首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By introducing an asymmetry between the two hemispheres, we study whether the solar dynamo solutions in the two hemispheres remain coupled with each other. Our calculations are based on the solar dynamo code SURYA, which incorporates the helioseismically-determined solar-rotation profile, a Babcock–Leighton α effect concentrated near the surface, and a meridional circulation. When the magnetic coupling between the hemispheres is enhanced by either increasing the diffusion or introducing an α effect distributed throughout the convection zone, we find that the solutions in the two hemispheres evolve together with a single period even when we make the meridional circulation or the α effect different in the two hemispheres. On the other hand, when the hemispheric coupling is weaker for other values of parameters, an asymmetry between the hemispheres can make solutions in the two hemispheres evolve independently with different periods.  相似文献   

2.
Given the complexity involved in a flux-transport-type dynamo driven by both Babcock – Leighton and tachocline α effects, we present here a step-by-step procedure for building a flux-transport dynamo model calibrated to the Sun as a guide for anyone who wishes to build this kind of model. We show that a plausible sequence of steps to reach a converged solution in such a dynamo consists of (i) numerical integration of a classical α – ω dynamo driven by a tachocline α effect, (ii) continued integration with inclusion of meridional circulation to convert the model into a flux-transport dynamo driven by only a tachocline α effect, (iii) final integration with inclusion of a Babcock – Leighton surface α effect, resulting in a flux-transport dynamo that can be calibrated to obtain a close fit of model output with solar observations.  相似文献   

3.
Supergranulation is a component of solar convection that manifests itself on the photosphere as a cellular network of around 35 Mm across, with a turnover lifetime of 1 – 2 days. It is strongly linked to the structure of the magnetic field. The horizontal, divergent flows within supergranule cells carry local field lines to the cell boundaries, while the rotational properties of supergranule upflows may contribute to the restoration of the poloidal field as part of the dynamo mechanism, which controls the solar cycle. The solar minimum at the transition from cycle 23 to 24 was notable for its low level of activity and its extended length. It is of interest to study whether the convective phenomena that influence the solar magnetic field during this time differed in character from periods of previous minima. This study investigates three characteristics (velocity components, sizes and lifetimes) of solar supergranulation. Comparisons of these characteristics are made between the minima of cycles 22/23 and 23/24 using MDI Doppler data from 1996 and 2008, respectively. It is found that whereas the lifetimes are equal during both epochs (around 18 h), the sizes are larger in 1996 (35.9 ± 0.3 Mm) than in 2008 (35.0 ± 0.3 Mm), while the dominant horizontal velocity flows are weaker (139 ± 1 m s−1 in 1996; 141 ± 1 m s−1 in 2008). Although numerical differences are seen, they are not conclusive proof of the most recent minimum being inherently unusual.  相似文献   

4.
The spectroscopic variability of Arcturus hints at cyclic activity cycle and differential rotation. This could provide a test of current theoretical models of solar and stellar dynamos. To examine the applicability of current models of the flux transport dynamo to Arcturus, we compute a mean‐field model for its internal rotation, meridional flow, and convective heat transport in the convective envelope. We then compare the conditions for dynamo action with those on the Sun. We find solar‐type surface rotation with about 1/10th of the shear found on the solar surface. The rotation rate increases monotonically with depth at all latitudes throughout the whole convection zone. In the lower part of the convection zone the horizontal shear vanishes and there is a strong radial gradient. The surface meridional flow has maximum speed of 170 m/s and is directed towards the equator at high and towards the poles at low latitudes. Turbulent magnetic diffusivity is of the order 1015–1016 cm2/s. The conditions on Arcturus are not favorable for a circulation‐dominated dynamo (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Results from kinematic solar dynamo models employing α ‐effect and turbulent pumping from local convection calculations are presented. We estimate the magnitude of these effects to be around 2–3 m s–1, having scaled the local quantities with the convective velocity at the bottom of the convection zone from a solar mixing‐length model. Rotation profile of the Sun as obtained from helioseismology is applied in the models; we also investigate the effects of the observed surface shear layer on the dynamo solutions. With these choices of the small‐ and large‐scale velocity fields, we obtain estimate of the ratio of the two induction effects, C α /C Ω ≈ 10–3, which we keep fixed in all models. We also include a one‐cell meridional circulation pattern having a magnitude of 10–20 m s–1 near the surface and 1–2 m s–1 at the bottom of the convection zone. The model essentially represents a distributed turbulent dynamo, as the α ‐effect is nonzero throughout the convection zone, although it concentrates near the bottom of the convection zone obtaining a maximum around 30° of latitude. Turbulent pumping of the mean fields is predominantly down‐ and equatorward. The anisotropies in the turbulent diffusivity are neglected apart from the fact that the diffusivity is significantly reduced in the overshoot region. We find that, when all these effects are included in the model, it is possible to correctly reproduce many features of the solar activity cycle, namely the correct equatorward migration at low latitudes and the polar branch at high latitudes, and the observed negative sign of B r B ϕ . Although the activity clearly shifts towards the equator in comparison to previous models due to the combined action of the α ‐effect peaking at midlatitudes, meridional circulation and latitudinal pumping, most of the activity still occurs at too high latitudes (between 5° … 60°). Other problems include the relatively narrow parameter space within which the preferred solution is dipolar (A0), and the somewhat too short cycle lengths of the solar‐type solutions. The role of the surface shear layer is found to be important only in the case where the α ‐effect has an appreciable magnitude near the surface. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We have derived the velocities of meridional flows by measuring the latitudinal motions (or drifts) of umbrae of spot groups classified into three categories of area: 0 – 5 μ, 5 – 10 μ, and >10 μ (μ area in millionths of the solar hemisphere). The latitudinal drifts (or the meridional flows) in all three categories are directed equatorward in both the northern and southern hemispheres. By sorting the spot groups into three area classes, we are able to relate the respective latitudinal drifts with the three depths in the convection zone where the footpoints of the flux loops of the spot groups of each area class are anchored. We obtain estimates of the anchor depths through a comparison of the rotation rates of the spot groups of each area class with the rotation-rate profiles from helioseismic inversions. The equatorward drifts obtained provide estimates of the meridional flows at the three depths in the convection zone and thereby suggest the presence of return meridional flows as envisaged in the flux-transport dynamo models, which have remained undetected so far. The data sources for this study are measurements of positions and areas of umbrae of sunspots from the photographic white-light images of the Sun of the Kodaikanal Observatory archives for the period 1906 – 1987 and a very similar, but independent, data set from the Mt. Wilson Observatory archives for the period 1917 – 1985.  相似文献   

7.
Forgács-dajka  E.  Petrovay  K. 《Solar physics》2001,203(2):195-210
Helioseismic measurements indicate that the solar tachocline is very thin, its full thickness not exceeding 4% of the solar radius. The mechanism that inhibits differential rotation to propagate from the convective zone to deeper into the radiative zone is not known, though several propositions have been made. In this paper we demonstrate by numerical models and analytic estimates that the tachocline can be confined to its observed thickness by a poloidal magnetic field B p of about one kilogauss, penetrating below the convective zone and oscillating with a period of 22 years, if the tachocline region is turbulent with a diffusivity of η∼1010 cm2 s−1 (for a turbulent magnetic Prandtl number of unity). We also show that a similar confinement may be produced for other pairs of the parameter values (B p, η). The assumption of the dynamo field penetrating into the tachocline is consistent whenever η≳109 cm2 s−1. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1013389631585  相似文献   

8.
A combination of diamagnetic pumping and a nonlocal α-effect of the Babcock–Leighton type in a solar dynamo model is shown to reproduce observations of solar magnetic activity. The period of the solar cycle can be reproduced without reducing magnetic diffusivity in the bulk of the convection zone below the standard mixing-length value of 1013?cm2?s?1. The simulated global fields are antisymmetric about the equator, and the toroidal-to-poloidal field ratio is about one thousand. However, the time–latitude diagrams of magnetic fields in the model without meridional flow differ from observations. Only when the meridional flow is included and the α-effect profile peaking at mid-latitudes is applied, can the observed butterfly diagrams be reproduced.  相似文献   

9.
Synoptic maps of white-light coronal brightness from SOHO/LASCO C2 and distributions of solar wind velocity obtained from interplanetary scintillation are studied. Regions with velocity V≈300 – 450 km s−1 and increased density N>10 cm−3, typical of the “slow” solar wind originating from the belt and chains of streamers, are shown to exist at Earth’s orbit, between the fast solar wind flows (with a maximum velocity V max ≈450 – 800 km s−1). The belt and chains of streamers are the main sources of the “slow” solar wind. As the sources of “slow” solar wind, the contribution from the chains of streamers may be comparable to that from the streamer belt.  相似文献   

10.
The properties of solar magnetic fields on scales less than the spatial resolution of solar telescopes are studied. A synthetic infrared spectropolarimetric diagnostic based on a 2D MHD simulation of magnetoconvection is used for this. Analyzed are two time sequences of snapshots that likely represent two regions of the network fields with their immediate surroundings on the solar surface with unsigned magnetic flux densities of 300 and 140 G. In the first region from the probability density functions of the magnetic field strength it is found that the most probable field strength at log τ 5=0 is equal to 250 G. Weak fields (B<500 G) occupy about 70% of the surface, whereas stronger fields (B>1000 G) occupy only 9.7% of the surface. The magnetic flux is −28 G and its imbalance is −0.04. In the second region, these parameters are correspondingly equal to 150 G, 93.3%, 0.3%, −40 G, and −0.10. The distribution of line-of-sight velocities on the surface of log τ 5=−1 is estimated. The mean velocity is equal to 0.4 km s−1 in the first simulated region. The average velocity in the granules is −1.2 km s−1 and in the intergranules it is 2.5 km s−1. In the second region, the corresponding values of the mean velocities are equal to 0, −1.8, and 1.5 km s−1. In addition the asymmetry of synthetic Stokes V profiles of the Fe i 1564.8 nm line is analyzed. The mean values of the amplitude and area asymmetry do not exceed 1%. The spatially smoothed amplitude asymmetry is increased to 10% whereas the area asymmetry is only slightly varied.  相似文献   

11.
If massive sterile neutrinos exist, their decays into photons and/or electron-positron pairs may give rise to observable consequences. We consider the possibility that MeV sterile neutrino decays lead to the diffuse positron annihilation line in the Milky Way center, and we thus obtain bounds on the sterile neutrino decay rate Γ e ≥10−28 s−1 from relevant astrophysical/cosmological data. Also, we expect a soft gamma flux of 1.2×10−4–9.7×10−4 ph cm−2 s−1 from the Milky Way center which shows up as a small MeV bump in the background photon spectrum. Furthermore, we estimate the flux of active neutrinos produced by sterile neutrino decays to be 0.02–0.1 cm−2 s−1 passing through the earth.  相似文献   

12.
We studied the characteristics of Coronal Mass Ejections (CMEs) associated with solar flares and Deca-Hectometric (DH) type II radio bursts, based on source position during 23rd solar cycle (1997–2007). We classified these CME events into three groups using solar flare locations as, (i) disk events (0–30); (ii) intermediate events (31–60) and (iii) limb events (61–90). Main results from this studies are, (i) the number of CMEs associated with solar flares and DH-type IIs decreases as the source position approaches from disk to limb, (ii) most of the DH CMEs are halo (72%) in disk events and the number of occurrence of halo CMEs decreases from disk to limb, (iii) the average width and speed of limb events (164 and 1447 km s−1) are higher than those of disk events (134 and 1035 km s−1) and intermediate events (146 and 1170 km s−1) and (iv) the average accelerations for disk, intermediate and limb events are −8.2 m s−2, −10.3 m s−2 and −4.5 m s−2 respectively. These analysis of CMEs properties show more dependency on longitude and it gives strong evidence for projection effect.  相似文献   

13.
An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10±0.05) MK, (0.70±0.08) MK, and (0.98±0.12) MK, at 1.1 R from Sun center in the solar north, east and west, respectively, and (0.93±0.12) MK, at 1.2 R from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103±92) km s−1, (0+10) km s−1, (0+10) km s−1, and (0+10) km s−1. Since the observations were taken only at 1.1 R and 1.2 R from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 R from Sun center is larger at the north (polar region) than the east and west (equatorial region).  相似文献   

14.
This is an account of Allan Sandage’s work on (1) The character of the expansion field. For many years he has been the strongest defender of an expanding Universe. He later explained the CMB dipole by a local velocity of 220±50 km s−1 toward the Virgo cluster and by a bulk motion of the Local supercluster (extending out to ∼3500 km s−1) of 450–500 km s−1 toward an apex at l=275, b=12. Allowing for these streaming velocities he found linear expansion to hold down to local scales (∼300 km s−1). (2) The calibration of the Hubble constant. Probing different methods he finally adopted—from Cepheid-calibrated SNe Ia and from independent RR Lyr-calibrated TRGBs—H 0=62.3±1.3±5.0 km s−1 Mpc−1.  相似文献   

15.
A dm-radio emission with fiber bursts observed on 11 July 2005 was analyzed using wavelet filtration and spectral methods. In filtered radio spectra we found structures with different characteristic period P and frequency drift FD: i) fiber substructures (composed of dot emissions) with P 1≈ 0.5 s, FD1=− 87 MHz s−1 on average, ii) fiber structures with P 2≈1.9 s, and iii) drifting structures with P 3≈81.4 s, FD2=− 8.7, + 98.5, and − 21.8 MHz s−1. In the wavelet spectra we recognized patterns having the form of tadpoles. They were detected with the same characteristic periods P as found for the filtered structures. The frequency drift of the tadpole heads is found to be equal to the frequency drift of some groups of fibers for the long-period wavelet tadpoles (P 3) and to the frequency drift of individual fibers for the short-period tadpoles (P 2). Considering these wavelet tadpoles as signatures of propagating magnetoacoustic wave trains, the results indicate the presence of several wave trains in the fibers’ source. While the long-period wave trains trigger or modulate a whole group of fibers, the short-period ones look like being connected with individual fiber bursts. This result supports the model of fibers based on magnetoacoustic waves. Using a density model of the solar atmosphere we derived the velocities of the magnetoacoustic waves, 107 and 562 km s−1, and setting them equal to the Alfvén ones we estimated the magnetic field in the source of fiber bursts as 10.7 and 47.8 G.  相似文献   

16.
Using nine years of solar wind plasma and magnetic field data from the Wind mission, we investigated the characteristics of both magnetic clouds (MCs) and magnetic cloud-like structures (MCLs) during 1995 – 2003. A MCL structure is an event that is identified by an automatic scheme (Lepping, Wu, and Berdichevsky, Ann. Geophys. 23, 2687, 2005) with the same criteria as for a MC, but it is not usually identifiable as a flux rope by using the MC (Burlaga et al., J. Geophys. Res. 86, 6673, 1981) fitting model developed by Lepping, Jones, and Burlaga (Geophys. Res. Lett. 95(11), 957, 1990). The average occurrence rate is 9.5 for MCs and 13.6 for MCLs per year for the overall period of interest, and there were 82 MCs and 122 MCLs identified during this period. The characteristics of MCs and MCL structures are as follows: (1) The average duration, Δt, of MCs is 21.1 h, which is 40% longer than that for MCLs (Δt=15 h); (2) the average (minimum B z found in MC/MCL measured in geocentric solar ecliptic coordinates) is −10.2 nT for MCs and −6 nT for MCLs; (3) the average Dstmin  (minimum Dst caused by MCs/MCLs) is −82 nT for MCs and −37 nT for MCLs; (4) the average solar wind velocity is 453 km s−1 for MCs and 413 km s−1 for MCLs; (5) the average thermal speed is 24.6 km s−1 for MCs and 27.7 km s−1 for MCLs; (6) the average magnetic field intensity is 12.7 nT for MCs and 9.8 nT for MCLs; (7) the average solar wind density is 9.4 cm−3 for MCs and 6.3 cm−3 for MCLs; and (8) a MC is one of the most important interplanetary structures capable of causing severe geomagnetic storms. The longer duration, more intense magnetic field and higher solar wind speed of MCs, compared to those properties of the MCLs, are very likely the major reasons for MCs generally causing more severe geomagnetic storms than MCLs. But the fact that a MC is an important interplanetary structure with respect to geomagnetic storms is not new (e.g., Zhang and Burlaga, J. Geophys. Res. 93, 2511, 1988; Bothmer, ESA SP-535, 419, 2003).  相似文献   

17.
We report very high temporal and spectral resolution interferometric observations of some unusual solar radio bursts near 1420 MHz. These bursts were observed on 13 September 2005, 22 minutes after the peak of a GOES class X flare from the NOAA region 10808. Our observations show 11 episodes of narrow-band intermittent emission within a span of ≈ 8 s. Each episode shows a heavily frequency-modulated band of emission with a spectral slope of about −245.5 MHz s−1, comprising up to 8 individual blobs of emission and lasts for 10 – 15 ms. The blobs themselves have a spectral slope of ≈ 0 MHz s−1, are ≈ 200 – 250 kHz wide, appear every ≈ 400 kHz and last for ≈ 4 – 5 ms. These bursts show brightness temperatures in the range 1012 K, which suggests a coherent emission mechanism. We believe these are the first high temporal and spectral resolution interferometric observations of such rapid and narrow-bandwidth solar bursts close to 1420 MHz and present an analysis of their temporal and spectral characteristics.  相似文献   

18.
Y.-M. Wang 《Solar physics》2004,224(1-2):21-35
The Sun’s large-scale external field is formed through the emergence of magnetic flux in active regions and its subsequent dispersal over the solar surface by differential rotation, supergranular convection, and meridional flow. The observed evolution of the polar fields and open flux (or interplanetary field) during recent solar cycles can be reproduced by assuming a supergranular diffusion rate of 500 – 600 km2 s−1 and a poleward flow speed of 10 –20 m s−1. The nonaxisymmetric component of the large-scale field decays on the flow timescale of ∼1 yr and must be continually regenerated by new sunspot activity. Stochastic fluctuations in the longitudinal distribution of active regions can produce large peaks in the Sun’s equatorial dipole moment and in the interplanetary field strength during the declining phase of the cycle; by the same token, they can lead to sudden weakenings of the large-scale field near sunspot maximum (Gnevyshev gaps). Flux transport simulations over many solar cycles suggest that the meridional flow speed is correlated with cycle amplitude, with the flow being slower during less active cycles.  相似文献   

19.
20.
High-resolution Hα filtergrams (0.2″) obtained with the Swedish 1-m Solar Telescope resolve numerous very thin, thread-like structures in solar filaments. The threads are believed to represent thin magnetic flux tubes that must be longer than the observable threads. We report on evidence for small-amplitude (1 – 2 km s−1) waves propagating along a number of threads with an average phase velocity of 12 km s−1 and a wavelength of 4″. The oscillatory period of individual threads vary from 3 to 9 minutes. Temporal variation of the Doppler velocities averaged over a small area containing a number of individual threads shows a short-period (3.6 minutes) wave pattern. These short-period oscillations could possibly represent fast modes in accordance with numerical fibril models proposed by Díaz et al. (Astron. Astrophys. 379, 1083, 2001). In some cases, it is clear that the propagating waves are moving in the same direction as the mass flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号