首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determine lithium abundances in atmospheres of three carbon stars from synthetic spectrum fitting in the λλ 668–674 nm range using the Li I λ 670.8 nm resonance doublet. To produce synthetic spectra, we use a modified list of atomic lines from the VALD database and three alternative line lists of CN and C2 molecules which are modifications of line lists from the Jorgensen’s website () and from the Kurucz database (1993, CD-ROM nos. 1–23). The spectral lines from these lists were tested by matching synthetic spectra to observed spectra of the sun, Arcturus, and early R star HD 100764. We perform analysis of the blends involving the Li I λ 670.8 nm doublet in spectra of N stars AW Cyg and UX Dra. The lithium abundances in HD 100764, AW Cyg, and UX Dra are estimated to be lgN(Li) ≈ 2, −1.4, and −0.9, respectively. Discrepancies of lithium abundances lgN(Li) obtained with the help of molecular line lists do not seem to exceed 0.2 dex.  相似文献   

2.
Lithium abundances in the atmospheres of the super Li-rich C-giants WZ Cas and WX Cyg are derived by the spectral synthesis technique using the Li I resonance line at λ670.8 nm and three subordinate lines at λλ 812.6, 610.4 and 497.2 nm. The differences between the Li abundances derived from the λ670.8 nm line and the λλ 497.2, 812.6 nm lines do not exceed ±0.5 dex. The lithium line at λ610.4 nm provides typically lower abundances than the resonance line (by ≈ 1 dex). The mean LTE and NLTE Li abundances from three Li I lines (excluding λ610.4 nm) are 4.7, 4.9 for WZ Cas, and 4.6, 4.8 for WX Cyg, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We have performed statistical equilibrium calculations for Ca I–Ca II, Ti I–Ti II, and Fe I–Fe II by taking into account the nonequilibrium line formation conditions (the non-LTE approach) in model atmospheres of giant stars with effective temperatures 4000 K ≤ T eff ≤ 5000 K and metal abundances ?4 ≤ [Fe/H] ≤ 0. The dependence of departures from LTE on atmospheric parameters has been analyzed. We present the non-LTE abundance corrections for 28 Ca I lines, 42 Ti I lines, 54 Ti II lines, and 262 Fe I lines and a three-dimensional interpolation code to obtain the non-LTE correction online for an individual line and specified atmospheric parameters.  相似文献   

4.
A model of the R CrB star chromosphere is calculated on the basis of the observed profiles of the Ca II H and K lines and IR triplet and D lines of Na I and H-alpha. The calculated profiles of Ca II H and K lines and IR triplet and H-alpha are in good agreement with the observed ones both for an undisturbed state and for the light minimum. The line profiles for the light minimum are calculated under the assumption that the minimum is attributed to obscuring of the star disc with a dust cloud. In this case, the chromosphere is not hydrostatic since the column density at the chromosphere base is two orders of magnitude higher as compared to that in a hydrostatic model. The model proposed is more extended, less dense at the chromosphere base, and denser in the upper chromosphere. The extension of the calculated chromosphere is about 3 star radii. The density in the chromosphere is 108–1010 atoms per 1 cm3 and the temperature is 5000–7000 K. Agreement of the calculated and observed profiles of Na I D absorption lines is possible if we assume that, around the star, there is a cold envelope containing Na I atoms which expands with a velocity of about 30 km/s. This envelope is beyond the chromosphere, but near enough for the star and the envelope to be observed as a single whole. The optical thickness of the envelope in the Na I D2 line is 1.8. At the brightness minimum, this envelope illuminated with the star light yields additional emission attributed to resonant scattering in the Na I D lines.  相似文献   

5.
Results of the numerical simulation of spectra of the Pleiades brown dwarfs Calar 3 and Teide 1 are discussed. Synthetical spectra were computed for several model atmospheres from a grid of Allard and Hauschildt (1995). From the comparison of computed and observed spectra we have found that: – the spectrum of Teide 1 may be reasonably well fitted by JOLA in the visible region, including the spectral regions around the Li I lines at λλ 670.8 and 812.6 nm. – The structure of absorption bands observed in the spectrum of Teide 1 and Calar 3 depends mainly on Teff. The dependence on gravity is much weaker. – A comparison of observed and computed spectra shows that effective temperatures of these Pleiades brown dwarfs is Teff ≈ 2900 K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We use the synthetic spectrum technique to analyze two lithium lines in the spectrum of the roAp star HD 24712. The synthetic spectra are calculated in the ranges λλ 610.2–610.4 nm and 670.5–670.8 nm. We take into account the magnetic splitting of the lines and their blending by the lines of rare-earth elements. The effect of the magnetic field on absorption lines is estimated by the synthetic spectrum software SynthM developed by S.A. Khan. The upper limit for the lithium abundance turns out to be log N/N tot = ?10.0.  相似文献   

7.
Results are reported of a study of the atmospheric chemical composition for 12 F5-K0 type stars in the Hyades cluster. The study uses spectra obtained with the 1.93-m telescope of the Haute-Provence Observatory (France) with the ELODIE echelle-type spectrograph in the wavelength range 440–680 nm. The spectral resolution is R = 40000, and S/N is ~50. The equivalent widths of the lines are measured in the wavelength range 510–680 nm. The main parameters of the stars are determined: the effective temperature T eff, the gravity logg, the microturbulence velocities V t , and the abundances of Na, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Y, La, Ce, and Nd. The abundance estimates for the dwarfs and giants are similar within the errors of determination, except for the Na abundances.  相似文献   

8.
The formation of circumstellar Na I and Ca II resonance absorption lines in a type Ia supernova is studied in the case where the supernova explodes in a binary system with a red giant. The model suggests a spherically symmetric wind and takes into account the nonstationary ionization and heating of the wind by X rays from the shock wave and by gamma rays from radioactive 56Ni decay. For wind densities typical of a red giant, the expected optical depth of the wind in Na I lines is shown to be too small (τ < 10?3) for their detection. Under the same conditions, the optical depth of the predicted Ca II 3934 Å absorption line is sufficient for its detection (τ > 0.1). It is concluded that the Na I and Ca II absorption lines detected in SN 2006X could not be formed in the red giant wind and are most likely related to clouds at distances exceeding the dust evaporation radius (r > 1017 cm). An upper limit for the rate of mass loss through a stationary wind with velocity u has been obtained from the absence of Ca II absorption lines in SN 2006X unrelated to the similar Na I components: ? < 10?8 (u/10 km s?1) M yr?1.  相似文献   

9.
Two CCD spectra of the star BM Ori were obtained with the echelle spectrograph of the 6-m telescope. In one of the spectra, a large proportion of lines are distorted by emission. The emission component is blueshifted by 50 km s?1, suggesting hot-gas outflow from the atmosphere. The equivalent-width ratio of measured lines in the spectra outside and during eclipse is consistent with the assumption that ~2/3 of the primary star’s area is obscured during eclipse, as follows from light curves. Measured line equivalent widths were used to estimate atmospheric parameters of the secondary star, T eff=7300 K, log g=5.2, and microturbulence ξt=6 km s?1, and to determine its chemical composition. The C, Na, Al, Si, S, Ca, Fe, Ni, and Zn abundances are solar, within the error limits. Li, Sc, Ti, V, Cr, Mn, Co, and Y are overabundant, while Mg, Cu, and Ba are underabundant. In general, the secondary is similar in chemical composition to the star V 1016 Ori. Based on the secondary’s mass determined by solving the radial-velocity curve and on log g estimated spectroscopically from iron ionization equilibrium, we calculated its photospheric radius, R 2 = 0.5R . However, the spectroscopic log g=5.2 disagrees with log g=3.5 calculated from the luminosity and effective temperature and with log g=3.0 calculated from light and radial-velocity curves. If the secondary’s photospheric radius is indeed small; this argues for the hypothesis that the eclipsing body is a dust envelope. The radial velocities measured from the two spectra are systematically higher than those calculated from the radial-velocity curve by +34 and +24 km s?1. It is likely that the secondary’s atmosphere occasionally shrinks.  相似文献   

10.
We have performed calculations by abandoning the assumption of local thermodynamic equilibrium (within the so-called non-LTE approach) for Al I and Si I with model atmospheres corresponding to stars of spectral types F–G–Kwith differentmetal abundances. To take into account inelastic collisions with hydrogen atoms, for the first time we have applied the cross sections calculated by Belyaev et al. using model approaches within the formalism of the Born–Oppenheimer quantum theory. We show that for Al I non-LTE leads to higher ionization (overionization) than in LTE in the spectral line formation region and to a weakening of spectral lines, which is consistent with earlier non-LTE studies. However, our results, especially for the subordinate lines, differ quantitatively from the results of predecessors. Owing to their large cross sections, the ion-pair production and mutual neutralization processes Al I(nl) + HI(1s) ? Al II(3s 2) + H? provide a close coupling of highly excited Al I levels with the Al II ground state, which causes the deviations from the equilibrium level population to decrease compared to the calculations where the collisions only with electrons are taken into account. For three moderately metal-deficient dwarf stars, the aluminum abundance has been determined from seven Al I lines in different models of their formation. Under the assumption of LTE and in non-LTE calculations including the collisions only with electrons, the Al I 3961 ?A resonance line gives a systematically lower abundance than the mean abundance from the subordinate lines, by 0.25–0.45 dex. The difference for each star is removed by taking into account the collisions with hydrogen atoms, and the rms error of the abundance derived from all seven Al I lines decreases by a factor of 1.5–3 compared to the LTE analysis. We have calculated the non- LTE corrections to the abundance for six subordinate Al I lines as a function of the effective temperature (4500 K ≤ T eff ≤ 6500 K), surface gravity (3.0 ≤ log g ≤ 4.5), and metal abundance ([M/H] = 0, ?1, ?2, and ?3). For Si I including the collisions with HI leads to the establishment of equilibrium populations in the spectral line formation region even in hot metal-deficient models and to vanishingly small departures from LTE in spectral lines.  相似文献   

11.
The mean magnetic field (MMF) of the photosphere of the Sun as a star was measured in 2001?C2010 at the Crimean Astrophysical Observatory using two Fe I absorption lines with ?? = 524.7 nm and ?? = 525.0 nm. The regression coefficient b for 1054 pairs of daily values measured simultaneously on both lines equals 0.82 (a correlation coefficient is 0.94; magnetic field strengths determined by the line with ?? = 525.0 nm are lower than those for the line with ?? = 524.7 nm). However, the b value varied significantly along with phases of the 11-year cycle from 0.88 in 2003 to 0.49 in 2009. It is difficult to ascribe these variations to purely instrumental or solar causes. Moreover, the semiannual value of b decreased with the decrease in the absolute strength of the MMF, which contradicts the model of thin magnetic flux ropes of the photosphere. Similar behavior of b was also observed in the comparison of MMF measured at the Crimean Astrophysical Observatory and Stanford by the line with ?? = 525.0 nm. The inconsistency of the results obtained by these two iron lines on different instruments has been noted. It has been concluded that the variance in and odd behavior of b are predetermined not only by the instrument and the Sun (by the so-called fine structure of the photosphere field), but also by the act of measuring. When recording solar (and stellar) magnetic fields and modeling atmospheric processes, quantum effects have to be taken into account, such as nonlocality, indistinguishability, and the entanglement of photons, as well as that a photon only acquires its properties at the exact moment of its detection. The best approximation to reality can be achieved by averaging the MMF measurements carried out with different magnetographs and in different spectral lines.  相似文献   

12.
The characteristics of Doppler shifts in a quiet region of the Sun are compared between the Hα line and the Ca?ii infrared line at 854.2 nm. A small area of 16″×40″ was observed for about half an hour with the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST) at Big Bear Solar Observatory. The observed area contains a network region and an internetwork region, and identified in the network region are fibrils and bright points. We infer Doppler velocity v m from each line profile at each individual point with the lambdameter method as a function of half wavelength separation Δλ. It is confirmed that the bisector of the spatially averaged Ca?ii line profile has an inverse C-shape with a significant peak redshift of +?1.8 km?s?1. In contrast, the bisector of the spatially averaged Hα line profile has a C-shape with a small peak blueshift of ??0.5 km?s?1. In both lines, the bisectors of bright network points are significantly redshifted not only at the line centers, but also at the wings. The Ca?ii Doppler shifts are found to be correlated with the Hα ones with the strongest correlation occurring in the internetwork region. Moreover, we find that here the Doppler shifts in the two lines are essentially in phase. We discuss the physical implications of our results in view of the formation of the Hα line and Ca?ii 854.2 nm line in the quiet region chromosphere.  相似文献   

13.
Using the high-resolution spectra obtained at the 6-meter telescope of the SAO RAS over 2002–2013, we studied the spectral features of the lines of interstellar medium. The radial velocities of the Na I 5890 Å, Na I 5896 Å, Ca II 3934 Å and Ca II 3968 Å absorption lines were analyzed. Seven diffuse interstellar bands 4964, 5780, 5797, 6196, 6203, 6379 Å were identified in the optical spectrum of IRAS01005+7910. Radial velocities Vr and equivalent widths Wλ of these DIBs were measured, for which the values of the interstellar reddening EB?V and column density of neutral hydrogen log [N(H)] were calculated.  相似文献   

14.
We investigate the possibility of detecting the circumstellar Na I D1,2 and Ca II H, K absorption lines in the spectra of type IIP supernovae at the photospheric phase. Our modeling shows that the Na I doublet lines will not be seen in the spectra of type IIP supernovae at moderate stellar wind densities, for example, characteristic of SN 1999em, while the rather intense Ca II lines with P Cyg profiles should be detectable. The same model is used to describe the circumstellar Na I and Ca II lines in the spectrum of SN 1998S, a type IIL supernova with a dense wind. We show that the circumstellar line intensities in this supernova are reproduced only if there is an ultraviolet excess that is mainly attributable to the Comptonization of supernova radiation in the shock wave.  相似文献   

15.
We consider the possibility of the excitation of sodium resonance emission in cometary matter under solar radiation at a heliocentric distance of 5 AU, as was observed when a fragment of Comet Shoemaker-Levy 9 plunged into Jupiter. When the sodium emission is calculated, the multiple scattering in the cometary cloud is taken into account. We use a non-LTE radiative transfer code for a two-level model sodium atom. A comparison of the computed and observed Na I D emission line profiles allows the column density of the sodium atoms for specific times of observations of Comet Shoemaker-Levy 9 to be determined. The observed Na I(D1+D2) line profile was found to agree well with the computed profile for an optically thick sodium cloud. We calculated the column density of the sodium atoms for three comets from the observed intensity of the D2 line emission. We also calculated the D2/D1 intensity ratio for various optical depths of the sodium cloud and various phase angles.  相似文献   

16.
Abstract— The outer portions of many type I chondrules (Fa and Fs <5 mol%) in CR chondrites (except Renazzo and Al Rais) consist of silica‐rich igneous rims (SIRs). The host chondrules are often layered and have a porphyritic core surrounded by a coarse‐grained igneous rim rich in low‐Ca pyroxene. The SIRs are sulfide‐free and consist of igneously‐zoned low‐Ca and high‐Ca pyroxenes, glassy mesostasis, Fe, Ni‐metal nodules, and a nearly pure SiO2 phase. The high‐Ca pyroxenes in these rims are enriched in Cr (up to 3.5 wt% Cr2O3) and Mn (up to 4.4 wt% MnO) and depleted in Al and Ti relative to those in the host chondrules, and contain detectable Na (up to 0.2 wt% Na2O). Mesostases show systematic compositional variations: Si, Na, K, and Mn contents increase, whereas Ca, Mg, Al, and Cr contents decrease from chondrule core, through pyroxene‐rich igneous rim (PIR), and to SIR; FeO content remains nearly constant. Glass melt inclusions in olivine phenocrysts in the chondrule cores have high Ca and Al, and low Si, with Na, K, and Mn contents that are below electron microprobe detection limits. Fe, Ni‐metal grains in SIRs are depleted in Ni and Co relative to those in the host chondrules. The presence of sulfide‐free, SIRs around sulfide‐free type I chondrules in CR chondrites may indicate that these chondrules formed at high (>800 K) ambient nebular temperatures and escaped remelting at lower ambient temperatures. We suggest that these rims formed either by gas‐solid condensation of silica‐normative materials onto chondrule surfaces and subsequent incomplete melting, or by direct SiO(gas) condensation into chondrule melts. In either case, the condensation occurred from a fractionated, nebular gas enriched in Si, Na, K, Mn, and Cr relative to Mg. The fractionation of these lithophile elements could be due to isolation (in the chondrules) of the higher temperature condensates from reaction with the nebular gas or to evaporation‐recondensation of these elements during chondrule formation. These mechanisms and the observed increase in pyroxene/olivine ratio toward the peripheries of most type I chondrules in CR, CV, and ordinary chondrites may explain the origin of olivine‐rich and pyroxene‐rich chondrules in general.  相似文献   

17.
The spectra of two powerful flares with approximately the same intensities in the optical region but with different spectral features and power in other regions are studied. One of them is the unique flare which occurred on October 28, 2003, importance X17.2/4B, ranking third in magnitude among the recorded flares. Another occurred on September 1, 1990, 3B importance. The flares vary in the Balmer decrement. The flare of October 28, 2003, has a ratio of I(Hβ)/I(Hα) = 1.47. This is the largest value for solar flares ever observed. The flares also differ in magnitude of the D Na I lines emission: the emission of the flare of October 28, 2003, is substantially larger than that of the other flare. The chromosphere models of the flares are computed using the observed profiles of Balmer lines and D Na I lines. The satisfactory agreement of the calculated and observed profiles is obtained for the two-component models in which a hot component occupies 6% of the area. The hot component of the chromosphere model is characterized with the dense condensation available in the upper layers. For the flare of October 28, 2003, this condensation is located deeper and its substance concentration is greater than that for another flare. The Hα line intensity for the model hot component alone is approximately 30 and the continuous spectrum intensity is approximately 3% of the undisturbed level. The photosphere model is computed using the observed profiles of photosphere lines for the flare of October 28, 2003. It is found that very broad profiles of individual sigma-components of the Fe I λ 525.0 nm line may be only explained by the presence of magnetic fields having different directions. A great difference is detected between values of the magnetic field strength obtained in the splitting of sigma-components and those provided by simulation.  相似文献   

18.
Based on our high-spectral-resolution observations performed with the NES echelle spectrograph of the 6-m telescope, we have studied the peculiarities of the spectrum and the velocity field in the atmosphere and envelope of the cool supergiant V1027 Cyg, the optical counterpart of the infrared source IRAS 20004+2955. A splitting of the cores of strong absorptions of metals and their ions (Si II, Ni I, Ti I, Ti II, Sc II, Cr I, Fe I, Fe II, BaII) has been detected in the stellar spectrum for the first time. The broad profile of these lines contains a stable weak emission in the core whose position may be considered as the systematic velocity V sys = 5.5 km s?1. Small radial velocity variations with an amplitude of 5–6 km s?1 due to pulsations have been revealed by symmetric low- and moderate-intensity absorptions. A long-wavelength shift of the Hα profile due to line core distortion is observed in the stellar spectrum. Numerous weak CN molecular lines and the KI 7696 Å line with a P Cyg profile have been identified in the red spectral region. The coincidence of the radial velocities measured from symmetric metal absorptions and CN lines suggests that the CN spectrum is formed in the stellar atmosphere. We have identified numerous diffuse interstellar bands (DIBs) whose positions in the spectrum, V r (DIBs) = ?12.0 km s?1, correspond to the velocity of the interstellar medium in the Local Arm of the Galaxy.  相似文献   

19.
Laura Schaefer 《Icarus》2004,169(1):216-241
We modified the MAGMA chemical equilibrium code developed by Fegley and Cameron (1987, Earth Planet. Sci. Lett. 82, 207-222) and used it to model vaporization of high temperature silicate lavas on Io. The MAGMA code computes chemical equilibria in a melt, between melt and its equilibrium vapor, and in the gas phase. The good agreement of MAGMA code results with experimental data and with other computer codes is demonstrated. The temperature-dependent pressure and composition of vapor in equilibrium with lava is calculated from 1700 to 2400 K for 109 different silicate lavas in the ONaKFeSiMgCaAlTi system. Results for five lavas (tholeiitic basalt, alkali basalt, Barberton komatiite, dunite, and a molten type B1 Ca, Al-rich inclusion) are discussed in detail. The effects of continuous fractional vaporization on chemistry of these lavas and their equilibrium vapor are presented. The predicted abundances (relative to Na) of K, Fe, Si, Al, Ca, and Ti in the vapor equilibrated with lavas at 1900 K are lower than published upper limits for Io's atmosphere (which do not include Mg). We predict evaporative loss of alkalis, Fe, and Si during volcanic eruptions. Sodium is more volatile than K, and the Na/K ratio in the gas is decreased by fractional vaporization. This process can match Io's atmospheric Na/K ratio of 10±3 reported by Brown (2001, Icarus 151, 190-195). Silicon monoxide is an abundant species in the vapor above lavas. Spectroscopic searches are recommended for SiO at IR and mm wavelengths. Reactions of metallic vapors with S- and Cl-bearing volcanic gases may form other unusual gases including MgCl2, MgS, MgCl, FeCl2, FeS, FeCl, and SiS.  相似文献   

20.
We investigate the possibility to diagnose the ??-distributions from the EUV spectra observed by the Hinode/EIS spectrometer. Observable lines of the most abundant elements except Fe are considered. Synthetic spectra for the ??-distributions with ??=2??C?10 and the Maxwellian distribution were calculated for a range of temperatures and electron densities. We find that only a small number of O, S, Ca, and Ni line ratios are sensitive to???. A?list of the best diagnostic options using transition region and coronal lines is provided. Usually, the line ratios sensitive to ?? are also sensitive to electron density. Weak O?iv lines are a notable exception. These lines offer greatest sensitivity to ?? from all the lines observed by Hinode/EIS. Density diagnostics using lines of the non-Fe elements is discussed and the influence of ?? on the diagnostics of electron density is presented. The density diagnostics using these non-Fe EIS lines are strongly affected by both known and unknown blends. Therefore, we performed the density diagnostics using the Fe?xii??C?xiv lines. Subsequently, these proposed diagnostic methods for ??-distributions are tested using the spectral atlas obtained by Brown et?al. (Astrophys. J. Suppl. 176, 511, 2008). These data do not provide conclusive evidence for the presence of ??-distributions due to possible plasma multitermality, a low observed signal-to-noise ratio, and unremovable or unknown blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号