wijdefjorden driftwood are concentrated in the period 1950–1979. It can be argued that during the time period from ca. 1910 to 1950 the activity of a warm northerly flowing current along the western coast of Spitsbergen was stronger, transporting White Sea driftwood all the way to the Wijdefjorden area. However, after ca. 1950 the input of White Sea driftwood decreased, and the relative importance of the Siberian component increased. These results fit well with the climatic records from Svalbard, showing a warm regime during the first half of this century due to increased activity of the warm West Spitsbergen Current along the western coast of Spitsbergen. After ca. 1950, the influx of Atlantic Water became weaker, the climate became colder and the relative occurrences of Siberian driftwood transported by the Transpolar Current increased on the northern coast of the Svalbard archipelago.  相似文献   

6.
The Ctenophora Mertensia ovum and Beroe cucumis , collected using both conventional sampling gear and scuba divers, were studied in the Barents Sea east of Bjørnøya and North Norway in spring 1987 and summer 1988. Among the gelatinous zooplankton, Mertensia ovum was the most consistently abundant copepod predator.
Feeding experiments were conducted to evaluate the predation rate of M. ovum in various trophic regimes. This ctenophore can take prey varying in size from small copepods to amphipods and krill, but gut-content analyses from field-collected specimens as well as experimental results showed that the main food source for adults was large-sized copepods (e.g. Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa ). The robust tentacle arrray of M. ovum makes this species effective as a predator on large prey. The high potential predation rate of this ctenophore relative to its estimated metabolic cost of only 1.7% of the body energy content d−1 suggests that M. ovum may be able to maintain a positive energy balance even in conditions of low prey abundance. It is suggested that a single exploitation of a zooplankton patch may provide energy for survival for a very long time.
The potential impact of M. ovum on Barents Sea copepod populations is estimated on the basis of the minimal observed average daily ration in experiments and from field data on gut contents. Using abundances of copepods for the area, and the actual predator biomass collected, it was estimated that an average of 0.7% of the copepod fauna per day could fall prey to this predator.  相似文献   

7.
A quantitative study of palynomorphs and palynodebris in a shallow core from the central part of Bjørnøyrenna, western Barents Sea, is presented. The core could be subdivided into a lower part characterized by a complete dominance of reworked plant debris of Mesozoic age and an upper part with considerable input of first cycle algal debris and dinoflagellate cysts. Two hypotheses are suggested to explain this radical change in palynodebris composition. Either it represents a transition from a situation with permanent ice to normal marine conditions, or the absence of first cycle plant debris in the lower part of the core is caused by a masking of this component due to extremely high input of glacially eroded material from the bordering shallow parts of the Barents Sea. The present study shows that palynodebris analysis may contribute important information to the study of composition and depositional environment of Quaternary marine sediments in the area.  相似文献   

8.
New aeromagnetic data, K-Ar age determinations of dredged marine igneous rocks, as well as other geophysical evidence have shed light on the chronology, nature and evolution of the northern Iceland Plateau. Correspondence between seismic refraction profiles taken on the Jan Mayen Ridge and westward through Jan Mayen Island, suppressed aeromagnetic anomalies, earthquake surface wave studies, and ages of dredged igneous rocks suggest these strata may form an extended region of thickened crust, possibly of Caledonian age, extending westward toward the Kolbeinsey Ridge and northwest to the south wall of the Jan Mayen Fracture Zone.  相似文献   

9.
Bjørnøya, a small (178 km2) island situated between the mainland of Norway and southern Spitsbergen, provides the opportunity for the reconstruction of early Holocene terrestrial and limnic palaeoenvironments in the southwestern Barents Sea. The AMS 14C dating technique, geochemical, mineral magnetic, micro and macrofossil analyses were applied to sediments recovered from lake Stevatnet and the results are interpreted in terms of palaeoenvironmental conditions between 9800 and 8300 14C bp. After the disappearance of local glaciers before ca 980014C BP, the lake productivity increased rapidly at the same time as pioneer plant communities developed on soils which gradually became more stable. Insect data indicates that strong seasonal contrasts with mean July temperatures around 9°C and mean January temperatures around −12°C prevailed between 9500 and 8300 14C BP. These high summer temperatures, possibly as much as 4-5°C higher than the present, favoured the development of a flora including Dryas and Angelica cf. archangelica . The enhanced freeze/thaw processes led to an increased erosion of minerogenic and organic material. After 8000 14C BP the temperatures may have gradually declined. The environmental reconstruction derived from our data set supports the conceptual insolation model which proposes maximum Holocene seasonality for the Northern Hemisphere at ca 9000 14C BP.  相似文献   

10.
North Atlantic Water (NAW) is an important source of heat and salt to the Nordic seas and the Arctic Ocean. To measure the transport and variability of one branch of NAW entering the Arctic, a transect across the entrance to the Barents Sea was occupied 13 times between July 1997 and November 1999, and hydrography and currents were measured. There is large variability between the cruises, but the mean currents and the hydrography show that the main inflow takes place in Bjørnøyrenna, with a transport of 1.6 Sv of NAW into the Barents Sea. Combining the flow field with measurements of temperature and salinity, this results in mean heat and salt transports by NAW into the Barents Sea of 3.9×1013 W and 5.7×107 kg s−1, respectively. The NAW core increased in temperature and salinity by 0.7 °C yr−1 and 0.04 yr−1, respectively, over the observation period. Variations in the transports of heat and salt are, however, dominated by the flow field, which did not exhibit a significant change.  相似文献   

11.
The Triassic succession of Bjørnøya (200 m) comprises the Lower Triassic Urd Formation (65 m) of the Sassendalen Group, and the Middle and Upper Triassic Skuld Formation (135 m) of the Kapp Toscana Group. These units are separated by a condensed '.'Middle Triassic sequence represented by a phosphatic remainé conglomerate (0.2m).
The Urd Formation consists of grey to dark grey shales with yellow weathering dolomitic beds and nodules. Palynology indicates the oldest beds to be Diencrian; ammonoid faunas in the middle and upper part of the formation arc of Smithian age. The organic content (c. 1 %) includes kerogen of land and marine origin, reflecting a shallow marine depositional environment.
The Skuld Formation is dominated by grey shales with red weathering siderite nodules. There are minor coarsening upwards sequences; the highest bed exposed is a 20 m thick, very fine-grained sandstone. Palynomorphs indicate a late Ladinian age for the lower part of the formation, and macrofossils and palynomorphs indicate Ladinian to Carnian ages for the upper part. Sedimentary structures, a sparse marine fauna and microplankton indicate deposition in a shallow marine environment. The organic residues contain dominantly terrestrially derived kerogen.  相似文献   

12.
An aim for conservation in Norway is preserving the Svalbard archipelago as one of the least disturbed areas in the Arctic. Information on local distribution, population sizes and ecology is summarized for 20 thermophilous vascular plant species. The need for conservation of northern, marginal populations in Svalbard is reviewed, using World Conservation Union categories and criteria at a regional scale. Thirteen species reach their northernmost distribution in Svalbard, the remaining seven in the western Arctic. Nine species have 1-8 populations in Svalbard and are assigned to Red List categories endangered or critically endangered: Campanula rotundifolia, Euphrasia frigida, Juncus castaneus, Kobresia simpliciuscula, Rubus chamaemorus, Alchemilla glomerulans, Ranunculus wilanderi, Salix lanata and Vaccinium uliginosum , the last four species needing immediate protective measures. Five species are classified as vulnerable: Betula nana, Carex marina ssp. pseudolagopina, Luzula wahlenbergii, Ranunculus arcticus and Ranunculus pallasii . Six species are considered at lower risk: Calamagrostis stricta, Empetrum nigrum ssp. hermaphroditum, Hippuris vulgaris (only occurring on Bjørnøya), Juncus triglumis, Ranunculus lapponicus and Rhodiola rosea . The warmer Inner Arctic Fjord Zone of Spitsbergen supports most of the 20 target species and is of particular importance for conservation. Endangered or vulnerable species were found in a variety of edaphic conditions; thus, several kinds of habitats need protection.  相似文献   

13.
We present sub-bottom profiling (sparker and Parasound) results from the eastern Kara Sea, on the Eurasian Arctic margin, which enable the identification of the Last Glacial Maximum (LGM) ice extent. The analysed profiles show that glacigenic diamicton is ubiquitous at the seafloor, east of about 95°E and 78°N. The eastern margin of this diamicton is expressed in a conspicuous morainic ridge at the entrance to the Vilkitsky Strait, and to the south the diamicton projection aligns with the LGM limit mapped at the north-western Taymyr. The bottom of the Voronin Trough further north is also covered with diamicton and has numerous erosional bedforms, indicating a streamlined flow of grounded ice along the trough. Accurate dating of the diamicton is not attainable, but the correlation of pre-diamict sediments to well-dated sections in the Laptev Sea, and available 14C ages from sediments on top of the diamicton, indicate its LGM age. These results support the palaeogeographic reconstruction that assumes the extension of the LGM Barents–Kara ice sheet as far east as Taymyr. This configuration implies that LGM ice blocked the drainage of the Ob and Yenisey rivers on the Kara shelf. This inference is consistent with the presence of large (>100 km wide) lenses of basin infill adjacent to the southern margin of the diamicton. However, the limited distribution of the eastern Kara ice lobe, not extending on Severnaya Zemlya, suggests that the ice was fairly thin and short-lived: insufficient for the accumulation of the gigantic proglacial lakes that occurred during earlier glaciations.  相似文献   

14.
Four relative sea-level curves from Edgeøya and Barentsøya are constructed based on 81 radiocarbon age determinations on carefully selected and levelled samples in raised beaches, mostly driftwood embedded in beach gravel. All the dates, covering the period from the deglaciation to the present, are calibrated to calendar years, and the sea-level curves are defined by fitting the data with a least square regression curve. The dates are internally very consistent, and the results are some of the most precise sea-level curves from the Arctic.
The four curves are quite similar, and from the marine limit at 85-90 m a.s.l. they show a rapid emergence (ca 40 mm/year), formed about 11,000 cal yrs BP (∼10,00014C yrs BP). A minimum rate of emergence close to 8000 cal years ago is explained by a decreased rate in isostatic uplift parallel with a sustained rate of eustatic sea-level rise. During the last 7000 cal years, the emergence rate has decreased linearly. The uplift rates have been slightly higher on southern Edgeøya than further north during the last 7000 years. By comparing the sea-level curves from Storøya (ca 270 km to the north) and Hopen (ca 150 km to the south), we suggest that a memory of an earlier and larger glacio-isostatic downwarping in the southern Barents Sea is detected in the sea-level curves from Hopen and southern Edgeøya.  相似文献   

15.
A thorough literature review has been undertaken to establish the first complete account of polychaetes recorded from the area around the volcanic island of Jan Mayen. The annotated checklist lists 121 species-level taxa, representing an increase from the 75 species previously recorded. The checklist is based on existing records, supplemented with material sampled in 1999, from which 42 species new to the area were reported. Some previously reported species from the area have been excluded because of inadequate documentation. The polychaete fauna of Jan Mayen is comparable with that of the mainland Norwegian coast and the Svalbard area. No taxa unique to the island were found. However, knowledge of the marine invertebrate fauna in general at Jan Mayen is sparse because few surveys have been undertaken there. It is expected that future expeditions will reveal further new taxon records for the area.  相似文献   

16.
The Barents Sea ice sheet - a sedimentological discussion   总被引:1,自引:0,他引:1  
Sediment sampling and shallow seismic profiling in the western and northern Barents Sea show that the bedrock in regions with less than 300 m water depth is unconformably overlain by only a thin veneer (<10 m) of sediments. Bedrock exposures are probably common in these areas. The sediments consist of a Holocene top unit, 0.1–1.5 m in thickness, grading into Late Weichselian glaciomarine sediments. Based on average sedimentation rates (14C-dating) of the Holocene sediments, the transition between the two units is estimated to 10,000–12,000 B.P. The glaciomarine sediments are commonly 1–3 m in thickness and underlain by stiff pebbly mud, interpreted as till and/or glaciomarine sediments overrun by a glacier. In regions where the water depth is over 300 m the sediment thickness increases, exceeding 500 m near the shelf edge at the mouth of Bjørnøyrenna. In Bjømøyrenna itself the uppermost 15–20 m seem to consist of soft glaciomarine sediments underlain by a well-defined reflector, probably the surface of the stiff pebbly mud. Local sediment accumulations in the form of moraine ridges and extensive glaciomarine deposits (20–60m in thickness) are found at 250–300m water depth, mainly in association with submarine valleys. Topographic highs, probably moraine ridges, are also present at the shelf edge. Based on the submarine morphology and sediment distribution, an ice sheet is believed to have extended to the shelf edge at least once during the Pleistocene. Spitsbergenbanken and the northern Barents Sea have also probably been covered by an ice sheet in the Late Weichselian. Lack of suitable organic material in the glacigenic deposits has prevented precise dating. Based on the regional geology of eastern Svalbard, a correlation of this younger stage with the Late Weichselian is indicated.  相似文献   

17.
At present, there is no direct evidence of rocks predating the late Paleocene opening of the Norwegian-Greenland Sea on the Jan Mayen Ridge. A review of the available geophysical data, DSDP drilling results and plate tectonic reconstructions convincingly indicates a continental nature of the northern part of the ridge. On the other hand, there is still considerable uncertainty about the southern part of the ridge and its possible continuation towards Iceland. Two reflectors, A and O , have been mapped regionally. A appears to reflect an unconformity of middle Oligocene age. Most investigators have indicated that O forms a late Paleocene rift unconformity associated with the opening of the Norwegian-Greenland Sea. By analogy with the North Sea and the continental margin off Norway we propose that it should be investigated whether this reflector might be older, relating to an earlier Mesozoic regime of tension.  相似文献   

18.
Jan Mayen is a small (373 km2) remote island in the Norwegian Sea. One third of it is covered by glaciers, all located on the Beerenberg volcano. There have been at least two Holocene periods of glacier expansion at Jan Mayen. The first may have taken place around 2500 B.P. Some glaciers had their maximum extent during the second period, around 1850 A.D. They have subsequently shown an oscillating retreat, with marked expansion around 1910, and with a minimum extent around 1950. Many glaciers advanced again around 1960. The advance of Sørbreen probably culminated around 1965. The climate appears to have been more arctic-continental than today during these two periods of glacier advances, caused by expanded pack ice cover in the East Greenland current and strong influence from the Greenland-Arctic high pressure area. The interplay between the high pressure area and the low pressure tracks in the North Atlantic Ocean determines the climate over the north-western part of the Atlantic, and this results in parallel climate and glacier variations within this region. We conclude, contrary to previous reports, that the advances of the glaciers around 1960 were caused by reduced summer temperatures and ablation, and not by increased precipitation.  相似文献   

19.
Reconstructions of the Late Quaternary glacial history of the Kara Sea area show repeated build-up of ice-sheet domes over the shallow epicontinental Kara Sea. Inferred ice divides were situated over the central Kara Sea, and the ice sheet repeatedly inundated the surrounding coastal areas of western Siberia. Geological fingerprinting of the Kara Sea ice sheet include end moraine zones, raised beaches, tills, glaciotectonic deformations and coarsening-upward sediment sequences, reflecting isostatic rebound cycles. This paper reviews evidence from several areas along the perimeter of the Kara Sea, suggesting that peripheral sites were critical for the initiation of the large Kara Sea ice sheet. Ice-sheet inception progressed with the formation of local ice caps that later coalesced on the adjacent shelf with globally falling sea levels, eventually merging and growing into a large ice dome.  相似文献   

20.
Quaternary glacial stratigraphy and relative sea-level changes reveal at least two glacial expansions over the Chelyuskin Peninsula, bordering the Kara Sea at about 77°N in the Russian Arctic, as indicated from tills interbedded with marine sediments, exposed in stratigraphic superposition, and from raised-beach sequences mapped to altitudes of at least up to ca. 80 m a.s.l. Chronological control is provided by accelerator mass spectrometry 14C dating, electron-spin resonance and optically stimulated luminescence geochronology. Major glaciations, followed by deglaciation and marine inundation, occurred during marine oxygen isotope stages 6–5e (MIS 6–5e) and stages MIS 5d–5c. These glacial sediments overlie marine sediments of Pliocene age, which are draped by fluvial sediment of a pre-Saalian age, thereby forming palaeovalley/basin fills in the post-Cretaceous topography. Till fabrics and glacial tectonics record expansions of local ice caps exclusively, suggesting wet-based ice cap advance, followed by cold-based regional ice-sheet expansion. Local ice caps over highland sites along the perimeter of the shallow Kara Sea, including the Byrranga Mountains and the Severnaya Zemlya archipelago, appear to have repeatedly fostered initiation of a large Kara Sea ice sheet, with the exception of the Last Glacial Maximum (MIS 2), when Kara Sea ice neither impacted the Chelyuskin Peninsula nor Severnaya Zemlya, and barely touched the northern coastal areas of the Taymyr Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号