首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A convective field of intensities and velocities between the levels of continuum origination and the temperature minimum is investigated based on spectral observations of iron lines performed near the center of the solar disc using the 70-cm German vacuum tower telescope (VTT) located at del Teide observatory of the Institute of Astrophysics on the Canaries (Tenerife island). Convective elements in the process of their upward and downward motion change with height not only the sign of the relative contrast but also the direction of motion. The height at which this reversal occurs strongly depends on the velocity and contrast of the convective elements which they had at the level of continuous spectrum formation. On average, the reversal of the velocity takes place at the height of 240 ± 130 km, and that of the contrast occur at the height of 200 ± 65 km.  相似文献   

2.
Using a three-dimensional hydrodynamical model of the solar atmosphere, we calculated profiles of the Fe I λ 639.361 nm and Fe II λ 523.462 nm lines with consideration for deviations from the local thermodynamic equilibrium. We determined heights for intensity contrast reversal and for velocity sign reversal of convective elements. Both of these parameters depend strongly on the convective velocity and intensity measured in the continuum. The larger the parameters, the greater is the atmosphere altitude where the reversal takes place. We compared all the calculated relations with the observations obtained at the German Vacuum Tower Telescope in Izana (Tenerife, Spain). In our opinion, the 3D hydrodynamical model of the solar atmosphere satisfactorily describes all the main features of observed convective velocities and intensities.  相似文献   

3.
High resolution spectroheliograms in the ultraviolet emission lines He i, He ii, O iv, O v, and Ne vii have been photographed during a sounding rocket flight. Simultaneously, broad band filtergrams of the far ultraviolet solar corona were obtained from the same flight. This paper describes qualitatively the spatial distribution of the UV emission. A comparison with an H filtergram is made. The most significant results can be summarized as follows: We find most of the ultraviolet emission concentrated around spicules, with different degree of concentration, decreasing with higher temperatures. 4 different areas of ultraviolet emission can be distinguished. (1) The normal network, bright in all UV emission lines from the chromosphere into the corona. (2) The coronal holes, bright in all UV emission lines up to 600 000 K but depressed in coronal lines from 1 million degrees upward. (3) The coronal depressions near active centers, absence of all ultraviolet emissions and (4) Active regions, where ultraviolet emission comes from plages, sunspots and coronal loops. High non-thermal Doppler velocities can be found in certain plage kernels around 105 to 2 × 105 K. Sunspots are bright in the ultraviolet, but do not exhibit He i or He ii emission. The corona above sunspots is weak. Sunspots do not show high non-thermal Doppler velocities. The He i and He ii emission does not follow either chromospheric, transition zone or coronal pattern; one can recognize some typical behavior of each.  相似文献   

4.
5.
Given an equation of State, the three equations of mass, momentum and energy conservation determine the vortex free flow fields in a star. The solar data processed by Athay (1966) is a measure of the dissipation of the fluid, while the use of an empirical temperature profile (BCA, 1968) permits values for the gradients in the equations of fluid flow rendering them algebraic, with solutions independent of boundary conditions. This approach serves as a consistency check on the methods with which data have been processed by inquiring to what degree the basic conservation laws have been satified, and by directly implying a velocity field which can be scrutinized for its observational consequences. We find that the most consistent interpretation to this data is that the temperature minimum should not be coincident with flux maximum as the BCD model photosphere is, and that the temperature profile must rise higher at the 1500 km. region above optical depth one. Furthermore, more emissions must occur in the U-V metals at this region to support such a temperature increase, but at least an order of magnitude decrease in H? emission should also be expected, as well as some suppression of the Balmer. As a theoretical consequence horizontal stratification of the velocity field occurs, suggesting either cellular motions or differential rotation with surface velocities as high as 60 km s?1, but on the average near 30 to 40 km s?1, across the solar surface.  相似文献   

6.
Krishnakumar  V.  Venkatakrishnan  P. 《Solar physics》1999,186(1-2):43-59
Periodic shaking or buffeting of magnetic flux tubes could generate magnetohydrodynamic waves which propagate along the flux tubes and dissipate energy in the chromosphere and/or corona. If we make an assumption that the G-band bright points represent flux tubes, then there should exist a relationship between the transverse motions and the brightening of these bright points. We tracked a total of 56 bright points, obtained their velocity and intensity power spectrum. We also estimated the r.m.s. velocity, average velocity, r.m.s. intensity and average intensity of these bright points. We do not see any clear evidence for a relationship between these estimated quantities.  相似文献   

7.
This publication provides an overview of magnetic fields in the solar atmosphere with the focus lying on the corona. The solar magnetic field couples the solar interior with the visible surface of the Sun and with its atmosphere. It is also responsible for all solar activity in its numerous manifestations. Thus, dynamic phenomena such as coronal mass ejections and flares are magnetically driven. In addition, the field also plays a crucial role in heating the solar chromosphere and corona as well as in accelerating the solar wind. Our main emphasis is the magnetic field in the upper solar atmosphere so that photospheric and chromospheric magnetic structures are mainly discussed where relevant for higher solar layers. Also, the discussion of the solar atmosphere and activity is limited to those topics of direct relevance to the magnetic field. After giving a brief overview about the solar magnetic field in general and its global structure, we discuss in more detail the magnetic field in active regions, the quiet Sun and coronal holes.  相似文献   

8.
The large-scale azimuth magnetic field is pumping to the bottom of the solar convective zone due to the diamagnetic action of turbulent conductive fluids. When the field at the bottom is of about 103 G, an equilibrium is established between diamagnetic pumping and buoyancy.If, in addition to the density gradient, an additional anisotropy exists (for instance, due to rotation), another mechanism of the magnetic field transfer appears, the efficiency of which greatly depends on the magnitude of the anistropy parameter.  相似文献   

9.
We consider two types of streamer structures observed in the solar atmosphere. Structures of the first type are medium-scale configurations with scale lengths comparable to the scale height in the corona, kT/mg = 100 thousand km, which appear as characteristic plasma structures in the shape of a dome surrounding the active region with thin streamers emanating from its top. In configurations of this type, gravity plays no decisive role in the mass distribution. The plasma density is constant on magnetic surfaces. Accordingly, the structure of the configurations is defined by the condition ψ = const, where ψ is the flux function of the magnetic field. Structures of the second type are large-scale configurations (coronal helmets, loops, and streamers), which differ from the above structures in that their scale lengths exceed the scale height in the corona. For them, gravity plays a decisive role; as a result, instead of the magnetic surfaces, the determining surface is BgradΦ = 0. We constructed three-dimensional images of these structures. Some of the spatial curves called “visible contours” of the Br = 0 surface are shown to be brightest in the corona. We assume that the helmet boundaries and polar plumes are such curves.  相似文献   

10.
11.
Using a non-local theory of convection, we calculated the structure of the solar convection zone, paying special attention to the detailed structure of the lower overshooting zone. Our results show that an extended transition zone exists near the bottom of the convection zone, where the temperature gradient turns smoothly from adiabatic in the convection zone to radiative in solar interior. A super-radiative temperature region is found in the overshooting zone under the solar convection zone, where     ,     ,     and     . The extension of the super-radiative region (defined by     l is about 0.63  H P (0.053 R). A careful comparison of the distribution of adiabatic sound speed and density with the local one is carried out. It is found, strikingly, that the distribution of adiabatic sound speed and density of our model is roughly consistent with the results of reversion from solar oscillation observations.  相似文献   

12.
M. Simon  H. Zirin 《Solar physics》1969,9(2):317-327
Observations of the quiet sun at wavelengths from 3 Å to 75 cm show (with two exceptions: the Ovi line at 1032 Å and possibly the continuum at 1.2 mm) either no limb brightening or less than had been supposed. On the other hand, the brightness temperature is observed to increase with wavelength in the millimeter and centimeter range. If this increase is due to greater visibility of hot overlying material, that material ought to be evident at the limb at shorter wavelengths, resulting in limb brightening. The only possible explanation for the absence of limb brightening at almost all wavelengths is that the emitting surface is rough at all wavelengths, with a scale of roughness approximately equal to the scale height at each temperature. Contradictions with existing models, along with the additional observations required for an improved model are discussed.  相似文献   

13.
Relationship between the geoefficiency of the solar flares as well as of the active regions passing the central meridian of the Sun and the configuration of the large scale solar magnetic field is studied.It is shown that if the tangential component of the large scale magnetic field at the active region or at the flare region is directed southwards, that region and that flare produce geomagnetic storm. In case when the tangential magnetic field is directed northward, the active region and the flares occurring at that region do not cause any geomagnetic disturbance.An index of the geoefficiency of the solar flares and of the active regions is proposed.  相似文献   

14.
A consistent account of plasma turbulence in magnetohydrodynamics equations describing transport processes across the magnetic field is presented. The structure of the perpendicular shock wave generated in the solar atmosphere, as a result of either local disturbance of the magnetic field or dense plasma cloud motion with a frozen-in magnetic field, has been investigated. The region of parameters in the solar atmosphere at which the electron-ion relative drift velocity u exceeds the electron thermal velocity V eand generation of radio emission becomes possible, has been determined. The plasma turbulence inside the front has been shown, under conditions of solar corona, not to cause the oscillation structure of shock front to break down. Under chromospheric conditions, the shock profile is aperiodical. Then, the condition u > Vecan be satisfied and shock waves having an Alfvén Mach number M which exceeds the critical value M c 3.3 for aperiodical shock waves can exist (Eselevich et al., 1971a). Arguments are given in favour of the fact that perpendicular shock waves are generated in the Sun's atmosphere when dense plasma clouds, with a frozen-in magnetic field, are expanded.  相似文献   

15.
The non-isothermal magnetohydorstatic equilibrium is studied in this paper, on the basis of two-dimensional solutions of an isothermal case[9]. We present two models of temperature distribution and derive the two relevant partial differential equations of non-isothermal magnetohydrostatic equilibrium. Using the solution of the isothermal case as an approximation of the 1st degree and choosing appropriate boundary conditions, we obtain several solutions of the equations with an iterative method numerically, and obtain the equilibrium configurations and the distributions of temperature and magnetic energy. From these results, we find that the equilibrium configurations will change obviously as the temperature changes from the isothermal case slightly. Change of the temperature may play an important role in producing relatively violent solar activities through instability.  相似文献   

16.
A method of calculating the induced electric field is presented. The induced electric field in the solar atmosphere is derived by the time variation of the magnetic field when the accumulation of charged particles is neglected. In order to derive the spatial distribution of the magnetic field, several extrapolation methods are introduced. With observational data from the Helioseismic and Magnetic Imager aboard NASA’s Solar Dynamics Observatory taken on 2010 May 20, we extrapolate the magnetic field from the photosphere to the upper atmosphere. By calculating the time variation of the magnetic field, we can get the induced electric field. The derived induced electric field can reach a value of 102 V cm-1 and the average electric field has a maximum point at the layer 360 km above the photosphere. The Monte Carlo method is used to compute the triple integration of the induced electric field.  相似文献   

17.
The formation of fibrils in low-lying loops is investigated by performing one-dimensional nonlinear hydrodynamic calculations. The loops have the height of 3000–5000 km and have an atmosphere extending from the photosphere to the corona. A shock wave is generated from a pressure pulse in the photosphere and it ejects the chromosphere-corona transition region along the loop, expanding the underlying chromosphere into the corona. This expanding chromospheric material in a loop is regarded as a fibril. The shock propagates in the corona and collides with another transition region where a reflected shock and a penetrating shock are generated. The effect of the reflected shock on the motion of the fibril is weak. The fibril shows a nearly ballistic motion as observations suggest, if it does not extend beyond the summit of the loop. The corona in the loop is compressed nearly adiabatically by the fibril, and the enhanced coronal pressure leads the fibril finally to a retracting motion even if the fibril goes beyond the summit of the loop.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 261.  相似文献   

18.
For different life spans, we measure the line of sight component of the magnetic field structure of the bipolar sunspots from the SOHO/MDI magnetograms during their initial appearance on the surface and toroidal component of the magnetic field structure is separated. Irrespective of their sizes, strength of the measured line of sight component of the magnetic field structure varies from ∼450 G for the life span of 2 days to ∼300 G for the life span of 12 days. Where as strength of the estimated surface toroidal component of the bipolar spots varies from ∼10 G for the life span of 2 days to ∼700 G for the life span of 12 days. We use rederived Parker’s (1955a) flux tube model in spherical coordinates and Hiremath’s (2002) life span anchoring depth information to infer the strength of line of sight and toroidal components of the magnetic field structures at different anchoring depths of the bipolar spots in the convective envelope and the important findings are: (i) both the line of sight and toroidal components of the magnetic field structures at the sites of sunspots’ different anchoring depths in the convective envelope have a similar radial variation and the strength (∼104 G near base of the convective envelope to ∼100 G near the surface) and, (ii) rate of emergence of toroidal magnetic field structure near base of the convective envelope is estimated to be ∼100 times the rate of emergence of toroidal magnetic field structure near the surface.  相似文献   

19.
In the solar convective layer, there is a strong toroidal field and a vertical gradient in the turbulent magnetic diffusivity. As a fluid blob rises through magnetic buoyancy, a steep gradient in the turbulent magnetic diffusivity across the surface of the blob is generated. This will perturb the toroidal field, resulting in the formation of a magnetic ring around the blob. An attempt is made to account for the concentration of the bipolar sunspot field in terms of this ring.  相似文献   

20.
Structure of horizontal convective currents in the solar atmosphere has been investigated using profiles of the λ ≈ 532.42 nm neutral iron line which were observed at the solar limb with high spatial resolution. The asymmetry of the observed line was shown to arise when approaching the solar limb. The spatial and time velocity variations were simulated using the λ-meter technique. Acoustic waves were removed using the k-ω filters. The convection currents on various spatial scales were distinguished, namely, those connected with granulation, mesogranulation, and supergranulation. The spatial and time distribution of the convection velocities in the photosphere and in the low chromosphere has been analyzed. The horizontal currents were shown to exist on granulation, mesogranulation, and supergranulation scales as low as h ≈ 250 km, and the granulation and mesogranulation horizontal velocities increase with height. In the photospheric layers, the supergranulation vertical-velocity field appears almost invariable, while the supergranulation horizontal-velocity field can vary with height. The horizontal velocity distribution within large convection currents is found to be asymmetric on granulation, mesogranulation, and supergranulation scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号