首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We examined individual and interactive effects of two stressors—nutrients (nitrogen [N] and phosphorus [P]) and trace elements (a mix of arsenic [As], copper [Cu], and cadmium [Cd], and in a second experiment also zinc [Zn] and nickel [Ni])—on phytoplankton of the mesohaline Patuxent River, a tributary of Chesapeake Bay. Experiments were conducted in twenty 1-m3 mesocosms. Four mesocosm runs used two levels of nutrient loadings (0.7–1.0 × ambient N loading and enriched to 1.3–1.6 × ambient N loading) crossed with two levels of trace elements (ambient and enriched approximately 2–5 × higher than ambient concentrations) crossed with five progressive levels of ecosystem complexity. To examine seasonal patterns of responses to stressors, data from these experiments were combined with results of a similar experiment conducted during 1996 (Breitburg et al. 1999a). A second mesocosm experiment examined effects of individual and mixed trace elements, both alone and in combination with nutrients, to further examine which nutrient-trace element interactions were important. Nutrients consistently increased phytoplankton productivity and biomass. Most of the increased biomass was created by large centric diatoms, which increased the mean cell size of the phytoplankton community. Trace element additions decreased phytoplankton productivity and biomass, as well as the contribution of large centric diatoms to phytoplankton biomass. When both trace elements and nutrients were added, trace elements reduced nutrient stimulation. Although the magnitude of the response to nutrient additions tended to be somewhat greater in spring, the seasonal patterns of trace element effects, and nutrient-trace element interactions were far more striking with significant responses restricted to spring mesocosm runs. The second experiment indicated that both As and Cu were more inhibitory to phytoplankton in spring than in summer, but As was more inhibitory in the low nutrient treatments and Cu was more inhibitory in the nutrient enrichment treatments. The potential for strong seasonal patterns and high temporal variability in stressor effects and multiple stressor interactiosn will require close attention in the design and interpretation of management-relevant research and monitoring and may indicate the need for seasonally varying management strategies.  相似文献   

2.
Data were collected in the Tagus estuary from 1999–2007 on a monthly basis and combined with published results and for several previous years between 1980 and 1995, so that a comprehensive analysis could be performed over a non-continuous 27-year period. Sampling conditions and methods were similar for all datasets. Extreme wet and dry years were observed. River flow was strongly linked to phytoplankton abundance, with the highest biomass attained in dry years. The observed range of annual median Chl a was 1.8–7.6 µg L?1 and the overall median was 3.5 µg L?1. Dissolved inorganic nitrogen (DIN) and silicate showed a clear seasonal pattern, with a maximum in winter?spring, indicating a freshwater origin. Although wastewater treatment started in 1990, no difference was detected from 1980 to the present in terms of DIN and phosphorus. The recorded seasonal pattern for biomass with highest values in late spring–summer period is comparable to other temperate tidally influenced ecosystems. In spite of interannual differences in terms of Chl a concentration or the time of the maximum Chl a occurrence, a repeatable pattern could be identified. The mean growth development time for phytoplankton was 163 days (June 12) ranging 129–206 days (May 9–July 26) during the sampling period. No obvious changes in phytoplankton community structure were observed over time: diatoms were always the dominant group, and cryptophytes were relatively abundant throughout autumn–winter. The dominant species have remained essentially the same since 1969. River inflow, light availability, and temperature were the major factors shaping phytoplankton variability patterns. The strong influence of tidal mixing on the estuarine waters appears to lower the risk of potential eutrophication in the Tagus estuary. The lack of change in nutrients and phytoplankton biomass and composition observed in this study is an important contribution towards the assessment of natural variability versus responses to man-induced inputs in this severely anthropogenically disturbed estuary.  相似文献   

3.
The standing stocks of ciliates and phytoplankton together with physical variables (temperature and density) were measured biweekly from March 6, 1999, to March 22, 2000, in the marine-dominated region of the South Slough, the southern arm of the Coos Bay estuary (Oregon, United States). The abundance and biomass of naked ciliates correlated significantly with phytoplankton <5 μm (ultraphytoplankton) biomass throughout the sampling periods and with total phytoplankton biomass between October and march; possibly due to a compositional shift in the >5 μm phytoplankton fraction from diatoms in the spring-summer period to flagellates during this fall-winter period. Temperature could explain 49% of the variation of ultraphytoplankton and naked ciliate biomass across seasons and may be important in determining the rate of the ciliate numerical response to increases in ultraphytoplankton and its assimilation into ciliate biomass. High standing stocks of ciliates, their strong coupling with ultraphytoplankton across seasons, and the relatively higher contribution of ciliate carbon to the ciliate and >5 μm phytoplankton carbon pool in the October–March period suggest that ciliates are a significant component to the South Slough food web and may be particularly important during seasons of reduced phytoplankton biomass.  相似文献   

4.
We present a comparative analysis of 1400 data series of water chemistry (particularly nitrogen and phosphorus concentrations), phytoplankton biomass as chlorophylla (chla) concentrations, concentrations of suspended matter and Secchi depth transparency collected from the mid-1980s to the mid-1990s from 162 stations in 27 Danish fjords and coastal waters. The results demonstrate that Danish coastal waters were heavily eutrophied and had high particle concentrations and turbid waters. Median values were 5.1 μg chla 1−1, 10.0 mg DW 1−1 of suspended particles, and Secchi depth of 3.6 m. Chlorophyll concentration was strongly linked to the total-nitrogen concentration. The strength of this relationship increased from spring to summer as the concentration of total nitrogen declined. During summer, total nitrogen concentrations accounted for about 60% of the variability in chlorophyll concentrations among the different coastal systems. The relationship between chlorophyll and total phosphorus was more consistant over the year and correlations were much weaker than encountered for total nitrogen. Secchi depth could be predicted with good precision from measurements of chlorophyll and suspended matter. In a multiple stepwise regression model with In-transformed values the two variables accounted for most of the variability in water transparency for the different seasons and the period March–October as a whole (c. 80%). We were able to demonstrate a significant relationship between total nitrogen and Secchi depth, with important implications for management purposes.  相似文献   

5.
The introduction of invasive bivalves such as the zebra mussel (Dreissena polymorpha) can have profound effects on aquatic ecosystems, including decreases in phytoplankton biomass and changes in the taxonomic composition of phytoplankton. Zebra mussel introductions have been associated with increased dominance of cyanobacteria, especiallyMicrocystis, but this change may depend on interacting physical, chemical, or biotic conditions. We used a 12-yr record in the Hudson River to explore the relationship between phytoplankton composition and zebra mussel filtration. During this period (1993–2005), the mean July–September filtration rate of the zebra mussel (ZMF) varied by 8-fold, and the mean biovolume of cyanobacteria, which was dominated byMicrocystis, varied from 0 to 4.2 mm3 1−1 and comprised up to 52% of total phytoplankton biovolume. There was a tendency for high cyanobacterial biomass to be associated with low rather than high ZMF. Neither the absolute nor the relative amounts of either total cyanobacteria orMicrocystis were significantly correlated to ZMF alone or in combination with total phosphorus or any other, physical or chemical parameters that we measured. Cyanobacteria dominance and abundance were both strongly correlated to temperature, and over 80% of the among year variance in cyanobacterial dominance could be explained by temperature in a linear model. Temperature in combination with dissolved SiO3 explained 90% of the variation in cyanobacterial dominance. At higher temperatures and lower dissolved SiO3, cyanobacterial abundance increased, at the expense of diatoms that dominated at lower temperatures and a higher SiO3 years. The high explanatory value of temperature is surprising as the variation in temperature among years was relatively low (24.0–26.8°C). The results suggest that event slightly increased temperatures could lead to higher biomass and dominance of cyanobacteria in some aquatic systems.  相似文献   

6.
During a 14-month phytoplankton study in the lower Chesapeake Bay, there was a bi-modal pattern of population peaks with fall and spring maxima. The phytoplankton was dominated bySkeletonema costatum and other diatoms similar to major dominants found on the continental shelf. The composition in an inlet adjacent to the Bay was similar throughout most of the period, but differed from Bay populations during the summer months when larger concentrations and diversity of phytoflagellates and small sized diatoms occurred. Seasonal phytoplankton assemblages characteristic for the lower and entire Chesapeake Bay are given with the seasonal appearances noted for 219 phytoplankters. The importance of nanophytoplankters, both diatoms and the phytoflagellates, to the total phytoplankton composition is also emphasized.  相似文献   

7.
Phytoplankton seasonal and interannual variability in the Guadiana upper estuary was analyzed during 1996–2005, a period that encompassed a climatic controlled reduction in river flow that was superimposed on the construction of a dam. Phytoplankton seasonal patterns revealed an alternation between a persistent light limitation and episodic nutrient limitation. Phytoplankton succession, with early spring diatom blooms and summer–early fall cyanobacterial blooms, was apparently driven by changes in nutrients, water temperature, and turbulence, clearly demonstrating the role of river flow and climate variability. Light intensity in the mixed layer was a prevalent driver of phytoplankton interannual variability, and the increased turbidity caused by the Alqueva dam construction was linked to pronounced decreases in chlorophyll a concentration, particularly at the start and end of the phytoplankton growing period. Decreases in annual maximum and average abundances of diatoms, green algae, and cyanobacteria were also detected. Furthermore, chlorophyll a decreases after dam filling and a decrease in turbidity may point to a shift from light limitation towards a more nutrient-limited mode in the near future.  相似文献   

8.
Decline of native pelagic species in estuarine systems is an increasing problem, especially for native fishes in the San Francisco Estuary and Delta (SFE-D). Addressing these losses depends on understanding trophodynamics in the food web that supports threatened species. We quantified the role of microzooplankton (heterotrophic–mixotrophic protists <200 μm) in the food web of the upper SFE-D. We sampled protist plankton abundance and composition at two sites (Suisun Bay and Grizzly Bay) approximately monthly from February 2004 to August 2005 and conducted dilution experiments during spring and summer of both years in Suisun Bay. Heterotrophs dominated the protist community in Suisun Bay and Grizzly Bay, particularly in the <20 μm size range, and peaks in protistan microzooplankton biomass were associated with high phytoplankton biomass. In both years, microzooplankton grazing rates were high (0.5–0.7 day−1) during the spring and lower (~0.2 day−1) during summer. Phytoplankton growth rates peaked in April 2004 (~0.7 day−1) but were much lower (<0.1 day−1) in spring 2005, despite relatively high abundance. Thus, microzooplankton grazing consumed as much as 73% of phytoplankton standing stock during spring and ~15% of standing stock during summer of both years. Combined with earlier results, we conclude that microzooplankton can be important mediators of carbon and energy flow in the upper SFE-D and may be a “source” to the metazoan food web.  相似文献   

9.
Plant pigments in particulate organic carbon were examined in the lower Mississippi and Pearl Rivers (U.S.), along with physical variables and nutrients to study seasonal changes in the abundance and composition of phytoplankton. Water samples were collected monthly from September 2001 to August 2003 in the lower Mississippi River (MR; no samples were taken in February 2002) and from August 2001 to July 2003 in the Pearl River (PR). High concentrations of total suspended solids (TSS), nutrients, and chlorophylla (chla; dominated by diatoms) were observed in the lower MR. The smaller blackwater PR was characterized by lower nutrients and chla, higher ultraviolet absorbance, and a phytoplankton biomass dominated by chlorophytes. Chla concentrations in the lower MR was high in summer low-flow periods and also during interims of winter and spring, and did not couple with physical variables and nutrients, likely due to a combination of in situ production and inputs from reservoirs, navigation locks and oxbow lakes in the upper MR and Missouri River. Chla concentrations in the PR was only high in summer low-flow periods and were controlled by temperature and concentrations of chromophoric dissolved organic matter 9CDOM). The high, diatom-dominated phytoplankton biomass in the lower MR was likely the result of decreasing TSS (increased damming in the watershed) and increasing nutrients (enhanced agricultural runoff) over the past few decades. Lower phytoplankton biomass (dominated by chlorophytes) in the PR was likely linked with intense shading by CDOM and lower availability of nutrient inputs. An increase in the relative importance of phytoplankton biomass in large turbid rivers, such as the MR, could have significant effects on the age and lability of riverine organic matter entering the ocean, the stoichiometric balance of nutrients delivered to coastal margins, and the sequestration of atmospheric CO2 in these dynamic regions.  相似文献   

10.
The Laguna Madre has experienced a persistent bloom ofAureoumbra lagunensis for over eight years. The persistence of this bloom may be due in part to the often hypersaline conditions in Laguna Madre (40–60 psu) that favor the growth ofA. lagunensis. Above-normal rainfall in the fall of 1997 reduced the salinities in Baffin Bay from >40 to<20 psu.A. lagunensis cell densities dropped from>106 cells ml−1 in July 1997 to c. 200 cells ml−1 in January 1998. During this time of low brown tide density, phytoplankton biomass generally remained high and the Laguna Madre experienced successive blooms of diatoms (Rhizosolenia spp.) and cyanobacteria. Hypersaline conditions returned in 1998 and brown tide densities increased to>0.5 × 106 cells ml−1 by summer. The extraordinary persistence of the brown tide and the unusual sequence of intense blooms may be related in part to the reduction of zooplankton populations. Microzooplankton populations declined following the above-normal rain in the fall of 1997; populations did not recover until fall 1998. Copepod populations also declined sharply and remained low in Laguna Madre, but recovered by summer 1998 in Baffin Bay. Dilution experiments indicated that microzooplankton grazing and phytoplankton growth were usually balanced when measured during our cruises. The rapid recovery of theA. lagunensis bloom suggests that this alga may be a more resilient component of the Laguna Madre flora than previously suspected.  相似文献   

11.
The size-fractionated phytoplankton biomass and primary production were investigated in four contrasting areas of Hong Kong waters in 2006. Phytoplankton biomass and production varied seasonally in response to the influence of the Pearl River discharge. In the dry season, the phytoplankton biomass and production were low (<42 mg chl m−2 and <1.8 g C m−2 day−1) in all four areas, due to low temperatures and dilution and reduced light availability due to strong vertical mixing. In contrast, in the wet season, in the river-impacted western areas, the phytoplankton biomass and production increased greater than five-fold compared to the dry season, especially in summer. In summer, algal biomass was 15-fold higher than in winter, and the mean integrated primary productivity (IPP) was 9 g C m−2 day−1 in southern waters due to strong stratification, high temperatures, light availability, and nutrient input from the Pearl River estuary. However, in the highly flushed western waters, chl a and IPP were lower (<30 mg m−2 and 4 g C m−2 day−1, respectively) due to dilution. The maximal algal biomass and primary production occurred in southern waters with strong stratification and less flushing. Spring blooms (>10 μg chl a L−1) rarely occurred despite the high chl-specific photosynthetic rate (mostly >10 μg C μg chl a −1 day−1) as the accumulation of algal biomass was restricted by active physical processes (e.g., strong vertical mixing and freshwater dilution). Phytoplankton biomass and production were mostly dominated by the >5-μm size fraction all year except in eastern waters during spring and mostly composed of fast-growing chain-forming diatoms. In the stratified southern waters in summer, the largest algal blooms occurred in part due to high nutrient inputs from the Pearl River estuary.  相似文献   

12.
This study examined whetherMercenaria mercenaria (L.) (quahog) growth is influenced by variability in phytoplantkon community composition in the waters of Long Island, New York. Field studies conducted during 1999 and 2000 compared juvenile quahog growth and phytoplankton assemblages between West Sayville (WS), an embayment in Great South Bay along Long Island’s south shore where quahog landings have recently declined, and Oyster Bay (OB), an embayment on Long Island’s north shore where quahog landings are still high. Quahogs grew better at OB than WS during both study years. Centric diatoms were typically the dominant phytoplankton species at OB, and pennate diatoms and dinoflagellates characterized WS. At WS, the phytoplankton community consisted of heterotrophic dinoflagellates during a brown tide in 2000 and pennate diatoms afterward. Nanoflagellates were abundant (105–106 cells ml?1) at WS throughout the summer of 2000. Multiple regression analysis revealed a significant effect of site and temperature on individual clam biomass during both years, but brown tide was only significant during 2000. Biomass comparisons of dominant phytoplantkon taxa with laboratory physiology studies showed that 0B, with its abundance of centric diatoms, likely represented a more nutritional diet for quahogs than pennate diatoms, which were abundant at WS. Small flagellates, which were common at WS, may also have been important for sustaining growth during some months. Variability in plankton assemblages between OB and WS likely represented two distinct, diets that were critical influences on clam growth.  相似文献   

13.
Ten years (1985–1994) of data were analyzed to investigate general patterns of phytoplankton and nutrient dynamics, and to identify major factors controlling those dynamics in the York River Estuary, Virginia. Algal blooms were observed during winter-spring followed by smaller summer blooms. Peak phytoplankton biomass during the winter-spring blooms occurred in the mid reach of the mesohaline zone whereas peak phytoplankton biomass during the summer bloom occurred in the tidal fresh-mesohaline transition zone. River discharge appears to be the major factor controlling the location and timing of the winter-spring blooms and the relative degree of potential N and P limitation. Phytoplankton biomass in tidal fresh water regions was limited by high flushing rates. Water residence time was less than cell doubling time during high flow seasons. Positive correlations between PAR at 1 m depth and chlorophylla suggested light limitation of phytoplankton in the tidal fresh-mesohaline transition zone. Relationships of salinity difference between surface and bottom water with chlorophylla distribution suggested the importance of tidal mixing for phytoplankton dynamics in the mesohaline zone. Accumulation of phytoplankton biomass in the mesohaline zone was generally controlled by N with the nutrient supply provided by benthic or bottom water remineralization.  相似文献   

14.
Decapod crustaceans occupying seagrass, salt marsh edge, and oyster habitats within the St. Martins Aquatic Preserve along the central Gulf coast of Florida were quantitatively sampled using a 1-m2 throw trap during July–August 1999 and March–April 2000. Relative abundance and biomass were used as the primary measures to compare patterns of occupancy among the three habitat types. Representative assemblages of abundant and common species from each habitat were compared using Schoener's Percent Similarity Index (PSI). In all, 17,985 decapods were sampled, representing 14 families and 28 species. In the summer sampling period, mean decapod density did not differ between oyster and seagrass habitats, which both held greater densities of decapods than marsh-edge. In the spring sampling period oyster reef habitat supported greater mean decapod density than both seagrass and marsh-edge, which had similar densities of decapods. Habitat-specific comparisons of decapod density between the two sampling periods indicated no clear seasonal effect. In summer 1999, when seagrasses were well established, decapod biomass among the three habitats was not significantly different. During spring 2000, decapod biomass in oyster (41.40 gm−2) was greater than in marshedge (4.20 gm−2), but did not differ from that of seagrass (9.73 g m−2). There was no significant difference in decapod biomas between seagrass and marsh-edge habitats during the spring 2000 sampling period. The assemblage analysis using Schoener's PSI indicated that decapod assemblages associated with oyster were distinct from seagrass and marshedge habitats (which were similar). The results of this study suggest that in comparison to seagrass and marsh-edge habitats, oyster reef habitats and the distinct assemblage of decapod crustaceans that they support represent an ecologically important component of this estuarine system.  相似文献   

15.
Patterns in phytoplankton biomass are essential to understanding estuarine ecosystem structure and function and are the net result of various gain and loss processes. In this study, patterns in phytoplankton biomass were explored in relation to a suite of potentially regulating factors in a well-flushed, subtropical lagoon, the Matanzas River Estuary (MRE) in northeast Florida. We examined temporal variability in water temperature, light availability, nutrient concentrations, phytoplankton productivity, and phytoplankton standing stock over 8 years (2003–2010) and explored relationships among variables through correlation analysis. Laboratory experiments in the spring and summer of 2009 quantified phytoplankton growth rates, nutrient limitation potential, and zooplankton grazing rates. The potential influence of oyster grazing was also examined by scaling up population metrics and filtration rate estimates. Results indicated that phytoplankton biomass in the study area was relatively low mainly due to a combination of low temperature and light availability in the winter and consistent tidal water exchange and bivalve grazing throughout the year. Relatively low levels of phytoplankton standing stock and small inter-annual variability within the MRE reflect a balance between gain and loss processes which provide a degree of resilience of the system to natural and anthropogenic influences.  相似文献   

16.
From March 2002 to until April 2003 we investigated the seasonal nutrient and phytoplankton dynamics in the central Bornholm Basin (Baltic Sea) within the framework of the German GLOBEC Project. We choose a nested approach consisting of vertical fluorescence profiles, phytoplankton counts and nutrient analyses. The Fluoroprobe (MultiProbe, BBE Moldaenke) is capable of distinguishing four algal groups (Cryptophyceae, Cyanophyceae, Chlorophyceae, Bacillariophyceae + Dinophyceae). Winter nutrient concentrations were about 5 μM NO3 and 0.5 μM PO4 in the central Basin. The spring phytoplankton bloom was dominated by the diatom Skeletonema sp. and reached a maximum of about 270 μg C/l before the onset of the seasonal stratification. Protozooplankton was dominated by the Mesodinium rubrum (a phototrophic ciliate = Myrionecta rubra) and reached a maximum biomass of about 200–300 μg C/l about 2 weeks after the demise of the diatom spring bloom. During summer, the water column was stratified and a subsurface maximum developed near the thermocline consisting of Bacillariophyceae, Cryptophycea and other phototrophic flagellates. Phytoplankton and protozooplankton biomass was generally low. Nutrient concentrations point towards a nitrogen limitation during this period. The stratification period ended during September and surface nutrient concentrations increased again. Protozooplankton reached a second maximum during September. With the Fluoroprobe small scale structures in the plankton community could be detected like a subsurface Cryptophyceae maximum near the thermocline that however, could not be confirmed by cell counts. The chlorophyll a estimate of the Fluoroprobe was in good agreement with the phytoplankton biomass estimated from counts. We conclude that only by combining modern sensing technology with microscopy, the small-scale dynamics and taxonomic spectrum of the plankton can be fully captured.  相似文献   

17.
Analysis of 6 yr of monthly water quality data was performed on three distinct zones of Florida Bay: the eastern bay, central bay, and western bay. Each zone was analyzed for trends at intra-annual (seasonal), interannual (oscillation), and long-term (monotonic) scales. the variables TON, TOC, temperature, and TN∶TP ratio had seasonal maxima in the summer rainy season; APA and Chla, indicators of the size and activity of the microplankton tended to have maxima in the fall. In contrast, NO3 , NO2 , NH4 +, turbidity, and DOsat, were highest in the winter dry season. There were large changes in some of the water quality variables of Florida Bay over the study period. Salinity and TP concentrations declined baywide while turbidity increased dramatically. Salinity declined in the eastern, central, and western Florida Bay by 13.6‰, 11.6‰, and 5.6‰, respectively. Some of the decrease in the eastern bay could be accounted for by increased freshwater flows from the Everglades. In contrast to most other estuarine systems, increased runoff may have been partially responsible for the decrease in TP concentrations as input concentrations were 0.3–0.5 μM. Turbidity in the eastern bay increased twofold from 1991 to 1996, while in the central and western bays it increased by factors of 20 and 4, respectively. Chla concentrations were particularly dynamic and spatially heterogeneous. In the eastern bay, which makes up roughly half of the surface area of Florida Bay, Chla declined by 0.9 μg l−1 (63%). The hydrographically isolated central bay zone underwent a fivefold increase in phytoplankton biomass from 1989 to 1994, then rapidly declined to previous levels by 1996. In western Florida Bay there was a significant increase in Chla, yet median concentrations of Chla in the water column remained modest (∼2 μg l−1) by most estuarine standards. Only in the central bay did the DIN pool increase substantially (threefold to sixfold). Notably, these changes in turbidity and phytoplankton biomass occurred after the poorly-understood seagrass die-off in 1987. It is likely the death and decomposition of large amounts of seagrass biomass can at least partially explain some of the changes in water quality of Florida Bay, but the connections are temporally disjoint and the process indirect and not well understood.  相似文献   

18.
Three sequential hurricanes in the fall of 1999 provided the impetus for assessing multi-annual effects on water quality and phytoplankton dynamics in southwestern Pamlico Sound, North Carolina. Two and a half years of post-hurricane data were examined for short- and long-term impacts from the storms and >100 year flooding. Salinity decreased dramatically and did not recover until May 2000. Inorganic nitrogen and phosphorus concentrations were briefly elevated during the flooding, but later returned to background levels. Dissolved organic carbon concentrations declined through the whole study period, but did not appear to peak as was observed in the Neuse River estuary, a key tributary of the Sound. Light attenuation was highest in the fall to spring following the storms and was best correlated with chlorophylla concentrations. Phytoplankton biomass (chla) increased and remained elevated until late spring 2000 when concentrations returned to pre-storm levels and then cycled seasonally. Phytoplankton community composition varied throughout the study, reflecting the complex interaction between physiological optimal and combinations of salinity, residence time, nutrient availability, and possibly grazing activity. Floodwater advection or dilution from upstream maxima may have controlled the spatial heterogeneity in total and group-specific biomass. The storms produced areas of shortterm hypoxia, but hypoxic events continued during the following two summers, correlating strongly with water column stratification. Nitrogen loading to the southwestern sound was inferred from network analysis of previous nitrogen cycling studies in the Neuse River estuary. Based on these analyses, nutrient cycling and removal in the sub-estuaries would be decreased under high flow conditions, confirming observations from other estuaries. The inferred nitrogen load from the flood was 2–3 times the normal loading to the Sound; this estimate was supported by the substantial algal bloom. After 8-mos, the salinity and chla data indicated the Sound had returned to pre-hurricane conditions, yet phytoplankton community compositional changes continued through the multi-year study period. This is an example of long-term aspects of estuarine recovery that should be considered in the context of a predicted 10–40 yr period of elevated tropical storm activity in the western Atlantic Basin.  相似文献   

19.
Phytoplankton plays a dominant role in shelf biogeochemistry by producing the major part of organic matter. Part of the organic matter will reach the sediment where diagenetic processes like denitrification, apatite formation or burial will remove nutrients from the biogeochemical cycle. In this article current knowledge on the decadal plankton variability in the North Sea is summarized and possible implications of these changes for the biogeochemistry of the North Sea are discussed. Most of the observed interdecadal dynamics seem to be linked to large-scale oceanographic and atmospheric processes. Prominent changes in the North Sea ecosystem have taken place around 1979 and 1988. In general, the phytoplankton color (CPRS indicator of phytoplankton biomass) reached minimum values during the end of the 1970s and has increased especially since the mid 1980s. Changes with a similar timing have been identified in many time series from the North Sea through the entire ecosystem and are sometimes referred to as regime shifts. It is suggested that the impact of global change on the local biogeochemistry is largely driven by the phyto- and zooplankton dynamics during spring and early summer. At that time the extent of zooplankton–phytoplankton interaction either allows that a large part of the new production is settling to the sediment, or that a significant part of the new production including the fixed nutrients is kept within the pelagic system. The origin of the extent of the phytoplankton–zooplankton interaction in spring is probably set in the previous autumn and winter. In coastal areas, both large-scale atmospheric and oceanographic changes as well as anthropogenic factors influence the long-term dynamics. Due to eutrophication, local primary production nowadays still is up to five times higher than during pre-industrial conditions, despite a decreasing trend. Recently, introduced species have strengthened the filter feeder component of coastal ecosystems. Especially in shallow coastal seas like the Wadden Sea, this will enhance particle retention, shift organic matter degradation to the benthic compartment and enhance nutrient removal from the biogeochemical cycle by denitrification or apatite formation.  相似文献   

20.
The climatology and interannual variability of winter phytoplankton was analyzed at the Long Term Ecological Research Station MareChiara (LTER-MC, Gulf of Naples, Mediterranean Sea) using data collected from 1985 to 2006. Background winter chlorophyll values (0.2–0.5 μg chl a dm−3) were associated with the dominance of flagellates, dinoflagellates, and coccolithophores. Winter biomass increases (<5.47 μg chl a dm−3) were often recorded until 2000, generally in association with low-salinity surface waters (37.3–37.9). These blooms were most often caused by colonial diatoms such as Chaetoceros spp., Thalassiosira spp., and Leptocylindrus danicus. In recent years, we observed more modest and sporadic winter biomass increases, mainly caused by small flagellates and small non-colonial diatoms. The resulting negative chl a trend over the time series was associated with positive surface salinity and negative nutrient trends. Physical and meteorological conditions apparently exert a strict control on winter blooms, hence significant changes in winter productivity can be foreseen under different climatic scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号