首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Sea Research》2008,59(4):335-341
Although flatfish species utilise a wide range of habitats as adults, several species are confined to a very limited habitat as juveniles. Recruitment levels are dependent on the quality and quantity of these nursery areas and changes therein. In the Baltic Sea, these shallow environments are often subject to influxes of drifting macroalgae, which add structure to otherwise bare sandy substrate. Structure, such as vegetation, alters predator–prey interactions of a wide range of fauna and in an array of marine, freshwater, and terrestrial systems. The aim of our study was to assess the inhibition potential of drifting macroalgae on the foraging efficiency of juvenile flatfish (young of the year Scophthalmus maximus L., young of the year- and group 1 + Platichthys flesus L.) through a series of microcosm experiments. Our results show that foraging success is restricted by drift algae as predation efficiency of all predator species and size classes was negatively affected by the presence of macroalgae. Overall, there was a reduction in predation success by 80 ± 12% due to structural effects and/or the induced changes in water chemistry associated with the algae. Flatfish depend on shallow sandy areas as feeding and nursery grounds during their juvenile stage and frequently occurring macroalgal assemblages drastically change the features of the otherwise bare substrate, setting the stage for small-scale, localised processes potentially affecting population dynamics.  相似文献   

2.
One of the present concerns of fish biologists involves defining and identifying nursery habitats in the context of conservation and resource management strategies. Fish nursery studies usually report upon nursery occupation during the latter juvenile stages, despite the fact that recruitment to nurseries can start early in life, during the larval phase. Here we investigated the use of a temperate estuarine nursery area, the Lima estuary (NW Portugal), by initial development stages of flatfish species before and after metamorphosis, integrating the larval and juvenile phases. The Lima estuarine flatfish community comprised twelve taxa, seven of which were present as pelagic larvae, six as juveniles and three as adults. There was a general trend of increasing spring–summer abundance of both larvae and juveniles, followed by a sharp winter decrease, mainly of larval flatfishes. The Lima estuary was used by Solea senegalensis, Platichthys flesus and Solea solea as a nursery area, with direct settlement for the two first species. In contrast, indirect settlement was suggested for S. solea, with metamorphosis occurring outside the estuarine area. Estuarine recruitment of S. senegalensis varied between years, with young larvae occurring in the estuary throughout a prolonged period that lasted 6–9 months, corroborating the protracted spawning season. P. flesus, the second most abundant species, exhibited a typical spring estuarine recruitment, without inter-annual variations. Developed larvae arrived in the estuary during spring, whereas the 0-group juveniles emerged in the following summer period. The present study contributes new insight to our understanding of the economically important S. senegalensis, and highlights the importance of integrating the planktonic larval phase into traditional flatfish nursery studies.  相似文献   

3.
Turbot (Psetta maxima Linnaeus) is a high value commercially exploited marine flatfish which occurs in European waters, from the Northeast Atlantic to the Arctic Circle, the Baltic and Mediterranean Sea. In Ireland, turbot are the most valuable commercial non-quota species. Very little is known about their population dynamics in the wild, in particular during the sandy beach nursery phase of the life history. In 2000, a survey was established to assess flatfish species on nursery grounds on the west coast of Ireland. Eleven sandy beaches were assessed for 0+ turbot by beach seining, over an eight year period (2000–2007) during the months of August and September. The objective of the study was to estimate juvenile turbot abundance and size structure to determine if any spatial and annual trends existed. Large scale variability in the recruitment of fish to nursery grounds may be indicative of fluctuations in the adult stock. Turbot were found to recruit to five beaches consistently over the eight year period. Temporal and spatial variability in the relative abundance and length of turbot was discerned, with no apparent overall trend. However, certain nursery grounds were shown in most of the years examined to support higher abundances of turbot in comparison to other areas over the eight year period. Turbot abundances on nursery grounds were significantly correlated with mean spring sea temperatures during the pelagic stage. The condition of turbot did not significantly differ on an annual or spatial scale. Mean densities of 0+ turbot along the Irish coast were found to be similar and at times higher than other areas in Europe, ranging from 0.1 (± 0.3) individuals 1000 m− 2 to 18.5 (± 6.9) individuals 1000 m− 2. Mean turbot total length on beaches ranged from 3.8 cm (± 0.6) to 6.6 cm (± 4.3). The observed spatial and temporal variability in abundance and length highlights the need for long-term studies when assessing juvenile flatfish populations. Results from the present study have provided much needed baseline data on wild juvenile turbot populations which is severely lacking for this species both on an Irish and on a European scale.  相似文献   

4.
Epibenthic fishes were collected with daytime beam trawl tows (n = 1713) in three shallow (<10 m) habitats of submerged aquatic vegetation (SAV), Zostera marina (eelgrass), Laminaria longicruris (kelp), Phyllophora sp. (algae), and unvegetated sandy/mud areas. We divided the Maine coast into three broad zones based upon geological features and sampled over five consecutive years; during April–November 2000 in the mid coast, in 2001 and 2002 along the south coast and in 2003 and 2004 along the eastern Maine coast. We quantified habitat use by eight economically important fish species (Gadus morhua, Microgadus tomcod, Pollachius virens, Urophycis chuss, Urophycis tenuis, Osmerus mordax, Tautogolabrus adspersus, and Pseudopleuronectes americanus) and 10 other common epibenthic species (n = 18 571). We identified the physical and biological variables most important in discriminating between habitats with and without individual fish species. Logistic regression models based on nearshore habitat characteristics were developed to predict the distribution of these species along the three zones representing broad geological regions of the Maine coast. Logistic regression models correctly classified individual fish species 58.7–97.1% of the time based on the temporal and physical habitat variables (month, temperature, salinity, and depth) and the presence–absence of submerged aquatic vegetation (Zostera, Laminaria, or Phyllophora). Overall fish presence and economically important fish presence were correctly classified 61.1–79.8% and 66.0–73.6% of the time, respectively. The Maine shallow water fish community was composed primarily of young-of-the-year and juvenile fishes with all habitats functioning as facultative nursery areas. Presence of most fish species was positively associated with Zostera, Laminaria, and to a lesser extent, Phyllophora. This study provides direct evidence of shallow waters of the Gulf of Maine as critical facultative nursery habitat for juvenile G. morhua, M. tomcod, P. virens, U. tenuis, U. chuss, T. adspersus, O. mordax and P. americanus, and many ecologically important species.  相似文献   

5.
Prey availability is one of the most important factors affecting the quality of nursery grounds. Estuaries play an important role as nursery grounds for juvenile stone flounder, but the mechanism behind the consistently high availability of prey has never been examined. This study investigates which prey is mainly selected by juvenile stone flounder (15–55 mm standard length) in the estuary of the Natori River, northern Japan. In a cage experiment, juveniles showed positive selection for the palps of the spionid polychaete Pseudopolydora kempi in March, and for the siphons of the bivalve Nuttallia olivacea in April, May and June in both sandy and muddy-sand habitats. This selective predation showed that sublethal predation on regenerable parts of invertebrates is important for stone flounder. Nuttallia olivacea, the dominant bivalve in the estuary, was more abundant and in better somatic condition in the sandy area in spite of the stronger siphon-cropping pressure by juvenile stone flounder. These results confirm that sublethal predation on highly abundant benthos plays an important role in forming estuarine habitats into areas of high prey availability for juvenile stone flounder, which leads to their high growth rate.  相似文献   

6.
《Journal of Sea Research》2011,65(4):494-504
Turbot (Psetta maxima Linnaeus) is a high value commercially exploited marine flatfish which occurs in European waters, from the Northeast Atlantic to the Arctic Circle, the Baltic and Mediterranean Sea. In Ireland, turbot are the most valuable commercial non-quota species. Very little is known about their population dynamics in the wild, in particular during the sandy beach nursery phase of the life history. In 2000, a survey was established to assess flatfish species on nursery grounds on the west coast of Ireland. Eleven sandy beaches were assessed for 0+ turbot by beach seining, over an eight year period (2000–2007) during the months of August and September. The objective of the study was to estimate juvenile turbot abundance and size structure to determine if any spatial and annual trends existed. Large scale variability in the recruitment of fish to nursery grounds may be indicative of fluctuations in the adult stock. Turbot were found to recruit to five beaches consistently over the eight year period. Temporal and spatial variability in the relative abundance and length of turbot was discerned, with no apparent overall trend. However, certain nursery grounds were shown in most of the years examined to support higher abundances of turbot in comparison to other areas over the eight year period. Turbot abundances on nursery grounds were significantly correlated with mean spring sea temperatures during the pelagic stage. The condition of turbot did not significantly differ on an annual or spatial scale. Mean densities of 0+ turbot along the Irish coast were found to be similar and at times higher than other areas in Europe, ranging from 0.1 (± 0.3) individuals 1000 m 2 to 18.5 (± 6.9) individuals 1000 m 2. Mean turbot total length on beaches ranged from 3.8 cm (± 0.6) to 6.6 cm (± 4.3). The observed spatial and temporal variability in abundance and length highlights the need for long-term studies when assessing juvenile flatfish populations. Results from the present study have provided much needed baseline data on wild juvenile turbot populations which is severely lacking for this species both on an Irish and on a European scale.  相似文献   

7.
《Journal of Sea Research》2011,65(4):473-486
One of the present concerns of fish biologists involves defining and identifying nursery habitats in the context of conservation and resource management strategies. Fish nursery studies usually report upon nursery occupation during the latter juvenile stages, despite the fact that recruitment to nurseries can start early in life, during the larval phase. Here we investigated the use of a temperate estuarine nursery area, the Lima estuary (NW Portugal), by initial development stages of flatfish species before and after metamorphosis, integrating the larval and juvenile phases. The Lima estuarine flatfish community comprised twelve taxa, seven of which were present as pelagic larvae, six as juveniles and three as adults. There was a general trend of increasing spring–summer abundance of both larvae and juveniles, followed by a sharp winter decrease, mainly of larval flatfishes. The Lima estuary was used by Solea senegalensis, Platichthys flesus and Solea solea as a nursery area, with direct settlement for the two first species. In contrast, indirect settlement was suggested for S. solea, with metamorphosis occurring outside the estuarine area. Estuarine recruitment of S. senegalensis varied between years, with young larvae occurring in the estuary throughout a prolonged period that lasted 6–9 months, corroborating the protracted spawning season. P. flesus, the second most abundant species, exhibited a typical spring estuarine recruitment, without inter-annual variations. Developed larvae arrived in the estuary during spring, whereas the 0-group juveniles emerged in the following summer period. The present study contributes new insight to our understanding of the economically important S. senegalensis, and highlights the importance of integrating the planktonic larval phase into traditional flatfish nursery studies.  相似文献   

8.
There is a growing awareness of the role that indirect interactions play in influencing food webs and ecosystem structure. In this study, the hypothesis that crustose algal epibionts provide gastropods associational resistance from predation was investigated through field surveys and laboratory feeding assays. In rocky low intertidal/shallow subtidal systems in the northeast Pacific, several species of crustose algae (the red alga Peyssonnelia meridionalis and crustose corallines) can colonize the shells of living Tegula brunnea snails. The growth patterns of these epibiontic crustose algae allow them to cover their host’s surface completely, which may, in turn, protect their hosts from predation. A multi‐site field survey of T. brunnea revealed that >60% of snails were at least 75% covered with one or more species of crustose algae, with 35% fully covered, indicating that this is common in the field. Laboratory feeding assays revealed that sea stars, a primary predator of T. brunnea, distinguished among snails with different shell coverings; Pisaster consumed nearly three times as many bare (i.e. no crustose algae) snails as those covered with Peyssonnelia, while Pycnopodia consumed four times as many bare snails as those covered with crustose corallines. These results suggest that epibiont crustose algae can benefit their hosts via associational resistance; this finding may have implications for the role of associational resistance in trophic interactions.  相似文献   

9.
10.
This study investigated the community structure and functional traits of the mollusk fauna associated with macroalgae with different thallus morphologies in a reef environment in Northeastern Brazil. A total of 15 individuals of each species of macroalgae adhered to natural substrate and 15 individuals of Padina gymnospora detached from the substrate were collected. The structural complexity of algal habitats was measured and the associated malacofauna screened and identified. All three macroalgae differed significantly in the complexity of their habitat, with Sargassum polyceratium being the most complex. A total of 823 specimens of mollusks belonging to 22 species and 11 families were recorded, of which Columbellidae was the most represented with six species. The functional trait “size” revealed that micromollusks smaller than 10 millimeters were predominant in the community; however, individuals of larger sizes (up to 24.54 millimeters) belonging to young stages of other species were also present. Eight functional trophic groups were identified, of which “carnivorous” stood out with seven species. Six functional groups of microhabitats were identified, with intra‐specific variation in habitats, while habitat expansion was documented for species not yet recorded in association with macroalgae. The structure of the molluskan community differed among the three algae species with the greatest richness, abundance, and diversity of mollusks and functional traits occurring with S. polyceratium. Community structure differed between algae adhered to natural substrate and detached algae, with the latter having lower mollusk richness and diversity, but with greater abundance of some species that remained on algal fronds after release from the reef environment. This study reinforces the importance of algal habitat for marine invertebrate fauna, especially for micromollusks that spend their entire life cycle, or part of it, in association with macroalgae.  相似文献   

11.
Timing, microhabitat selection and behavior from the onset of settlement to recruitment to the adult population of juvenile fishes of the genus Diplodus (Pisces: Sparidae) were investigated along a rocky coastline in the Central Mediterranean Sea. The settlement periods in Diplodus sargus and Diplodus annularis were concentrated in spring, between late May and early June, and the recruits leave the nursery grounds in late September–October. Juvenile fishes of Diplodus puntazzo and Diplodus vulgaris showed a partial time overlapping, sharing the same zones in winter and early spring, from February to May. Multiple correspondence analysis showed that sea breams settle in well‐defined habitats. The smallest juveniles of D. sargus and D. puntazzo settled primarily in the shallowest sheltered pebbly areas, located in sciaphilous crannies covered by red algae. Diplodus vulgaris settlers were observed on a wider range of substrata: rock on sand, gravel and pebbles without algal cover or large boulders, generally in deeper waters. The intermediate‐size juveniles of D. sargus, D. puntazzo and D. vulgaris showed a preference for rocky substrata with substantial algal cover, with arborescent structures (Phaeophyceae). Diplodus annularis juveniles showed high fidelity to seagrass beds (Posidonia oceanica). The home range increased over time in all species, highlighting a loss of substrate specificity: larger juveniles were even observed in deeper and different microhabitats outside nursery grounds. This study suggests that shallow infra‐littoral rocky communities with photophilic algae play a key role in recruitment of sparid fishes, affecting the distribution and abundance of juvenile fishes and therefore determining the renewal of populations and the structure of adult assemblages.  相似文献   

12.
Several flatfishes spawn in oceanic waters and pelagic larvae are transported inshore to settle in the nursery areas, usually estuaries, where they remain during their juvenile life. Nursery areas appear as extremely important habitats, not only for juveniles but also for the earlier planktonic larval fish. Yet, the majority of nursery studies tend to focus only on one development stage, missing an integrative approach of the entire early life that fishes spent within a nursery ground. Thus, the present study assessed the influence of environmental parameters on the dynamics of the larval and juvenile flatfishes, throughout their nursery life in the Lima Estuary. Between April 2002 and April 2004, fortnightly subsurface ichthyoplankton samples were collected and juveniles were collected from October 2003 until September 2005. Larval assemblages comprised nine flatfish species, while only six were observed among the juvenile assemblages. Solea senegalensis and Platichthys flesus were the most abundant species of both fractions of the Lima Estuary flatfishes. Larval flatfish assemblages varied seasonally, without relevant differences between lower and middle estuary. Platichthys flesus dominated the spring samples and summer and autumn periods were characterized by an increase of overall abundance and diversity of larval flatfishes, mainly S. senegalensis, associated with temperature increase and reduced river flow. On the contrary, during the winter abundance sharply decreased, as a consequence of higher river run-off that might compromised the immigration of incompetent marine larvae. Juvenile flatfishes were more abundant in the middle and upper areas of the estuary, but the species richness was higher near the river mouth. Sediment type, distance from the river mouth, salinity, temperature and dissolved oxygen were identified as the main environmental factors structuring the juvenile flatfish assemblages. Juveniles were spatially discrete, with the most abundant species S. senegalensis and P. flesus associated with the middle and upper estuary, while the remaining species were associated with the lower estuarine areas. The larval fraction exhibited distinct dynamics from the juvenile estuarine flatfish community. Larval flatfishes showed a strong seasonal structure mainly regulated by biological features as the spawning season and also by seasonal variations of water characteristics. On the other hand, juvenile flatfishes were markedly controlled by site specific characteristics such as sediments structure, distance from the river mouth and salinity regime. The present study emphasized the idea that the environmental control varies throughout the ontogenetic development, stressing the importance of integrating all the early life of a species in flatfish nursery studies.  相似文献   

13.
《Journal of Sea Research》2007,57(2-3):137-150
Flatfish distributions have traditionally been described in terms of depth, temperature, and sediment characteristics, but other environmental variables may be important depending upon spatial scale. Surveys for age-0 northern rock sole (Lepidopsetta polyxystra) were conducted in five near-shore nursery sites at Kodiak Island, Alaska, using a towed camera sled integrated with navigational data. The continuous record of fish density and habitat features made possible a spatially comprehensive analysis of fish-habitat associations at several spatial scales, ranging from tens of kilometres to less than 1 m. A combination of multivariate statistical interpretation and geographic information systems (GIS) revealed that the distribution of juvenile rock sole was associated with environmental variables and spatial scales that are not normally detectable with usual flatfish— and habitat—sampling methods (i.e., trawls and grabs). Generalized additive models (GAM) incorporating habitat variables determined from video provided large improvements over models using only the traditional variables such as depth and sediment type. At the broadest (regional) scale of analysis, combinations of sediment composition, surface bedform, temperature, and density of worm tubes provided the best model for rock sole density. Within-nursery variation in fish density was modelled best with depth, habitat structural complexity created by emergent fauna and macroalgae, and worm tube density. At the microhabitat scale (< 1 m), there was little evidence of direct contact between rock sole and structures such as shell or algae. Rather, they were loosely associated on a scale tens of metres. This study showed that spatially comprehensive surveys can be conducted with towed camera systems and without the need for sediment grab samples. This approach yields detailed habitat information for fishes and the opportunity for landscape analysis of spatial patterns that will be important in conserving critical habitats for flatfishes and other fish species.  相似文献   

14.
The Senegal sole, Solea senegalensis, is a flatfish species distributed from the Bay of Biscay to the coast of South Africa. Although it is a species of high commercial value its spawning period remains poorly known. In the Tagus estuary, Portugal, two juvenile cohorts of this species colonize two independent nursery areas within the estuarine system. Left lapilli otoliths of these 0-group juveniles were used to estimate age and back-calculate hatch dates, thus allowing the estimation of S. senegalensis spawning period in the Portuguese coast. The two cohorts of S. senegalensis completed the colonization of the two nurseries in July. The ages of juveniles were estimated to range between 46 and 111 days in nursery A, and between 33 and 61 days in nursery B. Hatch dates ranged from April to early June for juveniles colonizing nursery A, and from May to early June for juveniles colonizing nursery B. The mean hatch date in nursery A was the 7th of May, while in nursery B it was the 25th of May. It was concluded that the spawning period for this species off the Portuguese coast was from April to June.  相似文献   

15.
Vulnerability to predation may be high for many megafaunal taxa in deep‐sea sedimentary habitats where physical heterogeneity is low. During ROV observations in a bathyal sediment plain off Central California, juveniles of the lithodid crab Neolithodes diomedeae were frequently observed on or under the holothurian (sea cucumber) Scotoplanes sp. A, and are hypothesized to benefit from this association as a nursery or refugium from predation. Ninety‐six percent (n = 574 of 599) of the juvenile N. diomedeae observed (density varied from 0.02–0.75/m2 among sites and seasons) in the study area were associated with Scotoplanes sp. A. Of the 2596 Scotoplanes sp. A observed (density varied from 0.48 to 25.90/m2), 22% were attended by at least one juvenile crab, and rarely two crabs (n = 4). Solitary N. diomedeae were rarely observed. This decapod–holothurian symbiosis appears to be largely commensal, with juvenile crabs (carapace width = 0.03–0.31 ×  holothurian length) observed on or beneath Scotoplanes sp. A in a habitat with few refugia from epibenthic predators. Other hypotheses may explain or enhance the potential benefits of the association for N. diomedeae, such as elevated food availability due to the activities of Scotoplanes sp. A. The relationship may be mutualistic if there is a benefit for the holothurian, including the removal of epizoic parasites. Ultimately, the nursery or other effects on the population dynamics of N. diomedeae may be minimal in low‐relief, sediment‐dominated habitats, as very few sub‐adult crabs were observed in the study area and were likely consumed upon outgrowing their refugia. While sedimentary habitats may be a sink for N. diomedeae populations, growth of juvenile crabs during their association with Scotoplanes sp. A should increase energy flow to its predator populations. This association has not been reported previously but may be expected in sediment‐dominated habitats where these species overlap.  相似文献   

16.
Blooms of drifting green algae often develop in shallow coastal zones that receive significant nutrient inputs. Each spring and summer, some fifty bays and coves in Brittany (France) are affected in this way. Until now, in this region, only the algae present in the surf zone or stranded ashore, constituting an intertidal stock, have been taken into account. Another stock of algae, which was subtidal and of the same species (Ulva spp.), was found in the Bay of Douarnenez, one of the ten areas most affected by these algal blooms. This subtidal Ulva stock was located beyond the surf zone, at depths reaching 15 m. It was about the same size as the intertidal stock, viz., a few thousand tons on average. Subtidal Ulva stocks were generally found lying on the sandy bottom in a distribution showing no particular pattern. Biomass ranged from almost zero to 1.547 kg m−2 of fresh and spun-dried algae. However, at depths from 3 to 7 m they were often arranged in strips a few dm wide, due to the swell's effect. The bottom conditions of temperature, salinity, irradiance and dissolved inorganic nitrogen measured during spring and summer are suitable for the growth of Ulva in the subtidal zone. Both intertidal and subtidal drifting Ulva stocks are mobile and capable of exchanging material. In spring, the intertidal stock's inoculum is likely to come from the subtidal. Later in the season, the subtidal stock could be supplied, at least partially, by the intertidal.  相似文献   

17.
山东半岛东端以岩基海岸为主,而浅海多为岩礁底质,适宜大型藻类生长。为探究该海域的大型藻类群落结构特征,于2018年11月(秋)、2019年2月(冬)、5月(春)和8月(夏)对山东荣成马山里海域的3个典型生境(草床区、天然礁区和泥沙区)中的大型藻类进行了调查。结果显示:3种生境共鉴定出大型藻类23种,其中红藻门15属15种,褐藻门3属4种,绿藻门3属4种。物种数最高值出现在天然礁区(22种),最低值出现在泥沙区(12种)。生物量最高值为春季草床区(1 567.44±21.29) g·m-2、最低值为秋季的泥沙区(594.45±107.06) g·m-2。大型藻类优势种在不同生境、不同季节不同:草床生境为小珊瑚藻(Corallina pilulifera),在4个季节中均占绝对优势;礁区为绿藻向红藻、褐藻变化;泥沙区为从红藻到褐藻变化。Pielow均匀度指数的最高值在3个生境中相近且均出现在冬季;多样性指数最高值、最低值分别出现在礁区与泥沙区; Margalef丰富度指数的最高值出现在秋季的礁区,而最低值出现在夏季的泥沙区;聚类与排序结果表明,大...  相似文献   

18.
The prevalence of juvenile salmonids (Oncorhynchus spp.) and marine forage fishes in the diet of Caspian terns (Hydroprogne caspia) nesting in the Columbia River estuary has been established, but the relationship between diet composition, foraging distribution, and productivity of these birds has received little attention. We used radio-telemetry and on-colony observations to relate changes in off-colony distribution to patterns of colony attendance, diet composition, and productivity of adult terns nesting on East Sand Island during two years of different river and prey conditions. Average distance from the East Sand Island colony (located in the marine zone of the estuary) was 38% (6.6 km) greater in 2000 compared to 2001, associated with lower availability of marine forage fish near East Sand Island and lower prevalence of marine prey in tern diets. Colony attendance was much lower (37.0% vs. 62.5% of daylight hours), average trip duration was 40% longer (38.9 min), and nesting success was much lower (0.57 young fledged pair−1 vs. 1.40 young fledged pair−1) in 2000 compared to 2001. Higher proportions of juvenile salmonids in the diet were associated with relatively high use of the freshwater zone of the estuary by radio-tagged terns, which occurred prior to chick-rearing and when out-migrating salmonid smolts were relatively abundant. Lower availability of marine prey in 2000 apparently limited Caspian tern nesting success by markedly reducing colony attendance and lengthening foraging trips by nesting terns, thereby increasing chick mortality rates from predation, exposure, and starvation.  相似文献   

19.
A juvenile (26 mm) specimen of the New Zealand turbot Colistium nudipinnis (Waite) is figured and described. Differences between the juvenile and adult forms, and characters distinguishing juvenile C. nudipinnis from the young of other New Zealand species of flatfish, are noted.  相似文献   

20.
By the consumption of algae, parrotfishes open space for young coral settlement and growth, thus playing a central role on the maintenance of coral reefs. However, juvenile parrotfish ecology is often overlooked due to the difficulty discerning species during this phase. Herein, we present the first attempt to investigate changes in habitat use and diet that happen to juveniles of the Redeye parrotfish Sparisoma axillare, focusing on four zones within an algal‐dominated reef: the macroalgal beds, back reef, reef flat, and fore reef. Smaller S. axillare juveniles (<5 cm) preferred to inhabit the macroalgal beds and the reef flat, whereas juveniles larger than 5 cm were more abundant in the back and fore reefs due to distinct post‐settlement habitat conditions. Aggressive interactions with the territorial damselfish Stegastes fuscus were the primary driving factor of juvenile distribution and feeding rates. Attack rates increased with juvenile size and the lowest bite rates were observed in zones with higher densities of territorial damselfish. In previous studies, the persistence of parrotfish recruits in habitats dominated by damselfish was reduced, but newly settled parrotfish occurred more densely within the damselfish domain by behaving as a cryptic reef fish. As these juveniles grew, their bite rates increased, a change associated with a shift from cryptic to roving behavior. Feeding preferences were determined by substrate cover, where juveniles fed on available food sources in each habitat. Juveniles relied on jointed calcareous algae in habitats dominated by these algae, a pattern not observed for thick leathery algae. Filamentous algae were the preferred food for smaller fish; for individuals greater than 10 cm, a higher ingestion of sand was observed. Most studies evaluating the functional role of parrotfish do not consider species feeding preferences. However, the potential for a species to turn an impacted reef back to a coral‐dominated phase is influenced by their food selection, which is dependent on the algal species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号