首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
An attempt has been made to investigate the role of vertical wind shear, corrective instability and the thermodynamic parameter (θes - θe) below the first lifting condensation level (FLCL) in the occurrence of instanta-neous premonsoon thunderstorm over Agartala (AGT) and Ranchi (RNC) at 12 GMT Radiosonde data of 1988 have been utilized here. The study has however been confined to 1000 hPa-500 hPa range at most Here the convectively unstable layers with positive vertical wind shear upto 500 hPa have been termed as ‘Fa?vourable Layers’ (FL) and the level at which an initially stable layer turns out to be convectively unstable for the first time has been termed as ‘Transition Level’ (TL). It is observed that the changes in vertical wind shear are positive at TL at the time of occurrence of thunderstorm (TS) and the corresponding change is negative on fair-weather situa?tion Moreover, the 90% confidence interval for (θes - θe) reveals that for AGT the upper layer thermodynamic characteristic is important at the time of occurrence of TS whereas for RNC, the value of (θes - θe) at the surface is much more effective  相似文献   

2.
In the present study, an attempt has been made to examine the governing photochemical processes of surface ozone (O3) formation in rural site. For this purpose, measurements of surface ozone and selected meteorological parameters have been made at Anantapur (14.62°N, 77.65°E, 331 m asl), a semi-arid zone in India from January 2002 to December 2003. The annual average diurnal variation of O3 shows maximum concentration 46 ppbv at noon and minimum 25 ppbv in the morning with 1σ standard deviation. The average seasonal variation of ozone mixing ratios are observed to be maximum (about 60 ppbv) during summer and minimum (about 22 ppbv) in the monsoon period. The monthly daytime and nighttime average surface ozone concentration shows a maximum (55 ± 7 ppbv; 37 ± 7.3 ppbv) in March and minimum (28 ± 3.4 ppbv; 22 ± 2.3 ppbv) in August during the study period. The monthly average high (low) O3 48.9 ± 7.7 ppbv (26.2 ± 3.5 ppbv) observed at noon in March (August) is due to the possible increase in precursor gas concentration by anthropogenic activity and the influence of meteorological parameters. The rate of increase of surface ozone is high (1.52 ppbv/h) in March and lower (0.40 ppbv/h) in July. The average rate of increase of O3 from midnight to midday is 1 ppbv/h. Surface temperature is highest (43–44°C) during March and April months leading to higher photochemical production. On the other hand, relative humidity, which is higher during the rainy season, shows negative correlation with temperature and ozone mixing ratio. It can be seen that among the two parameters are measured, correlation of surface ozone with wind speed is better (R 2=0.84) in compare with relative humidity (R 2=0.66).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号