首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method of applying wavelet transform to earthquake motion analysis is developed from the viewpoint of energy input structures, in which relationships between wavelet coefficients and energy input, namely energy principles in wavelet analysis are derived. By using the principles, time–frequency characteristics of the 1995 Hyogoken-Nanbu earthquake ground motions are analysed and time histories of energy input for various ranges of frequencies and epicentral distances are identified. Furthermore, a technique to simulate earthquake ground accelerations by wavelet inverse transform is developed on the condition that target time-frequency characteristics are specified. Structural responses to the simulated accelerations are compared with the target time–frequency characteristics, which shows satisfactory correlations between wavelet coefficients and energy responses in both time and frequency domains. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。  相似文献   

3.
The object of this paper is to introduce a procedure for the determination of elastic design earthquake input energy spectra taking into account the influence of magnitude, soil type and distance from the surface projection of the fault. Firstly, an accurate selection of a large set of representative records has been realized. Secondly, the construction of the design input energy spectra has required determining the spectral shapes and a normalization factor which measures seismic hazard in terms of energy. This factor, denoted as the seismic hazard energy factor, has been defined as the area under the earthquake input energy spectrum in the period interval between 0·05 and 4·0 s. Finally, due to the importance of the source-to-site distance in the evaluation of the input energy, an investigation into the attenuation of the seismic hazard energy factor has been carried out. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
A new critical excitation method is developed for soil–structure interaction systems. In contrast to previous studies considering amplitude nonstationarity only, no special constraint of input motions is needed on nonstationarity. The input energy to the soil–structure interaction system during an earthquake is introduced as a new measure of criticality. It is demonstrated that the input energy expression can be of a compact form via the frequency integration of the product between the input component (Fourier amplitude spectrum) and the structural model component (so-called energy transfer function). With the help of this compact form, it is shown that the formulation of earthquake input energy in the frequency domain is essential for solving the critical excitation problem and deriving a bound on the earthquake input energy for a class of ground motions. The extension of the concept to MDOF systems is also presented.  相似文献   

5.
The response of an elasto‐plastic single degree of freedom (SDOF) system to ground motion is estimated based on wavelet coefficients calculated by discrete wavelet transform. Wavelet coefficients represent both the time and frequency characteristics of input ground motion, and thus can be considered to be directly related to the dynamic response of a non‐linear system. This relationship between the energy input into an elastic SDOF system and wavelet coefficients is derived based on the assumption that wavelets deliver energy to the structure instantaneously and the quantity of energy is constant regardless of yielding. These assumptions are shown to be valid when the natural period of the system is in the predominant period range of the wavelet, the most common scenario for real structures, through dynamic response analysis of a single wavelet. The wavelet‐based estimation of elastic and plastic energy transferred by earthquake ground motion is thus shown to be in good agreement with the dynamic response analysis when the natural period is in the predominant range of the input. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
确定结构基底等效输入地震动的简化方法   总被引:1,自引:0,他引:1  
本文用理论和实例计算分析了土与结构间的动力相互作用。根据基底等效输入的地震动相对入射地震动的传递函数特点研究出了一种等效输入的方法,该方法比较好地反映了场地和结构的动力特性对基底等效输入的影响。为利用刚性基底假设理论来分析土-结构动力相互作用提供了一种方法。  相似文献   

7.
This paper presents an input and system identification technique for a soil–structure interaction system using earthquake response data. Identification is carried out on the Hualien large‐scale seismic test structure, which was built in Taiwan for international joint research. The identified quantities are the input ground acceleration as well as the shear wave velocities of the near‐field soil regions and Young's moduli of the shell sections of the structure. The earthquake response analysis on the soil–structure interaction system is carried out using the finite element method incorporating the infinite element formulation for the unbounded layered soil medium and the substructured wave input technique. The criterion function for the parameter estimation is constructed using the frequency response amplitude ratios of the earthquake responses measured at several points of the structure, so that the information on the input motion may be excluded. The constrained steepest descent method is employed to obtain the revised parameters. The simulated earthquake responses using the identified parameters and input ground motion show excellent agreement with the measured responses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
This paper characterizes the ability of natural ground motions to induce rocking demands on rigid structures. In particular, focusing on rocking blocks of different size and slenderness subjected to a large number of historic earthquake records, the study unveils the predominant importance of the strong‐motion duration to rocking amplification (ie, peak rocking response without overturning). It proposes original dimensionless intensity measures (IMs), which capture the total duration (or total impulse accordingly) of the time intervals during which the ground motion is capable of triggering rocking motion. The results show that the proposed duration‐based IMs outperform all other examined (intensity, frequency, duration, and/or energy‐based) scalar IMs in terms of both “efficiency” and “sufficiency.” Further, the pertinent probabilistic seismic demand models offer a prediction of the peak rocking demand, which is adequately “universal” and of satisfactory accuracy. Lastly, the analysis shows that an IM that “efficiently” captures rocking amplification is not necessarily an “efficient” IM for predicting rocking overturning, which is dominated by the velocity characteristics (eg, peak velocity) of the ground motion.  相似文献   

9.
An extensive investigation has been made into the interaction between topographic amplification and soil layer amplification of seismic ground motion. This interaction is suggested in the literature as a possible cause for the differences between topographic amplification magnitudes observed in field studies and those obtained from numerical analysis. To investigate this issue a numerical finite element (FE) parametric study was performed for a slope in a homogeneous linear elastic soil layer over rigid bedrock subjected to vertically propagating in-plane shear waves (Sv waves). Analyses were carried out using two types of artificial time history as input excitation, one mimicking the build-up and decay of shaking in the time histories of real earthquake events, and the other to investigate the steady-state response. The study identified topographic effects as seen in previous numerical studies such as modification of the free-field horizontal motion, generation of parasitic vertical motion, zones of alternating amplification and de-amplification on the ground surface, and dependence of topographic amplification on the frequency of the input motion. For the considered cases, topographic amplification and soil layer amplification effects were found to interact, suggesting that in order to accurately predict topographic effects, the two effects should not be always handled separately.  相似文献   

10.
A new finite element model to analyze the seismic response of deformable rocking bodies and rocking structures is presented. The model comprises a set of beam elements to represent the rocking body and zero‐length fiber cross‐section elements at the ends of the rocking body to represent the rocking surfaces. The energy dissipation during rocking motion is modeled using a Hilber–Hughes–Taylor numerically dissipative time step integration scheme. The model is verified through correct prediction of the horizontal and vertical displacements of a rigid rocking block and validated against the analytical Housner model solution for the rocking response of rigid bodies subjected to ground motion excitation. The proposed model is augmented by a dissipative model of the ground under the rocking surface to facilitate modeling of the rocking response of deformable bodies and structures. The augmented model is used to compute the overturning and uplift rocking response spectra for a deformable rocking frame structure to symmetric and anti‐symmetric Ricker pulse ground motion excitation. It is found that the deformability of the columns of a rocking frame does not jeopardize its stability under Ricker pulse ground motion excitation. In fact, there are cases where a deformable rocking frame is more stable than its rigid counterpart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
地震作用下含软弱夹层顺层岩质边坡表面放大效应研究   总被引:8,自引:0,他引:8  
为了研究地震作用下含软弱夹层顺层岩质边坡表面的放大效应,借用FLAC3D软件,建立了含软弱夹层顺层岩质边坡动力分析数值模型;在合理考虑地震动输入、边界条件、网格划分与模型参数的基础上,分析了地震动峰值、频率、持时以及初动方向等因素影响下的边坡表面放大效应。研究结果表明:①地震动峰值、频率和初动方向对边坡表面放大效应的影响较显著,而地震动持时对边坡表面放大效应的影响微小;②随着地震动峰值的增加,放大效应由软弱夹层之上的坡面及坡顶面向坡肩点逐渐增大,坡肩点的放大效应最大;③当输入地震动频率小于边坡的自振频率时,边坡表面加速度放大倍数较小,且频率越小,放大倍数越小,当输入地震动频率大于边坡的自振频率时,边坡表面加速度放大倍数较大,且频率越大,放大倍数亦越大。  相似文献   

12.
A new complex modal analysis‐based method is developed in the frequency domain for efficient computation of the earthquake input energy to a highly damped linear elastic passive control structure. The input energy to the structure during an earthquake is an important measure of seismic demand. Because of generality and applicability to non‐linear structures, the earthquake input energy has usually been computed in the time domain. It is shown here that the formulation of the earthquake input energy in the frequency domain is essential for deriving a bound on the earthquake input energy for a class of ground motions and for understanding the robustness of passively controlled structures to disturbances with various frequency contents. From the viewpoint of computational efficiency, a modal analysis‐based method is developed. The importance of overdamped modes in the energy computation of specific non‐proportionally damped models is demonstrated by comparing the energy transfer functions and the displacement transfer functions. Through numerical examinations for four recorded ground motions, it is shown that the modal analysis‐based method in the frequency domain is very efficient in the computation of the earthquake input energy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Seismic performance of structures is related to the damage inflicted on the structure by the earthquake, which means that formulation of performance‐based design is inherently coupled with damage assessment of the structure. Although the potential for cumulative damage during a long‐duration earthquake is generally recognized, most design codes do not explicitly take into account the damage potential of such events. In this paper, the classical low‐cycle fatigue model commonly used for seismic damage assessment is cast in a framework suitable for incorporating cumulative damage into seismic design. The model, in conjunction with a seismic input energy spectrum, may be used to establish an energy‐based seismic design. In order to ensure satisfactory performance in a structure, the cyclic plastic strain energy capacity of the structure is designed to be larger than or equal to the portion of seismic input energy contributing to cumulative damage. The resulting design spectrum, which depends on the duration of the ground motion, indicates that the lateral strength of the structure must be increased in order to compensate for the increased damage due to an increased number of inelastic cycles that occur in a long‐duration ground motion. Examples of duration‐dependent inelastic design spectra are developed using parameters currently available for the low‐cycle fatigue model. The resulting spectra are also compared with spectra developed using a different cumulative damage model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Soil amplification characteristics of earthquake ground motion were investigated in terms of peak ground acceleration and transfer function based on the Chiba array observation records. The amplification of peak ground acceleration occurred mostly at the top soft layer and was similar for the three components. The effects of non-linear response of soil deposits on the transfer function were examined. Transfer functions calculated by ensemble average were close for the two horizontal components while those obtained from a smoothing operation were generally different. Both the transfer functions from the ensemble average and the smoothing operation underestimated the gain factor around the natural frequencies. A two-step smoothing procedure was proposed and a rotary spectrum was used to improve the estimation of the transfer function. Microtremors were observed at the locations of the boreholes where seismometers are buried. The power spectrum and spatial coherency of the microtremors were compared with those of the earthquake ground motion. Emphasis was placed on the wavetypes which dominated the peaks in the power spectra.  相似文献   

15.
对多自由度体系应用小波分解的地震激励,将地震动总输入能量表示为不同频段地震动输入能量的叠加.与单自由度体系相比,多自由度体系应用小波分解会产生较大的误差,这并不影响研究小波分解后各频段对单一固有振型输入能量的贡献.这样可以从频率的角度分析多自由度体系的地震动输入能量.  相似文献   

16.
The 1995 Hyogo-ken Nanbu (Kobe) earthquake brought about enormous damage to structures in the Hanshin and Awaji areas. In this paper the importance of investigating the relationship between ground motion and structural damage is pointed out.

Strong seismic motion was observed at the NTT (Nippon Telegraph and Telephone) Building during this earthquake. The structural damage to this building was relatively slight. In order to evaluate the relationship between ground motion and structural damage, it is necessary to assess the effects of the soil–structure interaction. In this study, the seismic response of the building and of the surface soil were evaluated by means of a nonlinear soil–structure interaction analysis using FEM.

It was found that, the nonlinearity of surface soil near the building had a great effect on the soil–structure interaction, especially the rocking of the building.  相似文献   


17.
In this paper, a method is proposed in order to obtain a simplified representation of hysteretic and input energy spectra. The method is based on the evaluation of the equivalent number of cycles correlated to the earthquake characteristics by the proposed seismic index ID. This procedure allows us to obtain peak values of the hysteretic and input energy that depend on the demanded ductility, on the seismic index ID and on the peak pseudo‐velocity. The assessment of the input energy represents a first step towards the definition of a damage potential index capable of taking into account the effect of the duration of the ground motions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Site effects are one of the most predictable factors of destructive earthquake ground motion but results depend on the type of model chosen. We compare simulations of ground motion for a 3D model of the Mygdonian basin in northern Greece (Euroseistest) using different approximation for this basin. Site effects predicted using simple 1D models at many points inside the basin are compared to site effects predicted using four different 2D cross sections across the basin and with results for a full 3D simulation. Surface topography was neglected but anelastic attenuation was included in the simulations. We show that lateral heterogeneity may increase ground motion amplification by 100 %. Larger amplification is distributed in a wide frequency range, and amplification may occur at frequencies different from the expected resonant frequencies for the soil column. In contrast, on a different cross section, smaller conversion of incident energy into surface waves and larger dispersion leads to similar amplitudes of ground motion for 2D and 1D models. In general, results from 2D simulations are similar to those from a complete 3D model. 2D models may overestimate local surface wave amplitudes, especially when the boundaries of the basin are oblique to the selected cross section. However, the differences between 2D and 3D site effects are small, especially in regard of the difficulties and uncertainties associated to building a reliable 3D model for a large basin.  相似文献   

19.
基于能量反应的地震动输入选择方法讨论   总被引:7,自引:0,他引:7  
输入地震波的合理选择是影响结构时程分析结果可信度的重要因素。已有的最优双指标选波方案没有考虑地震动的持时和能量分布的影响。文中考虑地震动持时这一影响结构弹塑性反应的重要因素,以抗震结构的能量反应规律为基础讨论输入地震波选择问题,建议以地震动弹性总输入能反应作为补充指标的选波方案。  相似文献   

20.
本文对具有旗帜型滞回模型的单自由度自复位体系提出了设计能量谱的构造方法,包括设计输入能量谱和设计滞回耗能比谱。首先按中国规范场地类别选取360条实际强震记录进行时程分析,对影响单自由度自复位体系输入能量谱和滞回耗能比谱的参数,包括地震波类型、滞回模型、阻尼比、延性系数等进行研究。在此基础上分别建议了设计输入能量谱和设计滞回耗能比谱及其曲线参数的确定方法,并与实际强震记录计算结果进行比较。结果表明结构滞回模型对能量谱影响明显;阻尼比和延性系数对输入能量谱的影响在整个周期范围内有显著差异,但均有明显的削峰作用。建议的两种设计能量谱综合考虑了结构参数、地震波参数和中国场地类别的影响,可以较好的拟合实际情况,并对弹塑性单自由度自复位体系在地震作用下的耗能需求做出较准确的估计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号