首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lack of temporal resolution and accurate chronology of Southern Ocean marine cores has hampered comparison of glacial millennial-scale oscillations between the Southern Ocean, Antarctic ice and other records from both hemispheres. In this study, glacial climate variability is investigated over the last 50 ka using a multi-proxy approach. A precise chrono-stratigraphy was developed on the high-sedimentation rate core MD94-103 (Indian Southern Ocean, 45°35′S 86°31′E, 3560 m water depth) by geomagnetic synchronization between the later core and NAPIS75, and 14C dates. High-resolution time-series of δ18O in planktonic foraminifera Globigerina bulloides and Neogloboquadrina pachyderma, and sea surface temperatures (SSTs) estimated from the alkenone UK37 index and foraminifera assemblages have been generated. Temporal evolution of the two temperature proxy records is notably different during the last glacial period. While foraminifera data indicate a consistent cooling towards the last glacial maximum, anomalous warm glacial alkenone temperatures suggest a strong advection of warm “detrital” alkenones by surface waters of the Agulhas current. Superimposed to this general trend, during Heinrich events, foraminiferal SSTs point to warmer surface waters, while concurrent alkenone SSTs exhibit apparent coolings probably caused by enhanced local alkenone production. By analogy to modern observations, possible influence of ENSO-like conditions on the subantarctic Southern Ocean SSTs is discussed.  相似文献   

2.

The evolution and driving mechanism of the Asian winter monsoon system are of great importance to understanding the present-day climate. Through high-resolution particle size analysis of the oldest loess-red clay sequence known so far (with a basal age of about 8 Ma) and comparison of the results with oxygen isotope curves from North Atlantic marine sediments, 4 stages of the evolution of the Asian winter monsoon were clearly demonstrated. During the first stage, between about 8.1 and 4.3 Ma, there was no relation between Asian winter monsoon and Northern Hemisphere ice volume and high latitude climate inferred from marine sediments. A weak relation developed during the second stage, about 4.3 to 3.5 Ma. During the third stage (3.5 to 2.6 Ma) an Asian winter monsoon system similar to the present formed, initiating a stronger relation between the winter monsoon and Northern Hemisphere ice volume and high latitude climate. In the final stage (2.6 to 0 Ma) the present Asian winter monsoon system was fortified and stabilized and changes in the winter monsoon system were almost in phase with Northern Hemisphere ice volume and climate. The staggered uplift of Tibetan Plateau at ≈8, 3.6, 2.6 Ma and later might be the driving force for the evolution of the Asian winter monsoon.

  相似文献   

3.
The evolution of interocean carbon isotopic gradients over the last 2.5 m.y. is examined using high-resolution δ13C records from deep sea cores in the Atlantic and Pacific Oceans. Over much of the Northern Hemisphere ice ages, relative reductions in North Atlantic Deep Water production occur during ice maxima. From 2.5 to 1.5 Ma, glacial reductions in NADW are less than those observed in the late Pleistocene. Glacial suppression of NADW intensified after 1.5 Ma, earlier than the transition to larger ice sheets around 0.7 Ma. At a number of times during the Pleistocene, δ13C values at DSDP Site 607 in the North Atlantic were indistinguishable from eastern equatorial Pacific δ13C values from approximately the same depth (ODP Site 677), indicating significant incursions of low δ13C water into the deep North Atlantic. Atlantic/Pacific δ13C values converge during glaciations between 1.13-1.05 m.y., 0.83-0.70 m.y., and 0.46-0.43 m.y. This represents a pseudo-periodicity of approximately 300 kyr which cannot easily be ascribed to global ice volume or orbital forcing. This partial decoupling, at low frequencies, of the δ18O and δ13C signals at Site 607 indicates that variations in North Atlantic deep water circulation cannot be viewed simply as a linear response to ice sheet forcing.  相似文献   

4.
A detailed 40Ar/39Ar study, of mineral separates from the Jurassic Atlantic Continental Tholeiites (JACT) of Guyana (French Guyana and Surinam, South America), and Guinea (West Africa) related to the initial opening of the Central Atlantic, has been carried out. In French Guyana, plateau ages of 196.0 ± 5.7 Ma and 196.1 ± 7.5 Ma were obtained on single, small amphibole grains from NNW—SSE trending dykes. In Guinea, single biotite grains from intrusive formations from the Kakoulima and Fouta Djalon areas yielded plateau ages of 200.4 ± 0.2 Ma and 194.8 ± 0.5 Ma, concordant with high temperature apparent ages on other biotites. The bulk plagioclase samples display disturbed age spectra due to alteration and excess argon. However, intermediate temperature, weighted mean plagioclase ages are similar in both regions of Guyana and Guinea, ranging from 200.2 ± 2.4 Ma to 188.7 ± 1.9 Ma, partly in agreement with the amphibole and biotite data.

These data, combined with previous 40Ar/39Ar and U/Pb results from the northern part of the Central Atlantic margins, indicate intense magmatic activity distributed over a large area from Iberia to Liberia (ca. 4500 km long) for a short period of time (204-195 Ma, perhaps less for the bulk of the magmatism) during the initial break-up of Pangea continent. These data do not support an initiation of the magmatism from a radial volcano-tectonic system centred in the south of the region, as suggested by May [1], and the initial break-up seems to affect the whole Central Atlantic during a period of 9 Ma.  相似文献   


5.
We have developed techniques to determine238U,234U and232Th concentrations in seawater by isotope dilution mass spectrometry. U measurements are made using a233U236U double spike to correct for instrumental fractionation. Measurements on uranium standards demonstrate that234U/238U ratios can be measured accurately and reproducibly.234U/238U can be measured routinely to ± 5‰ (2σ) for a sample of 5 × 109 atoms of234U (3 × 10−8 g of total U, 10 ml of seawater). Data acquisition time is 1 hour. The small sample size, high precision and short data acquisition time are superior to-counting techniques.238U is measured to ± 2‰ (2σ) for a sample of 8 × 1012 atoms of238U ( 3 × 10−9 g of U, 1 ml of seawater).232Th is measured to ± 20‰ with 3 × 1011232Th atoms (10−10 g232Th, 1 1 of seawater). This small sample size will greatly facilitate investigation of the232Th concentration in the oceans. Using these techniques, we have measured238U,234U and232Th in vertical profiles of unfiltered, acidified seawater from the Atlantic and238U and234U in vertical profiles from the Pacific. Determinations of234U/238U at depths ranging from 0 to 4900 m in the Atlantic (7°44′N, 40°43′W) and the Pacific (14°41′N, 160°01′W) Oceans are the same within experimental error (± 5‰,2σ). The average of these234U/238U measurements is 144 ± 2‰ (2σ) higher than the equilibrium ratio of 5.472 × 10−5. U concentrations, normalized to 35‰ salinity, range from 3.162 to 3.281 ng/g, a range of 3.8%. The average concentration of the Pacific samples (31°4′N, 159°1′W) is 1% higher than that of the Atlantic (7°44′N, 40°43′W and 31°49′N, 64°6′W).232Th concentrations from an Atlantic profile range from 0.092 to 0.145 pg/g. The observed constancy of the234U/238U ratio is consistent with the predicted range of234U/238U using a simple two-☐ model and the residence time of deep water in the ocean determined from14C. The variation in salinity-normalized U concentrations suggests that U may be much more reactive in the marine environment than previously thought.  相似文献   

6.
High-resolution oxygen isotope records over the last 2249 ka (MIS 1–86) have been obtained from cores of the upper section (105.08 m) at ODP Site 1143 (water depth of 2772 m) drilled in the Nansha area, southern South China Sea. The sampling resolution is at about 2 ka intervals, resulting in one of the best oxygen isotope records over the global ocean. The oxygen isotope curves, displaying details in the Pleistocene glacial cycles, have revealed a nearly 300 ka long stage of transition from a predominant 40 ka to 100 ka periodicity. Therefore, the “Mid-Pleistocene Revolution” should be considered as a process of transition rather than an abrupt change. Within the 100 ka glacial cycles, the changes in tropical sea surface water were found to lead those in high-latitude ice sheet. Our comparisons show that the ice sheet expansion and the glacial stage extension in the Northern Hemisphere with the 100 ka cycles must have been driven not by ice sheet itself, but by processes outside the high latitudes of the Northern Hemisphere.  相似文献   

7.
Laboratory culturing experiments with living Globigerina bulloides indicate that Mg/Ca is primarily a function of seawater temperature and suggest that Mg/Ca of fossil specimens is an effective paleotemperature proxy. Using culturing results and a core-top Neogloboquadrina pachyderma calibration, we have estimated glacial–interglacial changes in sea surface temperature (SST) using planktonic Mg/Ca records from core RC11-120 in the Subantarctic Indian Ocean (43°S, 80°E) and core E11-2 in the Subantarctic Pacific Ocean (56°S, 115°W). Our results suggest that glacial SST was about 4°C cooler in the Subantarctic Indian Ocean and 2.5°C cooler in the Subantarctic Pacific. Comparison of SST and planktonic δ18O records indicates that changes in SST lead changes in δ18O by on average 1–3 kyr. The glacial–interglacial temperature change indicated by the Subantarctic Mg/Ca records suggests that temperature accounts for 40–60% of the foraminiferal δ18O change. We have used the Mg/Ca-based SST estimates and δ18O determinations to generate site-specific seawater δ18O records, which suggest that seawater δ18O was on average 1‰ more positive during glacial episodes compared with interglacial episodes.  相似文献   

8.
The widely accepted age estimate for the onset of glaciation in the Northern Hemisphere ranges between 2 and 15 million years ago (Ma). However, recent studies indicate the date for glacial onset may be significantly older. We report the presence of ice-rafted debris (IRD) in ~ 44 to 30 Ma sediments from the Greenland Sea, evidence for glaciation in the North Atlantic during the Middle Eocene to Early Oligocene. Detailed sedimentological evidence indicates that glaciers extended to sea level in the region, allowing icebergs to be produced. IRD may have been sourced from tidewater glaciers, small ice caps, and/or a continental ice sheet.  相似文献   

9.
In Northern Hemisphere deglaciation records, the transition from the last glacial to the Holocene indicates a rapid return to near-glacial conditions during the Younger Dryas, whereas their Southern Hemisphere ice core counterparts record two separate cooling events: the Antarctic Cold Reversal and the Oceanic Cold Reversal. Spatial distribution and relative timing of these events in both hemispheres are central for our understanding of causes and mechanisms of abrupt climate change. To date, no marine record from the southern mid-latitudes conclusively demonstrates that the Younger Dryas was a significant event in the Southern Ocean. Here, we present high-resolution oxygen isotope and iron content records of a radiocarbon-dated sedimentary sequence from the Great Australian Bight, which constrains oceanic and atmospheric changes during the last deglaciation. Oxygen isotopes from planktonic foraminifera indicate two rapid cold reversals (between 13.1 and 11.1 kyr BP) separated by a brief warming. The sedimentary iron content, interpreted as a proxy for wind strength, indicates a simultaneous change in atmospheric circulation pattern. Both records demonstrate the existence of cooling events in the Southern Hemisphere, which are synchronous with the Northern Hemisphere Younger Dryas cold reversal (between 12.9 and 11.5 kyr BP). Such evidence for the spatial distribution and timing of abrupt climatic fluctuations is essential data for groundtruthing results derived from global climate models.  相似文献   

10.
临夏盆地毛沟剖面高分辨率粒度记录研究表明,29-7.4Ma间,临夏盆地的古气候一直保持相对稳定,而其中短暂的沉积相的改变是盆地对该期间青藏高原构造隆升事件的响应;从7.4Ma开始,流域外的风尘物质开始逐步被带人盆地,并经过了6.4Ma和5.3Ma的两次加速过程,揭示了我国西北内陆干旱气候可能从7.4Ma左右开始,且在6.4Ma和5.3Ma左右经过两次加强.通过与青藏高原构造隆升事件记录和全球气候记录对比。揭示高原在9-7Ma开始的逐步隆升和期后的阶段性加速隆升以及同期开始的全球变冷,尤其北极冰盖的形成和扩张可能是亚洲内陆干旱化的重要驱动机制.  相似文献   

11.
12.
This study reports the results of the first40Ar/39Ar combined induction furnace and laser probe dating of phengites from the Mulhacen HP/LT metamorphic complex in the Betic Cordilleras, southern Spain. Laser step heating and spot fusion analyses on different halves of a split single grain were made with a continuous laser probe. Spot fusion analysis resulted in ages of about 30–31 Ma in the core and ages as low as 25–26 Ma in the rim. Laser step heating on the other half of the grain gave a spectrum with apparent ages increasing from about 25 Ma to 29.5 Ma. The age spectrum and the decreasing ages towards the rim of the grain may imply that resetting essentially occurred by volume diffusion of radiogenic40Ar due to late stage reheating resulting from extensional tectonics. Ages around 30 Ma in the core of the grain are interpreted as minimum estimates of the cooling age of the main tectono-metamorphic phaseD2.

Induction furnace step heating on phengite separates from mica schists and one gneiss resulted in two types of age spectra. Type I spectra show monotonously rising apparent ages from14.5 ± 1.9 Ma to20.7 ± 0.2 Ma, and in a second sample from16.9 ± 0.7 to29.7 ± 0.2 Ma. Type II spectra are characterized by plateaus of14.4 ± 0.1 Ma (the gneiss sample),17.3 ± 0.1 Ma and17.6 ± 0.1 Ma. Type II spectra show low temperature apparent ages significantly below the plateau age, implying resetting subsequent to initial cooling. Modelling of the age spectra demonstrated that the plateau ages are possibly the result of strong resetting (75–85% of argon loss) of an older isotope system. Total fusion of a number of phengite single grains from marbles taken close to type II mica schists yielded ages of15.4 ± 1.2 Ma and17.0 ± 0.7 Ma. The observed repeated resetting is coeval with major volcanic activity in basins adjacent to the metamorphic ranges, pointing to a resetting by advective fluid transport related to volcanism.  相似文献   


13.
New U–Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and  29–26 Ma 40Ar/39Ar ages (n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122–104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation.

We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45–20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and subsequent Miocene continental arc construction.  相似文献   


14.
Seismic reflection and refraction data acquired on four transects spanning the Southeast Greenland rifted margin and Greenland–Iceland Ridge (GIR) provide new constraints on mantle thermal structure and melting processes during continental breakup in the North Atlantic. Maximum igneous crustal thickness varies along the margin from >30 km in the near-hotspot zone (<500 km from the hotspot track) to 18 km in the distal zone (500–1100 km). Magmatic productivity on summed conjugate margins of the North Atlantic decreases through time from 1800±300 to 600±50 km3/km/Ma in the near-hotspot zone and from 700±200 to 300±50 km3/km/Ma in the distal zone. Comparison of our data with the British/Faeroe margins shows that both symmetric and asymmetric conjugate volcanic rifted margins exist. Joint consideration of crustal thickness and mean crustal seismic velocity suggests that along-margin changes in magmatism are principally controlled by variations in active upwelling rather than mantle temperature. The thermal anomaly (ΔT) at breakup was modest (100–125°C), varied little along the margin, and transient. Data along the GIR indicate that the potential temperature anomaly (125±50°C) and upwelling ratio (4 times passive) of the Iceland hotspot have remained roughly constant since 56 Ma. Our results are consistent with a plume–impact model, in which (1) a plume of radius 300 km and ΔT of 125°C impacted the margin around 61 Ma and delivered warm material to distal portions of the margin; (2) at breakup (56 Ma), the lower half of the plume head continued to feed actively upwelling mantle into the proximal portion of the margin; and (3) by 45 Ma, both the remaining plume head and the distal warm layer were exhausted, with excess magmatism thereafter largely confined to a narrow (<200 km radius) zone immediately above the Iceland plume stem. Alternatively, the warm upper mantle layer that fed excess magmatism in the distal portion of the margin may have been a pre-existing thermal anomaly unrelated to the plume.  相似文献   

15.
Archean komatiitic and tholeiitic lavas from Newton Township, Ontario, have a sufficient range of Sm-Nd ratios to define a well-constrained line on the normal 143Nd/144Nd vs. 147Sm/144Nd isochron plot. The data give an isochron age of 2826 ± 64Ma, and an initial εNdof+2.65 ± 0.26. However, U-Pb analysis of zircons from a dacitic volcaniclastic that underlies the komatiite-tholeiite suite give an age of 2697 ± 1.1Ma. There is strong evident that the zircon age is the eruption age, suggesting that the older Sm-Nd age is incorrect and probably results from mixing between isotopically distinct mantle sources. At the time of eruption, the sources had εNd values from about +4.2 to +1.6, indicating that the Archean mantle in this area was markedly heterogeneous and not uniformly depleted.  相似文献   

16.
The new data presented here from a 10–24°N segment of the North Mid-Atlantic Ridge show that this segment is the most depleted of the 10–70°N ridge section. They also show the existence of: (1) a geochemical gradient from the 14°N anomaly to 17°10′N; (2) a very depleted mantle source (the lowest Sr isotopic ratios found so far in the North Atlantic); and (3) a geochemical limit located at about 17°10′N without any obvious relation with any structural feature. The 15°20′N fracture zone does not show any relationship with respect to this gradient. The basalts located north of 17°10′N have very homogeneous features, which allow their characteristics to be averaged (i.e., 87Sr/86Sr= 0.70238 ± 0.00004, (Nb/Zr)N = 0.28 ± 0.1) and they are defined as normal mid-ocean ridge basalts. The basaltic glasses located south of 17°10′N present a wide spectrum of isotopic compositions and extended rare earth element patterns (from depleted to enriched). Despite this, they have a constant K/Nb of 233 ± 9 (1sM, n = 18) whereas this ratio is 344 ± 29 north of 17°10′N. These observations illustrate the strong coherence of behaviour between K and Nb (Ta) during the petrogenic processes involved in the generation of these mid-ocean ridge basalts and also their fractionation during previous mantle processes. Possible interpretations of mixing processes are discussed and sources at the ridge segment scale are favoured. However, when looking in detail, local heterogeneities are still common and can even be traced back off-axis to 115 my.

Placed in the context of the North Atlantic Ridge from 10° to 70°N, the Sr isotopic ratios reveal the Azores superstructure (23–50°N), whereas the trace element ratios (La/Sm-Nb/Zr) trace the second-order structures (33–40°N, 42–48°N) superimposed on the superstructure. This study illustrates the complementarity of information given by certain well chosen trace element ratios on the one hand and by isotopic ratios on the other. Since there is evidence of decoupling between isotopic ratios and/or trace element ratios, it introduces the notion of complementary “chemical memory” as recorded by a given type of trace element ratio or a given type of isotopic ratio  相似文献   


17.
Ion microprobe measurements of Pb isotope ratios in monazites have been obtained, in situ, from thin sections using the Cambridge ISOLAB 120. Molecular interferences are sufficiently resolved at an RP of 6500 to allow 207Pb/206Pb dating of monazite with precisions as low as 4–5 Ma (2σ). The results presented here provide important information on the chronological history of the Late Archean metamorphism of the Wind River Range, Wyoming (USA).

Matrix monazites and monazite inclusions in garnets from a metapelite from the northern Wind River Range have been analysed by SIMS. In a previous study peak metamorphic conditions (T = 800°C; P = 8 ± 1 kb*) were estimated using inclusion assemblages in garnets from this same sample. Isolated monazite inclusions in garnet yield 207Pb/206Pb age estimates of 2781 ± 6 to 2809 ± 10 Ma. Those along fractures yield lower ages (2603–2687 Ma) which are similar to TIMS and SIMS ages of matrix monazites. A single large (500 μm) monazite grain locally preserves growth zoning, but has a recrystallised core and a resorbed (recrystallised?) rim. Age estimates for these three regions are 2788 ± 9 Ma, 2663 ± 4 and 2523 ± 6 Ma, respectively. Thus the inclusion assemblages of Sharp and Essene* may record peak metamorphic conditions at ca. 2.8 Ga, and indicate a phase of metamorphism that predates by over 100 Ma the emplacement of the Bridger Batholith, the major lithologic component of the northern Wind River Range.

The analysed monazite grains appear to preserve ca. 300 Ma history, even within a single grain. Monazite inclusions in garnet that are fully armoured may provide estimates for the time of garnet growth, even in high grade terranes where most chronometers are reset. The age pattern preserved by the large monazite grain cannot be simply related to diffusion controlled closure. Instead, a chronology is preserved which can be related to the petrographic setting of indicidual grains through in situ analysis.  相似文献   


18.
New Sr and C isotopic data, both obtained on the same samples of marine carbonates, provide a relatively detailed record of isotopic variation in seawater through the latest Proterozoic and allow, for the first time, direct correlation of these isotopic changes in the Vendian ( 540–610 Ma). The strong isotope variations determined in this study record significant environmental and tectonic changes. Together with a fairly poorly constrained Nd isotopic record, the Sr and C isotopic records can be used to constrain rates of erosion, hydrothermal alteration and organic C burial. Further, comparison of these records with those of the Cenozoic permit investigation of the general relationship between global tectonics and continental glaciation. In particular, results of this study show a very large change in the 87Sr/86Sr of marine carbonates from low pre-Vendian ( > 610 Ma) values ( 0.7066) to high Middle Cambrian values ( 0.7090). This change is greater in magnitude than the significant increase in seawater 87Sr/86Sr through the Cenozoic. Both changes are attributed to high erosion rates associated with continent-continent collisions (Pan-African and Himalayan-Tibetan). In the latest Proterozoic these high erosion rates, probably coupled with high organic productivity and anoxic bottom-water conditions, contributed to a significant increase in the burial rate of organic C. Ice ages mark both the Neoproterozoic and Cenozoic, but different stratigraphic relationships between the Sr isotopic increase and continental glaciation indicate that uplift-driven models proposed to explain Cenozoic climatic change cannot account for the latest Proterozoic ice ages.  相似文献   

19.
Based on the stable isotopic analysis of more than 1000 samples of planktonic and benthic foraminifers from ODP Site 1148 in the northern South China Sea (SCS), the oxygen isotope stratigraphy has been applied to the last 3 million years for the first time in the SCS. Furthermore, the paleoceanographic changes in the northern SCS during the last 6 million years have been unraveled. The benthic foraminiferal δ18O record shows that before δ3.1 Ma the SCS was much more influenced by the warm intermediate water of the Pacific. The remarkable decrease in the deepwater temperature of the SCS during the period of 3.1-2.5 Ma demonstrates the formation of the Northern Hemisphere ice-sheet. However, the several sea surface temperature (SST) reductions during the early and middle Pliocene, reflected by the planktonic foraminiferal δ18O, might be related to the ice-sheet growth in the Antarctic region. Only those stepwise and irreversible SST reductions during the period of δ2.2-0.9 Ma could be related to the formation and growth of the Northern Hemisphere ice-sheet.  相似文献   

20.
A stock of biotite-muscovite-garnet leucogranite crops out in the lower course of Río Cisnes as an unusual minor lithology within the predominantly dioritic to tonalitic North Patagonian Batholith. Foliated and unfoliated varieties are present—the former are nearer to the main lineament of the Liquin˜e-Ofqui Fault Zone (LOFZ). Two-feldspar thermometry indicates equilibration temperatures above 600°C, for pressures probably not over 3 kbar, as suggested by the Mn-rich garnet composition. A Rb-Sr whole-rock isochron age of 9.6 ± 0.4 Ma (1σ error) probably indicates the time of magma crystallization. 40Ar-39Ar ages of 6.6 ± 0.3 Ma on muscovite and 5.5 ± 0.4 Ma on biotite are cooling ages from which a moderate average uplift/denudation rate ( 1 mm/yr) may be calculated. Paucity of occurrence, distribution close to the LOFZ and a near minimum-melt composition all suggest that the leucogranite magma was derived by partial melting of the lower crust, perhaps by decompression melting at a time when uplift/denudation rates were high (4 mm/yr or more are required). Regional evidence for rapid Holocene uplift in the immediate vicinity of the LOFZ substantiates the feasibility of the proposed petrogenetic model, which may be valid in other strike-slip orogenic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号