首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 A general circulation model is used to examine the effects of reduced atmospheric CO2, insolation changes and an updated reconstruction of the continental ice sheets at the Last Glacial Maximum (LGM). A set of experiments is performed to estimate the radiative forcing from each of the boundary conditions. These calculations are used to estimate a total radiative forcing for the climate of the LGM. The response of the general circulation model to the forcing from each of the changed boundary conditions is then investigated. About two-thirds of the simulated glacial cooling is due to the presence of the continental ice sheets. The effect of the cloud feedback is substantially modified where there are large changes to surface albedo. Finally, the climate sensitivity is estimated based on the global mean LGM radiative forcing and temperature response, and is compared to the climate sensitivity calculated from equilibrium experiments with atmospheric CO2 doubled from present day concentration. The calculations here using the model and palaeodata support a climate sensitivity of about 1 Wm-2 K-1 which is within the conventional range. Received: 8 February 1997 / Accepted: 4 June 1997  相似文献   

2.
Black carbon aerosols absorb solar radiation and decrease planetary albedo, and thus can contribute to climate warming. In this paper, the dependence of equilibrium climate response on the altitude of black carbon is explored using an atmospheric general circulation model coupled to a mixed layer ocean model. The simulations model aerosol direct and semi-direct effects, but not indirect effects. Aerosol concentrations are prescribed and not interactive. It is shown that climate response of black carbon is highly dependent on the altitude of the aerosol. As the altitude of black carbon increases, surface temperatures decrease; black carbon near the surface causes surface warming, whereas black carbon near the tropopause and in the stratosphere causes surface cooling. This cooling occurs despite increasing planetary absorption of sunlight (i.e. decreasing planetary albedo). We find that the trend in surface air temperature response versus the altitude of black carbon is consistent with our calculations of radiative forcing after the troposphere, stratosphere, and land surface have undergone rapid adjustment, calculated as “regressed” radiative forcing. The variation in climate response from black carbon at different altitudes occurs largely from different fast climate responses; temperature dependent feedbacks are not statistically distinguishable. Impacts of black carbon at various altitudes on the hydrological cycle are also discussed; black carbon in the lowest atmospheric layer increases precipitation despite reductions in solar radiation reaching the surface, whereas black carbon at higher altitudes decreases precipitation.  相似文献   

3.
In this research, we studied the effects of black carbon (BC) aerosol radiative forcing on seasonal variation in the Northern Hemisphere (NH) using numerical simulations with the NASA finite-volume General Circulation Model (fvGCM) forced with monthly varying three-dimensional aerosol distributions from the Goddard Ozone Chemistry Aerosol Radiation and Transport Model (GOCART). The results show that atmospheric warming due to black carbon aerosols subsequently warm the atmosphere and land surfaces, especially those over Eurasia. As a result, the snow depth in Eurasia was greatly reduced in late winter and spring, and the reduction in snow cover decreased the surface albedo. Our surface energy balance analysis shows that the surface warming due to aerosol absorption causes early snow melting and further increases surface-atmosphere warming through snow/ice albedo feedback. Therefore, BC aerosol forcing may be an important factor affecting the snow/ice albedo in the NH.  相似文献   

4.
This study simulates the effective radiative forcing(ERF) of tropospheric ozone from 1850 to 2013 and its effects on global climate using an aerosol–climate coupled model, BCC AGCM2.0.1 CUACE/Aero, in combination with OMI(Ozone Monitoring Instrument) satellite ozone data. According to the OMI observations, the global annual mean tropospheric column ozone(TCO) was 33.9 DU in 2013, and the largest TCO was distributed in the belts between 30°N and 45°N and at approximately 30°S; the annual mean TCO was higher in the Northern Hemisphere than that in the Southern Hemisphere;and in boreal summer and autumn, the global mean TCO was higher than in winter and spring. The simulated ERF due to the change in tropospheric ozone concentration from 1850 to 2013 was 0.46 W m~(-2), thereby causing an increase in the global annual mean surface temperature by 0.36℃, and precipitation by 0.02 mm d~(-1)(the increase of surface temperature had a significance level above 95%). The surface temperature was increased more obviously over the high latitudes in both hemispheres, with the maximum exceeding 1.4?C in Siberia. There were opposite changes in precipitation near the equator,with an increase of 0.5 mm d~(-1)near the Hawaiian Islands and a decrease of about-0.6 mm d~(-1)near the middle of the Indian Ocean.  相似文献   

5.
A seasonal energy balance climate model containing a detailed treatment of surface and planetary albedo, and in which seasonally varying land snow and sea ice amounts are simulated in terms of a number of explicit physical processes, is used to investigate the role of high latitude ice, snow, and vegetation feedback processes. Feedback processes are quantified by computing changes in radiative forcing and feedback factors associated with individual processes. Global sea ice albedo feedback is 5–8 times stronger than global land snowcover albedo feedback for a 2% solar constant increase or decrease, with Southern Hemisphere cryosphere feedback being 2–5 times stronger than Northern Hemisphere cryosphere feedback.In the absence of changes in ice extent, changes in ice thickness in response to an increase in solar constant are associated with an increase in summer surface melting which is exactly balanced by increased basal winter freezing, and a reduction in the upward ocean-air flux in summer which is exactly balanced by an increased flux in winter, with no change in the annual mean ocean-air flux. Changes in the mean annual ocean-air heat flux require changes in mean annual ice extent, and are constrained to equal the change in meridional oceanic heat flux convergence in equilibrium. Feedback between ice extent and the meridional oceanic heat flux obtained by scaling the oceanic heat diffusion coefficient by the ice-free fraction regulates the feedback between ice extent and mean annual air-sea heat fluxes in polar regions, and has a modest effect on model-simulated high latitude temperature change.Accounting for the partial masking effect of vegetation on snow-covered land reduces the Northern Hemisphere mean temperature response to a 2% solar constant decrease or increase by 20% and 10%, respectively, even though the radiative forcing change caused by land snowcover changes is about 3 times larger in the absence of vegetational masking. Two parameterizations of the tundra fraction are tested: one based on mean annual land air temperature, and the other based on July land air temperature. The enhancement of the mean Northern Hemisphere temperature response to solar constant changes when the forest-tundra ecotone is allowed to shift with climate is only 1/3 to 1/2 that obtained by Otterman et al. (1984) when the mean annual parameterization is used here, and only 1/4 to 1/3 as large using the July parameterization.The parameterized temperature dependence of ice and snow albedo is found to enhance the global mean temperature response to a 2% solar constant increase by only 0.04 °C, in sharp contrast to the results of Washington and Meehl (1986) obtained with a mean annual model. However, there are significant differences in the method used here and in Washington and Meehl to estimate the importance of this feedback process. When their approach is used in a mean annual version of the present model, closer agreement to their results is obtained.  相似文献   

6.
A regional sea-ice?Cocean model was used to investigate the response of sea ice and oceanic heat storage in the Hudson Bay system to a climate-warming scenario. Projections of air temperature (for the years 2041?C2070; effective CO2 concentration of 707?C950?ppmv) obtained from the Canadian Regional Climate Model (CRCM 4.2.3), driven by the third-generation coupled global climate model (CGCM 3) for lateral atmospheric and land and ocean surface boundaries, were used to drive a single sensitivity experiment with the delta-change approach. The projected change in air temperature varies from 0.8°C (summer) to 10°C (winter), with a mean warming of 3.9°C. The hydrologic forcing in the warmer climate scenario was identical to the one used for the present climate simulation. Under this warmer climate scenario, the sea-ice season is reduced by 7?C9?weeks. The highest change in summer sea-surface temperature, up to 5°C, is found in southeastern Hudson Bay, along the Nunavik coast and in James Bay. In central Hudson Bay, sea-surface temperature increases by over 3°C. Analysis of the heat content stored in the water column revealed an accumulation of additional heat, exceeding 3?MJ?m?3, trapped along the eastern shore of James and Hudson bays during winter. Despite the stratification due to meltwater and river runoff during summer, the shallow coastal regions demonstrate a higher capacity of heat storage. The maximum volume of dense water produced at the end of winter was halved under the climate-warming perturbation. The maximum volume of sea ice is reduced by 31% (592?km3) while the difference in the maximum cover is only 2.6% (32,350?km2). Overall, the depletion of sea-ice thickness in Hudson Bay follows a southeast?Cnorthwest gradient. Sea-ice thickness in Hudson Strait and Ungava Bay is 50% thinner than in present climate conditions during wintertime. The model indicates that the greatest changes in both sea-ice climate and heat content would occur in southeastern Hudson Bay, James Bay, and Hudson Strait.  相似文献   

7.
There are many indicators that human activity may change climate conditions all around the globe through emissions of greenhouse gases. In addition, aerosol particles are emitted from various natural and anthropogenic sources. One important source of aerosols arises from biomass burning, particularly in low latitudes where shifting cultivation and land degradation lead to enhanced aerosol burden. In this study the counteracting effects of greenhouse gases and aerosols on African climate are compared using climate model experiments with fully interactive aerosols from different sources. The consideration of aerosol emissions induces a remarkable decrease in short-wave solar irradiation near the surface, especially in winter and autumn in tropical West Africa and the Congo Basin where biomass burning is mainly prevailing. This directly leads to a modification of the surface energy budget with reduced sensible heat fluxes. As a consequence, temperature decreases, compensating the strong warming signal due to enhanced trace gas concentrations. While precipitation in tropical Africa is less sensitive to the greenhouse warming, it tends to decrease, if the effect of aerosols from biomass burning is taken into account. This is partly due to the local impact of enhanced aerosol burden and partly to modifications of the large-scale monsoon circulation in the lower troposphere, usually lagging behind the season with maximum aerosol emissions. In the model equilibrium experiments, the greenhouse gas impact on temperature stands out from internal variability at various time scales from daily to decadaland the same holds for precipitation under the additional aerosol forcing. Greenhouse gases and aerosols exhibit an opposite effect on daily temperature extremes, resulting in an compensation of the individual responses under the combined forcing. In terms of precipitation, daily extreme events tend to be reduced under aerosol forcing, particularly over the tropical Atlantic and the Congo basin. These results suggest that the simulation of the multiple aerosol effects from anthropogenic sources represents an important factor in tropical climate change, hence, requiring more attention in climate modelling attempts.  相似文献   

8.
The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3-D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse.  相似文献   

9.
Submarine and satellite observations show that the Arctic Ocean ice cover has undergone a large thickness reduction and a decrease in the areal extent during the last decades. Here the response of the Arctic Ocean ice cover to changes in the poleward atmospheric energy transport, F wall, is investigated using coupled atmosphere-ice-ocean column models. Two models with highly different complexity are used in order to illustrate the importance of different internal processes and the results highlight the dramatic effects of the negative ice thickness—ice volume export feedback and the positive surface albedo feedback. The steady state ice thickness as a function of F wall is determined for various model setups and defines what we call ice thickness response curves. When a variable surface albedo and snow precipitation is included, a complex response curve appears with two distinct regimes: a perennial ice cover regime with a fairly linear response and a less responsive seasonal ice cover regime. The two regimes are separated by a steep transition associated with surface albedo feedback. The associated hysteresis is however small, indicating that the Arctic climate system does not have an irreversible tipping point behaviour related to the surface albedo feedback. The results are discussed in the context of the recent reduction of the Arctic sea ice cover. A new mechanism related to regional and temporal variations of the ice divergence within the Arctic Ocean is presented as an explanation for the observed regional variation of the ice thickness reduction. Our results further suggest that the recent reduction in areal ice extent and loss of multiyear ice is related to the albedo dependent transition between seasonal and perennial ice i.e. large areas of the Arctic Ocean that has previously been dominated by multiyear ice might have been pushed below a critical mean ice thickness, corresponding to the above mentioned transition, and into a state dominated by seasonal ice.  相似文献   

10.
Progress in understanding how terrestrial ice volume is linked to Earths orbital configuration has been impeded by the cost of simulating climate system processes relevant to glaciation over orbital time scales (103–105 years). A compromise is usually made to represent the climate system by models that are averaged over one or more spatial dimensions or by three-dimensional models that are limited to simulating particular snapshots in time. We take advantage of the short equilibration time (10 years) of a climate model consisting of a three-dimensional atmosphere coupled to a simple slab ocean to derive the equilibrium climate response to accelerated variations in Earths orbital configuration over the past 165,000 years. Prominent decreases in ice melt and increases in snowfall are simulated during three time intervals near 26, 73, and 117 thousand years ago (ka) when aphelion was in late spring and obliquity was low. There were also significant decreases in ice melt and increases in snowfall near 97 and 142 ka when eccentricity was relatively large, aphelion was in late spring, and obliquity was high or near its long term mean. These glaciation-friendly time intervals correspond to prominent and secondary phases of terrestrial ice growth seen within the marine 18O record. Both dynamical and thermal effects contribute to the increases in snowfall during these periods, through increases in storm activity and the fraction of precipitation falling as snow. The majority of the mid- to high latitude response to orbital forcing is organized by the properties of sea ice, through its influence on radiative feedbacks that nearly double the size of the orbital forcing as well as its influence on the seasonal evolution of the latitudinal temperature gradient.  相似文献   

11.
海陆气耦合模式,是用来定量描述过去气候变化的成因和预报未来气候变化的唯一数学工具。由于大气反馈过程的差异,特别是云辐射反馈的差异,这些模式对外强迫的平衡态响应有相当大的差异。然而,参加政府间气候变化专门委员会(Inter-governmental Panel on Climate Change,IPCC)第4次评估报告(Assessment Report,AR4)的所有耦合模式,对20世纪气候的模拟结果均非常相似。本文研究了这种相似性的产生原因及启示。结果表明,若大气反馈越大,则气候对外强迫的响应时滞越长、与深海的热交换越多、模式中海洋涌升流的影响越大。这3种同样重要的物理机制共同作用,降低了瞬变气候变化对模式差异的敏感性;然而,在较长的时间尺度上,模式间大气反馈过程差异将在多个方面显现出来  相似文献   

12.
The regional ocean modeling system is used, at a resolution of 1/12°, to explicitly simulate the ocean circulation near the Iberian coast during two 30-year simulations forced by atmospheric fields produced by the RACMO regional climate model. The first simulation is a control run for the present climate (1961–1990) and the second is a scenario run from the IPCC A2 scenario (2071–2100). In the control run, the model reproduces some important features of the regional climate but with an overestimation of upwelling intensity, mainly attributable to inaccuracies in the coastal wind distributions when compared against reanalysis data. A comparison between the scenario and control simulations indicates a significant increase in coastal upwelling, with more frequent events with higher intensity, leading to an overall enhancement of SST variability on both the intra- and inter-annual timescales. The increase in upwelling intensity is more prominent in the northern limit of the region, near cape Finisterre, where its mean effect extends offshore for a few hundred kms, and is able to locally cancel the effect of global warming. If these results are confirmed, climate change will have a profound impact on the regional marine ecosystem.  相似文献   

13.
A regional atmospheric climate model, including an interactive module of the tropospheric sulfur cycle, has been used to conduct yearlong equilibrium simulations of the temperature response due to anthropogenic sulfate aerosol forcing on cloud albedo. A main purpose is to examine differences in the magnitudes as well as patterns of forcing and response between simulations conducted with high (0.4° × 0.4°, HR) and low (2.0° × 2.0°, LR) spatial resolutions. Averaged over the model domain, the annual mean indirect forcing differs by only 7% between HR and LR and there is no difference in the annual mean temperature response. The results thus indicate that it is not important to represent small-scale variability (=2.8°) when the average indirect climate effect over Europe is considered. However, a notable difference in the geographical distributions of forcing and response is obtained when different resolutions are employed. In addition, a clear correspondence between the patterns of radiative forcing and temperature response is obtained when HR is used. The correspondence is less obvious in the LR simulation. It is interesting to compare the present results with those of Roeckner et al. 1999, who found a poor correspondence between the patterns of forcing and response in their simulations using a coarse resolution GCM.  相似文献   

14.
We investigate the response of a climate system model to two different methods for estimating snow cover fraction. In the control case, snow cover fraction changes gradually with snow depth; in the alternative scenarios (one with prescribed vegetation and one with dynamic vegetation), snow cover fraction initially increases with snow depth almost twice as fast as the control method. In cases where the vegetation was fixed (prescribed), the choice of snow cover parameterization resulted in a limited model response. Increased albedo associated with the high snow caused some moderate localized cooling (3–5°C), mostly at very high latitudes (>70°N) and during the spring season. During the other seasons, however, the cooling was not very extensive. With dynamic vegetation the change is much more dramatic. The initial increases in snow cover fraction with the new parameterization lead to a large-scale southward retreat of boreal vegetation, widespread cooling, and persistent snow cover over much of the boreal region during the boreal summer. Large cold anomalies of up to 15°C cover much of northern Eurasia and North America and the cooling is geographically extensive in the northern hemisphere extratropics, especially during the spring and summer seasons. This study demonstrates the potential for dynamic vegetation within climate models to be quite sensitive to modest forcing. This highlights the importance of dynamic vegetation, both as an amplifier of feedbacks in the climate system and as an essential consideration when implementing adjustments to existing model parameters and algorithms.  相似文献   

15.
G. M. Flato 《Climate Dynamics》2004,23(3-4):229-241
The simulation of sea-ice in global climate models participating in the Coupled Model Intercomparison Project (CMIP1 and CMIP2) is analyzed. CMIP1 simulations are of the unpertubed control climate whereas in CMIP2, all models have been forced with the same 1% yr–1 increase in CO2 concentration, starting from a near equilibrium initial condition. These simulations are not intended as forecasts of climate change, but rather provide a means of evaluating the response of current climate models to the same forcing. The difference in modeled response therefore indicates the range (or uncertainty) in model sensitivity to greenhouse gas and other climatic perturbations. The results illustrate a wide range in the ability of climate models to reproduce contemporary sea-ice extent and thickness; however, the errors are not obviously related to the manner in which sea-ice processes are represented in the models (e.g. the inclusion or neglect of sea-ice motion). The implication is that errors in the ocean and atmosphere components of the climate model are at least as important. There is also a large range in the simulated sea-ice response to CO2 change, again with no obvious stratification in terms of model attributes. In contrast to results obtained earlier with a particular model, the CMIP ensemble yields rather mixed results in terms of the dependence of high-latitude warming on sea-ice initial conditions. There is an indication that, in the Arctic, models that produce thick ice in their control integration exhibit less warming than those with thin ice. The opposite tendency appears in the Antarctic (albeit with low statistical significance). There is a tendency for models with more extensive ice coverage in the Southern Hemisphere to exhibit greater Antarctic warming. Results for the Arctic indicate the opposite tendency (though with low statistical significance).A list of the CMIP modeling groups is included in the Acknowledgements section.  相似文献   

16.
The time-dependent response of climate changes to changing atmospheric concentration of carbon dioxide is modeled using an energy balance atmospheric model coupled to a one-dimensional upwelling diffusion model of the deep ocean. Such a model introduces time delays so that the calculated globally-averaged temperature lags that which would be predicted by assuming radiative equilibrium. The climate model is coupled to a simple carbon cycle model and a ‘social’ model that simulates decreasing emission in response to increasing global temperatures. The thermal inertia of the system is such that temperatures continue to increase after carbon dioxide concentrations are decreasing. Consultant to BNL from New York University. Semester Student, Fall 1979, Alcorn State College. This research was performed under the auspices of the United States Department of Energy under Contract No. DE-AC02-76CH00016. By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government’s right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.  相似文献   

17.
Motivated by findings that major components of so-called cloud ??feedbacks?? are best understood as rapid responses to CO2 forcing (Gregory and Webb in J Clim 21:58?C71, 2008), the top of atmosphere (TOA) radiative effects from forcing, and the subsequent responses to global surface temperature changes from all ??atmospheric feedbacks?? (water vapour, lapse rate, surface albedo, ??surface temperature?? and cloud) are examined in detail in a General Circulation Model. Two approaches are used: applying regressions to experiments as they approach equilibrium, and equilibrium experiments forced separately by CO2 and patterned sea surface temperature perturbations alone. Results are analysed using the partial radiative perturbation (??PRP??) technique. In common with Gregory and Webb (J Clim 21:58?C71, 2008) a strong positive addition to ??forcing?? is found in the short wave (SW) from clouds. There is little evidence, however, of significant global scale rapid responses from long wave (LW) cloud, nor from surface albedo, SW water vapour or ??surface temperature??. These responses may be well understood to first order as classical ??feedbacks????i.e. as a function of global mean temperature alone and linearly related to it. Linear regression provides some evidence of a small rapid negative response in the LW from water vapour, related largely to decreased relative humidity (RH), but the response here, too, is dwarfed by subsequent response to warming. The large rapid SW cloud response is related to cloud fraction changes??and not optical properties??resulting from small cloud decreases ranging from the tropical mid troposphere to the mid latitude lower troposphere, in turn associated with decreased lower tropospheric RH. These regions correspond with levels of enhanced heating rates and increased temperatures from the CO2 increase. The pattern of SW cloud fraction response to SST changes differs quite markedly to this, with large positive radiation responses originating in the upper troposphere, positive contributions in the lowest levels and patterns of positive/negative contributions in mid latitude low levels. Overall SW cloud feedback was diagnosed as negative, due to the substantial negative SW feedback in cloud optical properties more than offsetting these. This study therefore suggests the rapid response to CO2 forcing is (apart from a possible small negative response from LW water vapour) essentially confined to cloud fraction changes affecting SW radiation, and further that significant feedbacks with temperature occur in all cloud components (including this one), and indeed in all other classically understood ??feedbacks??.  相似文献   

18.
19.
Long (130,000 years) transient simulations with a coupled model of intermediate complexity (CLIMBER-2) have been performed. The main objective of this study is to examine leads and lags in the response to the climate system to separate obliquity and precession-induced insolation changes. Focus is on the role of internal feedbacks in the coupled atmosphere/ocean/sea-ice/vegetation system. No interactive ice sheets were used. The results show that leads and lags occur in response to the African/Asian monsoon, temperatures at high latitudes and the Atlantic thermohaline circulation. For the monsoon, leads and lags of the monthly precipitation with respect to the precession parameter were found, which are strongly modified by vegetation. In contrast, no lag was observed for the annual precipitation. At high latitudes during late winter/early spring a vegetation-induced lag with respect to the precession parameter was found in surface air temperatures. Again, no annual lag was detected. The lag in the monthly surface air temperatures induces a lag in the annual overturning in the Atlantic Ocean by changing the strength of the deep convection. The lag is several thousand years. The obliquity-related forcing does not give rise to lags in the climate system. We conclude that lags in monthly climatic variables, which are due to vegetation feedbacks, can result in an annual lag when a climatic process (like deep water formation) acts as a filter for certain months.  相似文献   

20.
The natural low frequency variability of the sea-ice thickness in the Arctic is investigated based on a 10 000 years simulation with a one-dimensional thermodynamic sea-ice model forced by random perturbations of the air surface temperature and solar radiation. The simulation results suggest that atmospheric random perturbations are integrated by the sea-ice. Moreover those perturbations occurring at the onset of ice melting force the largest ice thickness anomalies, which are successively amplified in summer by the albedo feedback and damped in winter by the feedback of the heat conduction through the ice. They also result in a global shift of the melting season which, in the mean annual cycle, leads to earlier melting as compared to the mean climatological cycle. The power spectrum of the ice anomalies suggests that the thickness of the perennial ice should vary preferentially on a time scale of approximately 20 years. The shape of the spectrum is consistent with that of a first order Markov process in which the characteristic time scale of the ice fluctuations would be the relaxation time scale associated with the linear feedback. The equivalent Markov model is constructed by linearizing the ice growth rate anomaly equations and allows us to derive an analytical expression of the feedback and of the forcing of the anomalies. The characteristic time scale depends explicitly on those model parameters involved in the atmosphere-ice interaction but also on the mean seasonal characteristics of the forcing and of the ice thickness. Received: 18 August 1999 / Accepted: 10 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号