首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical composition of the organic matter in the principal macerals of high-volatile bituminous coals from the Gunnedah Basin, New South Wales (Rvmax of telocollinite between 0.6 and 1.1%) has been evaluated from polished section specimens using an electron microprobe technique. Highest proportions of carbon occur in the inertinite macerals, especially fusinite and secretinite (formerly resino-sclerotinite), as well as in sporinite; lowest proportions of carbon occur in the different macerals of the vitrinite group. Oxygen shows the reverse trend, being most abundant in vitrinite and least abundant in the inertinite components, whereas sulphur is lowest in the inertinites and highest in the liptinite (mainly sporinite) present. Evaluations of maceral composition, using the carbon content of telocollinite as a rank indicator, show that carbon is more abundant in both sporinite and semifusinite, relative to vitrinite, in low-rank high-volatile bituminous coals. The difference decreases with increasing rank, and the proportion of carbon in telocollinite becomes essentially the same as that in sporinite and semifusinite at carbon contents of about 89 and 91%, respectively. The carbon content of fusinite and secretinite, on the other hand, does not seem to vary appreciably with rank advance. No significant difference in composition occurs in the rank range studied between the three vitrinite varieties present, desmocollinite, telocollinite and a more highly reflecting telocollinite resembling pseudovitrinite. No evidence was found to indicate a higher hydrogen content, relative to telocollinite, for the vitrinite matrix of desmocollinite.  相似文献   

2.
Peat deposits on the recent lobe of the Fraser River delta, British Columbia, have accumulated in a variety of depositional settings. The study of the decomposition of the plant components associated with each depositional area has enabled prediction of the occurrence and distribution of the precursors of the loal macerals and microlithotypes.On inactive portions of the distal lower delta plain, thin sedge-grass peats ave developed. These peats were influenced by marine conditions near the base and freshwater conditions higher in the section. A high ratio of cellulose to lignin in marsh plants and limited exposure of these tissues to desiccation and oxidation prodcue primarily desmocollinite. Smaller amounts of cernite, cutinite, and alganite origginate from algal and sedge lipids. In the transition to freshwater peats, oxyfusinite, pyrofusinite and micrinite partially replace former exinite and vitrinite-group maceral precursors. Subsequent transgression by marine waters has further promoted decomposition of the peat. Laterally extensive but thin and discontinouus coal seams which would develop from such peat will contain vitrite bands near the base and grade upsection into interlamlaminated durite and vitrinertite.Peats deposited between the upper and lowerdelta plain originate from brackish water. As such, earliest peat horizons contain similar maceral compositions to thoce encountered in distal delta plain deposits. Crevasse and fire splays disrupt gradational changes in fabric upsection and along channel margins. Flooding by oxygenated, neutral pH waters, followed by extended periods of desicaation, result in increases of inertodetrinite, macrinite, sclerotinite, and oxyfusinite. Interlaminated durites and vitrinertites will form common microlithotypes. Interbedded bands of telinite, cutinite and cerinite are produced by later freshwater sedge-grass peat accumulations. In this biofacies, clarite replaces durite. After colonization by Sphagnum, lignin-rich tissues from ericaceous shrubs and Pinus contorta provide precurssors for subernnite, telocollinite, and telinite. Stumps of massive telinite interrupt these banded macerals. Coal seams originating from such peats would be thick, laterally extensive and characterized by vitrite with laminae of liptite and lenses of clarite in the upper part  相似文献   

3.
Two South African coals of the same rank and age, but different in maceral composition were subjected to extensive structural analyses. Inertinite-rich Highveld coal (dominated by semifusinite) and vitrinite-rich Waterberg coal were studied to determine structural differences and similarities. The two coals had similar carbon content ( 84%, dmmf) and vitrinite reflectance (mean-maximum 0.71% for vitrinite-rich vs. 0.75% for inertinite-rich), but differed in hydrogen content (6.23% for vitrinite-rich and 4.53% for inertinite-rich). The inertinite-rich coal was more aromatic (86% for inertinite-rich and 76% for vitrinite-rich) and more polycondensed (indicated by a higher bridgehead carbon content). The inertinite-rich coal was structurally more ordered, with a higher degree of crystalline stacking. Both coals had similar average aromatic cluster sizes (16 carbons for vitrinite-rich and 18 carbons for inertinite-rich) and number of cluster attachments (6 attachments for vitrinite-rich and 5 attachments for inertinite-rich). Mass spectrometry showed that both coals consist of similar molecular weight distributions; ranging to approximately 1700 m/z with a maximum abundance of  450 m/z for the vitrinite-rich coal and  550 m/z for the inertinite-rich coal. Compared to the Argonne Premium coals the South African vitrinite-rich Waterberg coal was comparable to the coals in the high-volatile bituminous range and inertinite-rich Highveld was closer to the medium- to low-volatile bituminous range. Both coals were surprisingly similar in bulk characterization, although inertinite-rich Highveld coal was structurally more ordered, hydrogen deficient, and more aromatic.  相似文献   

4.
In the Carpathian Flysch, coal is present either as exotics of Carboniferous coal deposits or as autochthonous, thin layers of lustrous coal. This paper present the results of the studies of coal-bearing rocks that are coeval with the enclosing flysch sediments. These coals form lenses up to 0.15 m thick. Their morphology precludes an exotic origin. The main petrographic component is collinite with admixtures of poorly fluorescing telinite. Minor components are: exudatinite, sporinite, fusinite, micrinite and sclerotinite. Mineral matter consists of framboidal pyrite clay minerals and quartz.The random reflectance of telocollinite varies from 0.38% to 0.72%, which corresponds to subbituminous and bituminous ranks. Correlation between chemical analysis, coking properties and relfectance measurements, leads to the conclusion that boundary between subbituminous and bituminous coals should be defined by the following values: C=80wt%, VOLATILES=43wt%; calorific VALUE=32.3 MJ/kg; and Ro=0.56–0.57%.Atypical properties, such as: upper C value (75–80wt%); high volatile matter contents (over 43wt%) and low random reflectance (o about 0.38–0.57%) in subbituminous coals; low C value (about 80–82wt%); low reflectance (0.56–0.72%); and good coking properties, of the bituminous coals are attributed to quick coalification during increasing temperature as a result of tectonic stress.  相似文献   

5.
Variously shaped discrete bodies with reflectance higher than the associated vitrinite occur in Permian coals in India, Australia and Africa and the Carboniferous coals of the United States, Canada and Europe. These bodies have been variously named by different authors. In the present paper they are described as ‘resino-inertinites’ as suggested by Lyons et al. (1982).Based on available information and our observations on Carboniferous and Permian coals, it is presumed that resino-inertinites were formed mainly from the resinous (resinite) and to some extent from the phlobaphinitic or corpocollinitic substances. Various morphological patterns developed on resino-inertinites have been interpreted to be governed by the chemical composition of their precursors and the degree of oxidation or fusinization during coalification. Influences of other vvariables viz., paleoenvironmental, paleodepositional, tectonic set up etc. on resino-inertinites are not clearly recognizable probably because all the previous effects were masked by subsequent fusinization.Different morphological features of resino-inertinites associated with early diagenetic and secondary mineralization have caused much confusion in their proper identification and classification. In order to resolve this problem, an attempt has been made to ascertain the source of resins in Indian Permian coals and their subsequent mode of transformation into resino-inertinites during coalification.Further, by critically evaluating morphological features of resino-inertinites and keeping the chemical nature of their precursors in view, a classification scheme has been proposed categorizing them into 3 types. The classification proposed may prove as a useful means for coal-seam correlation.  相似文献   

6.
The South Sumatra basin is among the most important coal producing basins in Indonesia. Results of an organic petrography study on coals from Tanjung Enim, South Sumatra Basin are reported. The studied low rank coals have a mean random huminite reflectance between 0.35% and 0.46% and are dominated by huminite (34.6–94.6 vol.%). Less abundant are liptinite (4.0–61.4 vol.%) and inertinite (0.2–43.9 vol.%). Minerals are found only in small amounts (0–2 vol.%); mostly as iron sulfide.Based on maceral assemblages, the coals can be grouped into five classes: (1) humotelinite-rich group, (2) humodetrinite-rich group, (3) humocollinite-rich group, (4) inertinite-rich group and (5) humodetrinite–liptinite-rich group. Comparing the distribution of maceral assemblages to the maceral or pre-maceral assemblages in modern tropical domed peat in Indonesia reveals many similarities. The basal section of the studied coal seams is represented typically by the humodetrinite–liptinite-rich group. This section might be derived from sapric or fine hemic peat often occurring at the base of modern peats. The middle section of the seams is characterized by humotelinite-rich and humocollinite-rich groups. The precursors of these groups were hemic and fine hemic peats. The top section of the coal seams is typically represented by the humodetrinite-rich or inertinite-rich group. These groups are the counterparts of fibric peat at the top of the modern peats. The sequence of maceral assemblages thus represents the change of topogenous to ombrogenous peat and the development of a raised peat bog.A comparison between the result of detailed maceral assemblage analysis and the paleodepositional environment as established from coal maceral ratio calculation indicates that the use of coal maceral ratio diagrams developed for other coal deposits fails to deduce paleo-peat development for these young tropical coals. In particular, mineral distribution and composition should not be neglected in coal facies interpretations.  相似文献   

7.
The maceral and microlithotype compositions of coals representative of the different coal seams of the Ramagundam and Kothagudem coalfields, Godavari Valley Basin, are compared with those of the Ib River, Talcher, South Karanpura, Hura, and Brahmani coalfields. The vitrite + clarite—“Intermidiates”—durite + fusite + shale (<20%) triangular diagram places these coals in the area of non-coking coals, clearly distinct from the coking and semi-coking coals. The vitrinite reflectance is low (Rormoilaver: 0.38–0.71%), far below the coking-coal range. Thus, based on petrographic composition and rank, these coals are of non-coking nature. A triangular diagram is proposed delineating the coking, semi-coking and non-coking coal areas for the Gondwana coals of India.  相似文献   

8.
The study was performed on inertinite concentrates prepared from 19 samples of bituminous, mostly coking, coal (Rr = 0.87–1.42%) from the Upper Silesian Coal Basin of Poland. In all examined samples, total semifusinite differs from fusinite, in terms of mean values, by higher frequencies of the D1 and D4 band position and lower frequency of the D3 band position, higher G band FWHM, the AD3/AALL and AD4/AALL ratios (where AALL means the surface of all the Raman bands), and lower D1 band FWHM, the ID1/IG and AD1/AALL ratios. Similar differences exist between reactive and non-reactive semifusinites. The diameter of coherent domains (La) increases in the following sequence: reactive semifusinite < non-reactive semifusinite < fusinite. The AD3 + D4/AALL ratio reflects inertinite reactivity in bituminous coals, and decreases with the increase of mean reflectance (Rr) of semifusinite and fusinite. Using the AD3 + D4/AALL, ID1/IG and AD1/AALL ratios or the D3 band position it is possible to interpret thresholds dividing, in terms of mean values, total semifusinite and fusinite, coming from different coals. The results of the study suggest that the term “semifusinite” should only comprise reactive and semi-reactive components. Non-reactive semifusinite should be considered fusinite. Semifusinite from bituminous coals (of Rr ≈ 0.9–1.4%), defined in the proposed way, would be characterized by the AD3 + D4/AALL ratio ≥ 0.35, or the ID1/IG ratio ≤ 1.03.  相似文献   

9.
The coal-bearing sediments and coal seams of the Karoo Basin, Southern Africa are described and discussed. The Karoo Basin is bounded on its southern margin by the Cape Fold Belt, onlaps onto the Kaapvaal Craton in the north and is classified as a foreland basin. Coal seams are present within the Early Permian Vryheid Formation and the Triassic Molteno Formation.The peats of the Vryheid Formation accumulated within swamps in a cool temperate climatic regime. Lower and upper delta plain, back-barrier and fluvial environments were associated with peat formation. Thick, laterally extensive coal seams have preferentially accumulated in fluvial environments. The coals are in general inertinite-rich and high in ash. However, increasing vitrinite and decreasing ash contents within seams occur from west to east across the coalfields. The Triassic Molteno coal seams accumulated with aerially restricted swamps in fluvial environments. These Molteno coals are thin, laterally impersistent, vitrinite-rich and shaly, and formed under a warm temperate climatic regime.Palaeoclimate, depositional systems, differential subsidence and basin tectonics influence to varying degrees, the maceral content, thickness and lateral extent of coal seams. However, the geographic position of peat-forming swamps within a foreland basin, coupled with basin tectonics and differential subsidence are envisaged as the primary controls on coal parameters. The Permian coals are situated in proximal positions on the passive margin of the foreland basin. Here, subsidence was limited which enhanced oxidation of organic matter and hence the formation of inertinitic coals. The coals in this tectonic setting are thick and laterally extensive. The Triassci coals are situated within the tectonically active foreland basin margin. Rapid subsidence and sedimentation rates occurred during peat formation which resulted in the preservation of thin, laterally impersistent, high ash, vitrinite-rich, shaly coals.  相似文献   

10.
This study describes changes of surface roughness of semifusinite and fusinite as an indicator of structural alteration resulting from heat treatment at 400–1200 °C. Surface roughness has been investigated by atomic force microscopy of inertinite concentrates from coking coals (vitrinite reflectance Rr = 1.07%–1.41%) from the Upper Silesian Coal Basin of Poland (Namurian C — Westphalian A). Unheated fusinite has a higher surface roughness than semifusinite from the same coal. The average surface roughness of semifusinite decreases with the Swelling Index of the parent coal. Heating increases the surface roughness of semifusinite and fusinite. Increase in the average surface roughness is stronger for semifusinite than fusinite and correlates to increasing reflectance of these macerals. The surface roughness of semifusinite correlates to the relative mass loss of the inertinite concentrates during heating. After heating to 1200 °C fusinite has a lower average surface roughness than semifusinite from the same coal. Consequently, average surface roughness can be used as a measure of structural alteration of inertinite group macerals during heat treatment.  相似文献   

11.
The Bolsovian (Middle Pennsylvanian) Peach Orchard coal bed is one of the splint coals of the Central Appalachians. Splint coal is a name for the dull, inertinite-rich lithologies typical of coals of the region. The No. 3 Split was sampled at five locations in Magoffin County, Kentucky and analyzed for petrography and major and minor elements. The No. 3 Split coals contain semifusinite-rich lithologies, up to 48% (mineral-free basis) in one case. The nature of the semifusinite varies with position in the coal bed, containing more mineral matter of detrital origin in the uppermost durain. The maceral assemblage of these terminal durains is dominated by detrital fusinite and semifusinite, suggesting reworking of the maceral assemblage coincident with the deposition of the detrital minerals. However, a durain in the middle of the coal bed, while lithologically similar to the uppermost durains, has a degraded, macrinite-rich, texture. The inertinite macerals in the middle durain have less distinct edges than semifusinites in the uppermost terminal durains, suggesting degradation as a possible path to inertinite formation. The uppermost durain has higher ash and semifusinite contents at the eastern sites than at the western sites. The difference in the microscopic petrology indicates that megascopic petrology alone can be a deceptive indicator of depositional environments and that close attention must be paid to the individual macerals and their implications for the depositional setting, especially within the inertinite group.  相似文献   

12.
The objective of the study was to characterize changes of reflectance, reflectance anisotropy and reflectance indicating surface (RIS) shape of vitrinite, sporinite and semifusinite subjected to thermal treatment under inert conditions. Examination was performed on vitrinite, liptinite and inertinite concentrates prepared from channel samples of steam coal (Rr = 0.70%) and coking coal (Rr = 1.25%), collected from seam 405 of the Upper Silesian Coal Basin. The concentrates were heated at temperatures of 400–1200 °C for 1 h time in an argon atmosphere.All components examined in this study: vitrinite, sporinite and semifusinite as well as matrix of vitrinite and liptinite cokes, despite of rank of their parent coal, show, in general, the most important changes of reflectance value and optical anisotropy when heated at 500 °C, 800 °C (with the exception of bireflectance value of sporinite) and 1200 °C.After heating the steam coal at 1200 °C, the vitrinite and the semifusinite reveal similar reflectances, whereas the latter a slightly stronger anisotropy. Sporinite and matrix of liptinite coke have lower reflectances but anisotropy (Rbi and Ram values) similar to those observed for vitrinite and semifusinite. However, at 1000 °C sporinite and matrix of liptinite coke have the highest reflectivity of the studied components. The RIS at 1200 °C is the same for all components.The optical properties of the three macerals in the coking coal become similar after heating at 1000 °C. Coke obtained at 1200 °C did not contain distinguishable vitrinite grains. At 1200 °C semifusinite and vitrinite coke matrix have highest Rr values among the examined components. Maximum reflectance (Rmax) reach similar values for vitrinite and sporinite, slightly lower for semifusinite. Matrix of liptinite coke and matrix of vitrinite coke have considerably stronger anisotropy (Rbi and Ram values) than other components. RIS at 1200 °C is also similar for all components.  相似文献   

13.
Macerals like sporinite, cutinite, suberinite and resinite of the liptinite group have been insufficiently recorded in Indian Permian Gondwana coals, until the fluorescence microscopy came into existence. With the introduction of this technique, macerals like bituminite, fluorinite and exsudatinite were convincingly recognized and alginite and liptodetrinite, normally mistaken for mineral matter under normal reflected light in routine coal petrographic analysis, were identified with certainty. Thus, fluorescence microscopy has added certain new macerals to the tally of the liptinite group and has increased their overall proportion in Indian Gondwana coals.In addition to the liptinite group, collodetrinite (=desmocollinite) and a certain fraction of collotelinite (=telocollinite) macerals of the vitrinite group were found to be fluorescing with dull reddish-brown to dark brown colours. Certain semifusinite and inertodetrinite macerals of inertinite group were also found to fluoresce with almost identical intensity and colour as that of the associated perhydrous (fluorescing) vitrinite. Contributions of degraded resinite, algal matter and bitumen in the formation of perhydrous vitrinite have been established. The fluorescence behaviour of inertinite appears to be related with its genesis from partial oxidation of resin/bitumen-impregnated cell walls.  相似文献   

14.
A set of Pennsylvanian coals from the North American coal basins, ranging in vitrinite reflectance from 0.65% to 1.75%, was examined, with special emphasis on the optical properties of pseudovitrinite. The results suggest that pseudovitrinite originates from the same material as telocollinite. Slits in the pseudovitrinite seem to have originated in situ due to low-temperature oxidation of woody material; their opening might have been facilitated by devolatilization during coalification. The dominant orientation of the slits is perpendicular to bedding. The intensity and orientation of the slits in pseudovitrinite could be important factors in predicting coalbed gas extraction from coal.  相似文献   

15.
Czechoslovak bituminous coals rich in inertinite contain a considerable amount of inertinite with a reflectance range displaced towards and partly overlapping that of the vitrinite reflectance. Together with the existence of the transitional maceral group of semivitrinite, this causes difficulties in maceral analysis as well as in the technological evaluation of these coals. The relationship between the volatile matter of vitrinite and its reflectance is very close for both vitrinite- and inertinite-rich coals. The analogous relationship between the vitrinite reflectance and the volatile matter of inertinite displays a considerable scatter due to the effects of some higher values of the volatile matter of inertinite — related to the presence of inertinite with relatively low reflectance. The results of investigations into the coking properties of coals rich in inertinite, however, do not supply any proof of a higher fusibility of these coals.  相似文献   

16.
A large collection of well-characterized coals, documented in the Center for Applied Energy Research's (CAER) database, was used to estimate the CO2 content of maceral concentrates from Kentucky and Illinois high volatile bituminous coals. The data showed no correlation between CO2 versus coal ranks and between CO2 versus maceral content. Subsequently, eight sets of low-ash density-gradient centrifugation (DGC) maceral concentrates from five coal beds were examined, spanning in the high volatile rank range. Heating value was not determined on the concentrates, but instead was calculated using the Mott–Spooner formula. There was a good correlation between predicted CO2 and maceral content for the individual iso-rank (based on vitrinite reflectance, analyzed on whole (parent) coal) sets. In general, the predicted CO2 increases from liptinite-rich through vitrinite-rich to inertinite-rich concentrates (note: no “concentrates” are absolutely monomaceral).  相似文献   

17.
Petrographic analysis and rank determination were carried out on coals from a Jurassic sequence in eastern Surat Basin, Australia. The coals consist mainly of exinite-rich clarite, with desmocollinite as dominant maceral of the vitrinite group. Petrographically there is no significant variation in the composition of the coals. A herbaceous swamp type, free from severe oxidation/ dehydration, appears to have been a dominant depositional environment during the peat accumulation.The coal rank ranges from sub-bituminous B to high-volatile bituminous C/B. Vitrinite reflectance/ depth profile shows a uniform increase in coalification with depth of burial.  相似文献   

18.
The results of petrographical-geological and chemical examinations on anthracites, semianthracites and medium-low volatile bituminous coals from Jastrzebie in the Upper Silesian Coal Basin of Poland are presented. The coking coals mined in this region exhibit volatile matter Vdaf = 18–26%, free swelling index FSI = 3–8 and reflectance Rm = 1.10–1.35% and are inertiniterich coals (I = 25–63%).Coal Seam 504 of the Anticlinal beds (Namurian B) has been affected by thermal metamorphism and contains both coking coals and coals of higher rank. According to the criterion of Polish Standards this coal seam varies from anthracite (Vdaf <10%) to semianthracite (Vdaf = 10–14%) in rank. The carbon content is slightly lower and the hydrogen content a little higher than those of typical anthracites and semianthracites. The reflectance values (Rm = 1.56–2.62%) are generally lower than the Rm values proposed by the International Committee for Coal Petrology as boundary values for anthracites and bituminous coal. The magnitude of anisotropy and microhardness were also examined. Examinations of optical properties prove that the metamorphism exhibited by the coals is the result of elevated temperature and variable pressure. The analyses of the maceral composition indicate that there is a decrease in the inertinite content in anthracites. Vitrinite exhibits the features of thermally altered coal. The micrinite content shows a little variation. In coking coals, a strongly fluorescing bituminous substance with the optical features of exsudatinite was found. The constructed geological section of Coal Seam 504 shows distinct regular changes in chemical and physical properties as well as the petrographic composition which may be caused by the heat flux of a magma intrusion, not localized so far.  相似文献   

19.
The eastern Himalayan coals of India associated with Permian (Lower Gondwana) sediments in the Kameng district of Arunachal Pradesh have petrographic and chemical properties differing from Peninsular Permian coals.The coals are moderately to highly crushed and have reached a semianthracitic stage. Macerals are highly reflecting and homogenized. Vitrinite and inertinite exhibit a crushing effect in the form of criss-cross fissures and cracks. Exinite is unidentifiable and has attained an inertinitic reflectivity. The Kameng coals are of high rank with average fixed carbon 88.75% and volatile matter 13.75% on d.a.f. basis. The reflectance values (Ro-max 2.02–2.31% in oil) of these coals are quite high with marked anisotropy.It is inferred that these peculiar coal properties have been attained due to prolonged tectonic disturbance in the area during the later Himalayan orogeny. The coal characteristics suggest that these coals were formed in a humid tropical climate within a deltaic regime. The depositional site experienced occasional marine influx due to tectonically controlled subsidence during peat accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号