首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous measurements of ozone and its precursors including NO, NO2, and CO at an urban site (32°03′N, 118°44′E) in Nanjing, China during the period from January 2000 to February 2003 are presented. The effects of local meteorological conditions and distant transports associated with seasonal changed Asian monsoons on the temporal variations of O3 and its precursors are studied by statistical, backward trajectory, and episode analyses. The diurnal variation in O3 shows high concentrations during daytime and low concentrations during late night and early morning, while the precursors show high concentrations during night and early morning and low concentrations during daytime. The diurnal variations in air pollutants are closely related to those in local meteorological conditions. Both temperature and wind speed have significant positive correlations with O3 and significant negative correlations with the precursors. Relative humidity has a significant negative correlation with O3 and significant positive correlations with the precursors. The seasonal variation in O3 shows low concentrations in late autumn and winter and high concentrations in late spring and early summer, while the precursors show high concentrations in late autumn and winter and low concentrations in summer. Local mobile and stationary sources make a great contribution to the precursors, but distant transports also play a very important role in the seasonal variations of the air pollutants. The distant transport associated with the southeastern maritime monsoon contributes substantially to the O3 because the originally clean maritime air mass is polluted when passing over the highly industrialized and urbanized areas in the Yangtze River Delta. The high frequency of this type of air mass in summer causes the fact that a common seasonal characteristic of surface O3 in East Asia, summer minimum, is not observed at this site. The distant transports associated with the northern continental monsoons that dominate in autumn and winter are related to the high concentrations of the precursors in these two seasons. This study can contribute to a better understanding of the O3 pollution in vast inland of China affected by meteorological conditions and the rapid urbanization and industrialization.  相似文献   

2.
Ozone episodes (> 100 ppbv) were observed frequently in Jinan, an urban site located between the highly polluted Yangtze Delta and Beijing–Tianjin region in East China. In this study, the ozone episodes observed in 2004 were analysed using the Hybrid Single-particle Lagrangian Integrated Trajectory (HYSPLIT) model and surface meteorological data, as well as Air Pollution Index (API). The meteorological conditions of episode days and non-episode days were compared and examined, and categorization of 6 groups of backward trajectories was performed. The results show that, most episodes were caused by local photochemical production (e.g., induced by sufficient sunshine duration and high temperature) and pollutant accumulation (e.g., induced by little rainfall and low wind speed), and transport of pollutants from the highly polluted regions could significantly influence the air quality at the site, especially from Yangtze Delta region. In addition, three typical ozone episodes were analysed using HYSPLIT model to infer any long-distance transport and surface meteorological data to infer the local ozone production potential. At last, the functions and inadequacies about the usage of HYSPLIT model combined with surface meteorological data for the analysis of photochemical pollution were discussed.  相似文献   

3.
Modeling tropospheric ozone formation over East China in springtime   总被引:1,自引:0,他引:1  
In this study, we investigate the springtime O3 formation over East China (April 2008) using the Weather Research and Forecasting Model with Chemistry (WRF/Chem). A simple process analysis scheme is added to WRF/Chem, which could calculate the contributions of photochemical and physical processes to O3 formation. WRF/Chem calculates the hourly 3-D O3 mixing ratios, photochemical O3 production rates (CPR) and physical processes contribution rates (PCR) on a two nested domain system, with inner domain focusing on East China. Model evaluation shows that the modeled results agree relatively well with the observations. On the ground level, the high O3 mixing ratios (>45 ppbv) are located over Fujian and Jiangxi provinces. The O3 levels over the Yangtze River Delta (YRD) and northern Jiangsu are low (<30 ppbv). The distribution patterns of CPR and PCR over East China reveal that the high O3 mixing ratios over Jiangxi and Fujian are caused by both local photochemical generation and regional transport, while the O3 concentrations over the YRD region are transported and diffused from surrounding areas. In addition, the contributions of biogenic and anthropogenic emissions as well as the regional transport from domain’s upstream regions are discussed. On average, the biogenic and anthropogenic emissions account for 2.6 and 4.5 ppbv of daytime mean O3 mixing ratios in East China, respectively.  相似文献   

4.
Observational study of surface ozone at an urban site in East China   总被引:3,自引:1,他引:3  
In this study, we present the observational data of near surface ozone and some meteorological parameters during 2004, at an urban site (36°42′ N, 117°08′ E, 34.5 m a.s.l.) of Jinan, China. Hourly ozone concentrations exceeding the standard value of China, 100 ppbv, were observed for 65 h (in 23 days) from April to October, and values exceeding US NAAQS (National Ambient Air Quality Standard) for 1 h ozone, 120 ppbv, were observed for 15 h (in 7 days) from late May to early July. Ozone formation presented the phenomenon of “weekend effect”, especially in summer. Monthly variation of ozone coincided with temperature except for July and August. The low ozone levels in July and August may be due to the short sunshine duration and much rainfall during this period. Among these meteorological parameters, daily averaged ozone shows a significant correlation with temperature (r = 0.66) in the year and with relative humidity (r = − 0.75) in summer. Throughout the year, high ozone concentrations were mainly associated with the wind from 180 to 247.5°, while high ozone concentration seemed to have no obvious correlation with a given wind direction in summer. An anomalous nocturnal high ozone episode during 23–25 May 2004 was investigated. Growth fractions of ozone during the nighttime episode were 62.2% and 71.1% for 23 and 24 May, respectively. Synoptic analysis shows that favorable synoptic condition had presumably elevated the background ozone level in this region. Backward trajectory analysis shows that the increase of ozone concentration and the relatively constant high ozone concentrations during the night of May 23 might originate from the transport of ozone rich air mass above boundary layer. Transport of ozone from Yangtze Delta and East Central China might be a significant process for the high ozone level during night May 24 at Jinan.  相似文献   

5.
传统的空气质量模型多使用简化的光化学反应机制来模拟大气污染物的形成.这些机制主要基于烟雾箱实验拟合的反应速率和产物来模拟二次产物(如臭氧(O3))前体物的氧化反应,具有一定的不确定性,导致模拟结果产生偏差.针对该问题,本研究将详细的大气化学机理(MCMv3.3.1)与美国国家环境保护局研制的第三代空气质量预报和评估系统CMAQ相结合(CMAQ-MCM),模拟研究长三角地区2015年8月27—9月5日臭氧高发时段的空气质量.CMAQ-MCM模型可以较好地模拟长三角地区6个代表城市O3和其前体物随时间的变化趋势.对模拟的O3日最大8 h平均浓度的统计分析表明,徐州表现最好(标准平均误差=-0.15,标准平均偏差=0.23).在长三角地区,居民源对挥发性有机物(VOCs)的贡献最大,占39.08%,其次是交通运输(33.25%)和工业(25.56%).能源对总VOCs的贡献最小,约为2.11%.对活性氧化氮(NOy)的分析表明,其主要组分是NOx(80%),其次是硝酸(HNO3)(<10%).O3的空间分布与NOy和NOx非常相似.HCHO等其他氧化产物的分布与NOx相似,这很可能是由于在高NOx条件下VOCs氧化产生的产物.甲基乙烯基酮(MVK)和甲基丙烯醛(MACR)的空间分布与自然源VOCs (BVOCs)非常相似,表明长三角地区MVK和MACR主要由BVOCs氧化生成.长三角地区受到人为源和自然源排放相互作用的影响.  相似文献   

6.
嵌套网格空气质量预报模式系统的发展与应用   总被引:74,自引:4,他引:74  
主要综述中国科学院大气物理研究所自主开发的嵌套网格空气质量预报模式系统(NAQPMS,Nested Air Quality Prediction Modeling System)的历史发展与应用情况.模式发展伊始为欧拉污染物输送实用模型,利用其研究东亚硫氧化物的跨国输送问题,得出中国对于周边国家的输送量不大的结论; 在系统中嵌入适合东亚的起沙机制模块,用来模拟沙尘发生、输送及沉降等过程,估算亚洲大陆沙尘气溶胶对海洋地区的输送与沉降通量,为研究海洋生物地球化学循环提供基础数据; 利用该系统研究沙尘及其土壤粒子对酸雨的中和作用,发现沙尘输送对东亚酸雨的分布影响很大; 发展城市尺度高分辨率气象和空气质量预报技术,使模式水平分辨率达到500 m,并应用于台北高浓度臭氧和PM10的模拟; 研究和集成区域及城市尺度大气污染预报理论和模拟技术,研制成目前的嵌套网格空气质量预报模式系统,以探讨不同尺度各种污染(如沙尘暴、城市光化学烟雾、酸雨、高浓度悬浮颗粒物等)的变化规律.在模式系统中初步建立资料同化模块,开展大气化学成分及沙尘输送模拟的资料同化研究.系统已经在北京、上海、深圳、郑州等城市环境监测中心实施空气质量的实时预报.未来,系统将集成到全球环境大气输送模式(GEATM),以实现从城市群到全球具有双向耦合功能的模式系统.  相似文献   

7.
Ozone Concentrations in Rural Regions of the Yangtze Delta in China   总被引:4,自引:0,他引:4  
Elevated concentrations of ozone have been observed at six non-urban, surface monitoring sites in the Yangtze Delta of China during a 16-month field experiment carried out in 1999 and 2000 as part of the joint Chinese-American China-MAP Project (the Yangtze Delta of china as an Evolving Metro-Agro-Plex). The average daytime (0900–1600 h) ozone levels for the monitoring period at sites ranged from 35 to 47 ppbv (parts per billion by volume) and the mean ozone levels from 26 to 35 ppbv. Observed data show seasonal variation obviously, with highest mixing ratios of ozone in May. Average daytime ozone levels in May at sites were between 60 and 79 ppbv. High ozone concentrations were most prevalent during the late spring. Frequency counts of hourly mean ozone concentration over 60 ppbv and 40 ppbv appeared peak values of 22–39% and 42–74% in May at sites. Even higher daytime ozone levels were observed during two regional episodes, in which average daytime (0900–1600 h) ozone concentrations during 10 May and 23 May 2000 were 68 to 81 ppbv, during Oct. 18 and Oct. 28, 1999 were 59 to 67 ppbv at sites. Peak value of ozone mixing ratio appearing in late spring, instead of in summer, was attributed to summer monsoon. Backward trajectories showed that ozone episodes associated with meteorological conditions. Also many high ozone levels associated with high CO levels and high CO to NO x ratios, which suggests a contribution from sources of emission involving incomplete combustion.  相似文献   

8.
The spatial distribution, radiative forcing, and climatic effects of tropospheric ozone in China during summer were investigated by using the regional climate model RegCM4. The results revealed that the tropospheric ozone column concentration was high in East China, Central China, North China, and the Sichuan basin during summer. The increase in tropospheric ozone levels since the industrialization era produced clear-sky shortwave and clear-sky longwave radiative forcing of 0.18 and 0.71 W m–2, respectively, which increased the average surface air temperature by 0.06 K and the average precipitation by 0.22 mm day–1 over eastern China during summer. In addition, tropospheric ozone increased the land–sea thermal contrast, leading to an enhancement of East Asian summer monsoon circulation over southern China and a weakening over northern China. The notable increase in surface air temperature in northwestern China, East China, and North China could be attributed to the absorption of longwave radiation by ozone, negative cloud amount anomaly, and corresponding positive shortwave radiation anomaly. There was a substantial increase in precipitation in the middle and lower reaches of the Yangtze River. It was related to the enhanced upward motion and the increased water vapor brought by strengthened southerly winds in the lower troposphere.  相似文献   

9.
利用2010—2012年对流层臭氧(O3)及其多种前体物的卫星遥感资料和全球水汽再分析资料,研究东亚区域O3及其前体物的时空分布,以及在中国东部(分为南、北两部分)相关性的季节变化。结果表明:东亚区域NO2与CO的对流层柱含量均表现为冬季高、夏季低的时空变化形式。O3对流层柱含量夏季达到峰值,冬季为谷值。中国东部的北部与南部地区O3与NO2均在夏秋季呈正相关,冬春季呈负相关。夏季大部分地区NOx的光化学循环反应对O3生成有积极的促进作用,冬季大部分地区O3的光化学循环生成受到抑制。O3与CO在北部地区夏秋季和南部地区夏季正相关性最大,无论是在北部还是南部地区,O3与CO的相关性在轻污染情况下最大,而在重污染和背景情况下较小,表明重污染气团向下风方的输送更有利于O3的光化学生成。O3与水汽在北部和南部地区的多数时间均呈较显著的正相关性,而在南部地区夏季和北部地区冬季具有较大的负相关性,反映出不同的环流形式、气团来源及伴随的天气条件变化对O3分布的影响。  相似文献   

10.
The relationship between the emission of ozone precursors and the chemical production of tropospheric ozone(O3) in the Pearl River Delta Region(PRD) was studied using numerical simulation.The aim of this study was to examine the volatile organic compound(VOC)-or nitrogen oxide(NOx =NO+NO2)limited conditions at present and when surface temperature is increasing due to global warming,thus to make recommendations for future ozone abatement policies for the PRD region.The model used for this application is the U.S.Environmental Protection Agency’s(EPA’s) third-generation air-quality modeling system;it consists of the mesoscale meteorological model MM5 and the chemical transport model named Community Multi-scale Air Quality(CMAQ).A series of sensitivity tests were conducted to assess the influence of VOC and NOx variations on ozone production.Tropical cyclone was shown to be one of the important synoptic weather patterns leading to ozone pollution.The simulations were based on a tropicalcyclone-related episode that occurred during 14-16 September 2004.The results show that,in the future,the control strategy for emissions should be tightened.To reduce the current level of ozone to meet the Hong Kong Environmental Protection Department(EPD) air-quality objective(hourly average of 120 ppb),emphasis should be put on restricting the increase of NOx emissions.Furthermore,for a wide range of possible changes in precursor emissions,temperature increase will increase the ozone peak in the PRD region;the areas affected by photochemical smog are growing wider,but the locations of the ozone plume are rather invariant.  相似文献   

11.
近年来武汉市臭氧污染日益严峻,成为影响空气质量达标的瓶颈,弄清臭氧及其前体物非线性关系是臭氧防控的关键和基础.本研究基于武汉中心城区2018年4—9月臭氧及其前体物在线观测数据,分析出武汉市臭氧浓度受前体物和气象条件等因素的共同影响,呈较为明显的季节变化和日变化特征.观测期间武汉市大气挥发性有机物(VOCs)平均体积分数为32.5×10-9,烷烃是武汉市VOCs的主要组分,其次是含氧VOCs (OVOCs)和卤代烃.利用基于观测的模型定量分析臭氧与前体物之间的关系,发现削减VOCs会引起臭氧生成潜势的显著下降,而削减氮氧化物则会使臭氧生成潜势升高,说明武汉市臭氧生成处于VOCs控制区.在人为源VOCs中,间/对二甲苯和邻二甲苯的相对增量反应活性(RIR)最高,是影响臭氧生成的关键组分.  相似文献   

12.
Summary The three-dimensional long-range transport model EURAD has been applied to two episodes in 1986 to study the transport and transformation of air pollutants over Europe under different meteorological conditions. The spring episode is characterized by varying meteorological conditions over Europe and transport of pollutants is complex. The summer episode is suitable to study the enhanced formation of photooxidants as an almost stagnant high pressure system over central Europe favoured the accumulation of pollutants. Available observations from several monitoring networks in Europe are used to evaluate the near surface concentration predictions of the model. This is possible for the sulfur species, O3 and NO2 for the central part of the modelling domain. It is shown that O3 and NO2 trends in the western part of the model domain are estimated reasonably well. The strong bias for underpredicting NO2 in the eastern part of the domain reflects the quality of emission data for the two regions of the modelling area. Typically for regional scale Eulerian transport models when applied on larger grid sizes, EURAD overpredicts the observed minima and underpredicts the high observations. This is particularly true for O3 but also detectable in the sulfate comparisons. Several sensitivity simulations for both episodes were performed to test numerical algorithms, parameterizations or emission data. Results from these simulations clearly show the important role of cloud related processes during the spring time for the sulfur species. Further testing and assessment of cloud parameterizations and emission data for transport models is anticipated.With 22 Figures  相似文献   

13.
Summary Prior to and following the development of a windstorm in the mountainous coastal area of southern Korea, ground level ozone (O3)-concentrations near Kangnung city, on the lee side of the mountains, show a maximum value at approximately 1300 LST, owing to a photolytic cycle of NO2–NO–O3 during the day and a minimum in concentrations at night as a result of the reverse cycle. During the development period of the windstorm, ozone concentrations are generally high all day, and slightly higher during the night. This distribution pattern of ozone is very different from the typical distribution of ozone in the absence of windstorms. High daytime concentrations of ozone during the windstorm are due to both the increase in the amount of ozone from photochemical reactions involving NOx and the increase in O3-concentration due to a decrease in the convective boundary layer thickness under the influence of downslope windstorm conditions on the lee-side of the mountains. At night, the windstorm increases in intensity as the westerly winds combine with a katabatic wind blowing downslope toward the surface at the coast. This causes momentum transport of air parcels in the upper levels toward the surface at the coast and the development of internal gravity waves, which generate a hydraulic jump directed upward over the coast and the East sea, thereby reducing to very thin the thickness of the nocturnal surface inversion layer (NSIL). The higher O3-concentration at night depends mainly upon the shallow NSIL and on some O3 being transported by the momentum transfer from the upper troposphere toward the ground in windstorm conditions.  相似文献   

14.
The explosive spread of the 2019 novel coronavirus (COVID-19) provides a unique chance to rethink the relationship between human activity and air pollution. Though related studies have revealed substantial reductions in primary emissions, obvious differences do exist in the responses of secondary pollutants, like ozone (O3) pollution. However, the regional disparities of O3 responses and their causes have still not been fully investigated. To better elucidate the interrelationship between anthropogenic emissions, chemical production, and meteorological conditions, O3 responses caused by lockdowns over different regions were comprehensively explored at a global scale. Observational signals of air-quality change were derived from multi-year surface measurements and satellite retrievals. With similar substantial drops in nitrogen dioxide (NO2), ozone shows rising signals in most areas of both East Asia and Europe, even up to ∼14 ppb, while a non-negligible declining signal exists in North America, by about 2–4 ppb. Furthermore, the drivers behind the different O3 responses are discussed based on meteorological analysis and O3 sensitivity diagnosis. On the one hand, O3 responses to NO2 declines can be affected by the primary dependence on its precursors. On the other hand, it is also highly dependent on meteorological factors, especially temperature. Our study further highlights the great importance of taking into consideration both the regional disparities and synergistic effects of precursor reductions and meteorological influence for scientific mitigation of O3 pollution.摘要疫情期间全球各地一次排放大幅削减, 而臭氧等二次污染的响应则存在着区域间差异.结合地面和卫星观测发现, 同在氮氧化物大幅下降的情况下,臭氧在东亚和欧洲呈现出可达14ppb的上升信号, 而北美则下降为主 (约2–4ppb) .我们结合气象分析和臭氧敏感性进一步讨论了臭氧响应差异性的原因, 一方面受臭氧与前体物间关系的影响;另一方面来自于气象, 尤其是温度.研究明晰了人为排放,化学和气象三者的内在关联, 强调了在臭氧控制过程中考虑前体物削减和气象条件协同的重要性.  相似文献   

15.
This study investigated the potential factors contributing to a series of ozone (O3) episodes in the Taichung metropolis, which occurred during the first half of May 2007. Surface data of the meteorological parameters and air pollutant concentrations, supported by Taiwan Environmental Protection Administration, and vertical data monitored via tethersonde sampling were analysed. The analyses showed that local anthropogenic activities and physical factors such as the sea–air interaction were not the main factors contributing to the O3 events. Excluding these potential causes, the results suggest that, during the aforementioned period, the stronger Mainland High and Pacific Low may have been responsible for the long-range transport of large quantities of O3 from Mainland China to Taiwan. Furthermore, O3 photochemical activity also played an important role in the O3 episodes. The faster consumption of NO lead to a more rapid increase in the O3 concentration.  相似文献   

16.
长江三角洲地区对流层臭氧的变化趋势   总被引:6,自引:0,他引:6       下载免费PDF全文
根据TOR卫星数据分析,我国长江三角洲地区对流层O3柱含量的长期变化就全年和大多数月份而言均为增长趋势,1978-2000年间其年均值的增长趋势为0.82 DU/10 a。这种长期变化趋势所引起的气候效应及其对大气氧化性的影响值得进一步研究。结果表明,长江三角洲地区对流层O3柱含量的季节变化与该地区的临安区域大气本底站的地面O3季节变化有着显著的相关关系,临安站的观测数据具有区域代表性。  相似文献   

17.
F. Cousin  P. Tulet  R. Rosset   《Atmospheric Research》2005,74(1-4):117-137
Escompte, a European programme which took place in the Marseille region in June–July 2001, has been designed as an exhaustive database to be used for the development and validation of air pollution models. The air quality Mesoscale NonHydrostatic Chemistry model (Meso-NH-C) is used to simulate 2 days of an Intensive Observation Period (IOP) documented during the Escompte campaign, June 23 and 24, 2001. We first study the synoptic and local meteorological situation on June 23 and 24, using surface and aircraft measurements. Then, we focus on the pollution episode of June 24. This study emphasizes the deep impact of synoptic and local dynamics on observed ozone concentrations. It is shown that ozone levels are due both to regional and local factors, with highlights of the importance of ozone layering. More generally this confirms, even in an otherwise predominant local sea-breeze regime, the need to consider larger scale regional pollutant transport.  相似文献   

18.
广州亚运会期间鼎湖山站大气污染特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解广州亚运会期间华南区域大气质量状况以及气象条件对区域本底浓度值的影响,2010年11月对鼎湖山站主要污染物NOx,SO2,O3,PM10和PM2.5进行了连续在线观测。利用MICAPS,NCEP FNL资料及后向轨迹模拟对观测时段大气污染物变化特征进行了分析。结果表明:观测时期鼎湖山区域NO2,SO2和O3平均体积分数分别为 (7.2±3.1)×10-9,(8.5±3.8)×10-9和 (28.7±9.8)×10-9。PM10和PM2.5的月平均质量浓度分别达到113 μg·m-3和81 μg·m-3,PM2.5超标日数达13 d (标准为世界卫生组织第1阶段值,日平均值为75 μg·m-3)。不同时段日变化分析表明,广州亚运会期间高值时段 (定义为PM2.5质量浓度超过世界卫生组织的IT.1标准的时段) NOx和O3平均体积分数为13.2×10-9和20.9×10-9,较2009年同期分别下降了41.3%和10.7%。不利气象要素影响和污染物区域传输作用是形成珠江三角洲区域大气本底 (鼎湖山地区) 细粒子污染偏高的主要原因。  相似文献   

19.
PM2.5污染仍然是湖北省冬季大气污染的首要污染类型,且具有明显区域传输特征,重污染过程的空气污染气象条件有别于华北地区,值得关注。采用WRF/Chem不同排放情景下的模拟结果,并结合观测分析,研究了2015年12月—2016年1月湖北省PM2.5重污染过程的气象输送条件及日变化特征,从大尺度输送条件和局地边界层动力作用分析了外来污染物水平传输、悬浮聚集和向下传输的过程,并解释了该地区观测到的午后PM2.5浓度特殊峰值的气象成因。结果表明,湖北重污染爆发以区域传输为主,地面观测PM2.5极值对应10 m风速可达8—10 m/s,边界层0—1 km为较强偏北风输送,污染传输通量极值位于400 m高度附近,为重要传输通道,低空无明显逆温,重污染过程具有“非静稳”边界层气象特征。重污染形成的大尺度输送条件为,长江中下游及北部地区偏北风异常偏强,南部地区风速减缓,使污染物在中游平原堆积,鄂北边界风速越大,越有利污染输送增长。传输性污染主要来自偏北和东北方向的污染源输送,潜在源区贡献主要为途经偏北通道上的豫中、南阳盆地和关中地区,以及途经东北通道上的鲁、皖、苏等部分地区。PM2.5浓度日变化双峰结构的天气成因不同,21—24时(北京时)峰值为静稳性污染,11—14时峰值为传输性污染。污染输送受大气边界层高度影响,日出前大气边界层高度较低,层结稳定并伴有上升运行,使得低空外来输送悬浮聚集在400 m高度附近;日出后随大气边界层高度升高,静稳层结被破坏,在干沉降作用下高浓度PM2.5开始向下传输,并在午后地面形成峰值。   相似文献   

20.
Summary Based on the monthly mean values of 10 meteorological elements from 53 surface weather stations in the Yangtze Delta and its adjacent areas during 1961–1997, the part played by linear climate trends has been analyzed to explore the characteristics of the regional climate change. The results show that the annual air temperature, and maximum and minimum air temperatures, have all increased rapidly in the Yangtze Delta, but there has been a reverse trend in its adjacent areas, i.e., the air temperatures have gradually decreased. Thus the Yangtze Delta emerges as a regional heat island in relation to its adjacent areas. The regional heat island consists of several urban heat sub-islands in southern Jiangsu Province and northern Zhejiang Province, including Shanghai, Wuxi, Changshu, Nanjing, Hangzhou and Ningbo. It appears most obvious in winter and least obvious in summer. An intensity of the regional heat island is defined, and it is shown that the variation of the heat island is positively correlated to the economic development of the region, and is assumed to be related with the increased consumption of energy due to economic development. The results of a climatological analysis of the other annual meteorological elements have indicated the tendency that the soil temperature of the Yangtze Delta has a weak cooling process, its precipitation has evidently increased, sunshine duration and visibility have apparently decreased, and the trend centers appear mainly in the cities. All these phenomena imply that air pollution and aerosols increase with economic development, leading to a cooling mechanism, which in turn suppresses the enhancement of the heat island caused by increasing consumption of energy. On the other hand, an intensified heat island also makes convection and precipitation increase. For the adjacent areas whose economic development is less intense than the Yangtze Delta, a weak cooling appeared there because their heat island caused by increasing consumption of energy resources could not offset the cooling due to aerosols. It can be seen from satellite images that the increase of aerosols in the Yangtze Delta is more obvious than its adjacent areas. By use of a three-region nested mesoscale model, a series of simulations are made with no-forcing and forcing of the optical depth of aerosol and the heating due to energy consumption by human activities. The results of the analysis and the simulation coincide very well. The simulations support the above-mentioned mechanisms of the regional heat island in the Yangtze Delta of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号